导数(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)
专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。
2020年高考数学23道题必考考点各个击破精讲主题06 导数(文)(含详细答案解析)

2020年新课标高考数学23道题必考考点各个击破(按题号与考点编排)主题06 导数(文)【主题考法】本主题考试题型为选择填空题,与解析几何、函数、立体几何、概率等数学知识结合主要考查常见函数的导数、导数的运算法则,考查利用导数函数研究函数的切线,利用导数研究函数单调性、极值及最值进而研究函数的图象与性质,再利用函数图象与性质处理函数零点、不等式等综合问题,常为压轴题,难度较大,分值为5至10分.【主题回扣】1.导数的几何意义(1)f′(x0)的几何意义:曲线y=f(x)在点(x0,f(x0))处的切线的斜率,该切线的方程为y-f(x0)=f′(x0)·(x-x0).(2)切点的两大特征:①在曲线y=f(x)上;②在切线上.2.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤①求函数f(x)的定义域;②求导函数f′(x);③由f′(x)>0的解集确定函数f(x)的单调增区间,由f′(x)<0的解集确定函数f(x)的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f(x)在区间M上单调递增,则f′(x)≥0(x∈M)恒成立;若可导函数f(x)在区间M上单调递减,则f′(x)≤0(x∈M)恒成立;②若可导函数在某区间上存在单调递增(减)区间,f′(x)>0(或f′(x)<0)在该区间上存在解集;③若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,则I是其单调区间的子集.3.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤①确定函数的定义域;②解方程f′(x)=0;③判断f′(x)在方程f′(x)=0的根x0两侧的符号变化:若左正右负,则x0为极大值点;若左负右正,则x0为极小值点;若不变号,则x0不是极值点.(2)求函数f(x)在区间[a,b]上的最值的一般步骤①求函数y=f(x)在[a,b]内的极值;②比较函数y=f(x)的各极值与端点处的函数值f(a),f(b)的大小,最大的一个是最大值,最小的一个是最小值.【易错提醒】1.已知可导函数f(x)在(a,b)上单调递增(减),则f′(x)≥0(≤0)对∀x∈(a,b)恒成立,不能漏掉“=”,且需验证“=”不能恒成立;已知可导函数f(x)的单调递增(减)区间为(a,b),则f′(x)>0(<0)的解集为(a,b).学科-网2.f′(x)=0的解不一定是函数f(x)的极值点.一定要检验在x=x0的两侧f′(x)的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.3.函数在某点的切线与过某点的切线的区别.【主题考向】考向一导数的运算和几何意义【解决法宝】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.例1直线与曲线相切于点,则的值为()A. B. C. D.【分析】由题知M(1,2)在切线上,将其代入切线方程即可求出k,求出曲线在x=1处的导数即为切线的斜率,即可求出b.考向二 利用导数研究函数的性质【解决法宝】利用导数研究函数性质的一般步骤: (1)确定函数的定义域; (2)求导函数)(x f ';(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式)(x f '>0或)(x f '<0.②若已知函数的单调性,则转化为不等式)(x f '≥0或)(x f '≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程)(x f '=0的根,再检查)(x f '在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程)(x f '=0根的大小或存在情况来求解. (5)求函数)(x f 在闭区间],[b a 的最值时,在得到极值的基础上,结合区间端点的函数值)(a f ,)(b f 与)(x f 的各极值进行比较得到函数的最值.例2 函数()2ln f x x x mx =-有两个极值点,则实数m 的取值范围是( )A. 10,2⎛⎫⎪⎝⎭B. (),0-∞C. ()0,1D. ()0,+∞【分析】由函数()2ln f x x x mx =-有两个极值点知,)(x f '恰好有两个零点,转化函数y=lnx 与y=2mx ﹣1的图象有两个交点,数形结合即可求出实数m 的取值范围.考向三 导数的综合应用【解决法宝】研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考. 例3已知函数,若在恒成立,则实数的取值范围为( ) A.B.C.D.【分析】先考虑当1=x 时,当0)1(≥f 时,a 满足的条件,当10<<x 时,参变分离为1ln 22-≥x x x a ,利用导数求1ln 22-=x x x y 的最大值,即可求出a 的取值范围.【解析】当时,恒成立,;当时, 即:,令,则,令,则:,则函数在区间上单调递减,,据此可得函数,故函数在区间上单调递增,的最大值为:, 综上可得,实数的取值范围为.,故选C .【主题集训】 1. 已知函数,则其单调增区间是A. (0,1]B. [0,1]C. (0,+∞)D. (1,+∞) 【答案】D 【解析】,定义域为,令,解得,故函数单调增区间是,故选2.已知可导函数()f x 的导函数为()f x ', ()02018f =,若对任意的x R ∈,都有()()f x f x >',则不等式()2018x f x e <的解集为( )A. ()0,+∞B. 21,e ⎛⎫+∞ ⎪⎝⎭C.21,e ⎛⎫-∞⎪⎝⎭D. (),0-∞ 【答案】A【解析】根据题意构建函数()()()()'(,'0xxf x f x f xg x g x e e -==<),故函数在R 上递减,且g(0)=2018,所以()2018x f x e <等价于()()()0xf xg x g e=<,所以0x >,故选A.3.已知:,若方程有唯一的实数解,则( )A.B.C.D. 1【答案】B4.已知定义在上的奇函数可导,设其导函数为,当时,恒有,令,则满足的实数的取值范围是( )A.B.C.D.【答案】D 【解析】因为,所以当时,,所以在单调递减,又为奇函数,所以为偶函数,因此由得,选D.5.定义在上的函数,已知是它的导函数,且恒有成立,则有( )A. B.C.D.【答案】C 【解析】令,则其导数,又由,且有,所以,即函数为减函数,又由,则有,即,化简可得,故选C.6.设曲线()e x f x x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A .[]1,2-B .()3,+∞C .21,33⎡⎤-⎢⎥⎣⎦ D .12,33⎡⎤-⎢⎥⎣⎦【答案】D7.若函数有两个极值点,则实数的取值范围是( ) A.B.C.D.【答案】A 【解析】有两个正根,即有两个正根,令,,当时,,故在上单调递增,在上单调递减,,当时,,所以,故选:A .8.已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是( )A .c b a >>B .a b c >> C. b a c >> D .b c a >> 【答案】B【解析】由)()(x f x f -=知函数()x f 为偶函数,设()()x xf x F =,则()x F 为奇函数,当()0,∞-∈x 时,()()()0<'+='x f x x f x F ,所以()F x 在()0,∞-上为递减函数,所以()F x 在R 上是递减函数.因为0.121log 30ln 2128=-<<<<,所以0.121(log )(ln 2)(2)8F F F >>,即a b c >>,故选B . 9.已知函数()ln 2x axf x x-=,若有且仅有一个整数k ,使得()1f k >,则实数a 的取值范围是( )A. (]1,3B. 1111ln2,ln34262⎡⎫--⎪⎢⎣⎭ C.11ln21,ln3123⎡⎫--⎪⎢⎣⎭D. 11,1e e ⎛⎤-- ⎥⎝⎦【答案】B【解析】函数()ln 2x axf x x-=,若有且仅有一个整数k ,使得()1f k >,不等式程()ln 21x a x >+只有一个整数解,在同一坐标系中画出图像,可知这个整数解就是2,故得到()()ln2221,ln3321a a >+≤+,解得不等式组解集为1111ln2,ln34262⎡⎫--⎪⎢⎣⎭,故选B.10.已知不等式在上恒成立,且函数在上单调递增,则实数的取值范围为( ) A. B. C. D.【答案】D 【解析】不等式在上恒成立,令,,由图可知,或,即;又在上单调递增,故在上恒成立,,综上,,故选D.11.设函数,若是函数是极大值点,则实数的取值范围是()A. B. C. D.【答案】A【解析】,若因为是函数是极大值点,所以即,所以若时,因为,所以当时,,当时,所以是函数是极大值点,符合题意;当时,若是函数是极大值点,则需,即,综上,故选A.12.若关于的方程存在三个不等实根,则实数的取值范围是A. B. C. D.【答案】C【解析】原方程可化为,令,则.设,则得,当时,,函数单调递增;当时,,函数单调递减,故当时,函数有极大值,也为最大值,且.可得函数的图象如下:∵关于的方程存在三个不等实根,∴方程有两个根,且一正一负,且正根在区间内.令,则有,解得.∴实数的取值范围是.选C .13. 已知函数()()232x f x e x a x =+++在区间()1,0-有最小值,则实数a 的取值范围是( )A. 11,e ⎛⎫-- ⎪⎝⎭ B.1,3e ⎛⎫-- ⎪⎝⎭C. 3,1e ⎛⎫-- ⎪⎝⎭D. 11,3e ⎛⎫-- ⎪⎝⎭【答案】D14.已知函数,则下列关于的表述正确的是( ) A. 的图象关于轴对称 B. ,的最小值为C.有个零点 D.有无数个极值点【答案】D【解析】A 因为函数,故函数不是偶函数,图像也不关于y 轴对称;A 不正确; B. 假设,使得的最小值为,即有解,在同一坐标系中画出图像,得到的最大值为2,最小值为2,且不是在同一个x 处取得的,故得到两个图像无交点,故B 是错误的; C,其中一个零点为0,另外的零点就是两个图像的交点,两者的图像只有一个交点,故选项不正确; D ,化一得到,,此时满足的x 值有无数个;故选D.15. 函数()2ln 2f x x x x ax =+-+恰有一个零点,则实数a 的值为( ) A. 1- B. 1 C. 2 D. 3 【答案】D【解析】∵函数()2ln 2f x x x x ax =+-+恰有一个零点∴方程2ln 20x x x ax +-+=在()0,+∞上有且只有一个根,即2ln a x x x=++在()0,+∞上有且只有一个根,令()2ln h x x x x=++,则()()()2222211221x x x x h x x x x x +-+-='=+-=,当01x <<时,()0h x '<,则()h x 在()0,1上单调递减;当1x >时, ()0h x '>,则()h x 在()1,+∞上单调递增,∴()()min 13h x h ==由题意可知,若使函数()2ln 2f x x x x ax =+-+恰有一个零点,则()min 3a h x ==,故选D. 16. 已知函数为奇函数,当时,,则曲线在点处的切线的斜率为____. 【答案】2 【解析】∵当时,,∴当时,,∵函数为奇函数,∴,则∴ ∴曲线在点处的切线的斜率为17. 已知l 为曲线在A (1,2)处的切线,若l 与二次曲线也相切,则______.【答案】4【解析】的导数为曲线在处的切线斜率为则曲线在处的切线方程为,即由于切线与曲线相切可联立得到:又,两线相切有一个切点,,解得. 18.已知函数(为自然对数的底数),若,则实数的取值范围是__________. 【答案】【解析】 由题意得,因为,所以,所以函数单调递减, 由因为为奇函数,,所以,即,解得.19.已知函数()3221f x x ax a x =+-+在[]1,1-上单调递减,则a 的取值范围是__________. 【答案】(][),33,-∞-⋃+∞20.曲线1x y e x -=+的一条切线经过坐标原点,则该切线方程为____________. 【答案】2y x =【解析】设切点为()0100,x x e x -+,则1'1x y e -=+,即011x k e -=+,故切线方程为()()0011001x x y e x e x x ----=+-,又切线过原点, ()()001100010x x e x e x --∴--=+-,解得01x =,将01x =代入()()0011001x x y e x e x x ----=+-,可得切线方程为2y x =,故答案为2y x =.21.设函数,其中,若存在唯一的整数,使得,则实数的取值范围是__________. 【答案】【解析】函数存在唯一的整数,使得,设与,即存在唯一的整数,使得在直线下方,,当时,当时,在上单调递减,在上单调递增,所以当时, 取到最小值,且g(0)=1;直线恒过点(1,0),斜率为,由图知当时不合题意,故,若要存在唯一的整数,使得在直线下方,则,即,代入得,解得,故填.22.已知函数()()2ln ,mf x x xg x e x=+-=,其中e 为自然对数的底数,若函数()f x 与)(x g 的图像恰有一个公共点,则实数的取值范围是______. 【答案】0m ≥或21e m e+=-【解析】因为()110f x x=+>',所以函数在()0,+∞上为增函数且1110f e e ⎛⎫=--< ⎪⎝⎭,所以当0m ≥时,与()m g x x =有一个公共点,当0m <时, 令()()22,f x g x x xlnx x m e=∴+-=有一解即可,设22(=h x x xlnx x e +-),令2(=2x +1=0h x lnx e -'+)得1x e =,因为当10x e <<时, ()0h x '<,当1x e <时, ()0h x '>,所以当1x e =时, (h x )有唯一极小值21e e+-,即()h x 有最小值21e e +-,故当21e m e +=-时有一公共点,故填0m ≥或21e m e +=-.。
高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文)一、考点回顾1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。
考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。
2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。
选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。
3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。
二、经典例题剖析 考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3点评:本题考查多项式的求导法则。
考点二:导数的几何意义。
例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。
2020届高考冲刺数学(文)“小题精练”含详细解答(共30份)

2020届高三数学(文)“小题速练”113. 14. 15. 16.1. 已知集合(){},|24A x y x y =+=,(){},|10B x y x y =-+=,则A B =IA .∅B .{}2,1C .(){}2,1D .(){}1,22. 已知复数z 满足6,25z z z z +=⋅=,则z =A .34i ±B .34i ±+C .43i ±D .43i ±+3. 已知12,e e 均为单位向量,若12-=e e ,则1e 与2e 的夹角为A .30︒B .60︒C .120︒D .150︒4. 函数()335x f x x =+-的零点所在的区间为A .()0,1B .31,2⎛⎫⎪⎝⎭C .3,22⎛⎫ ⎪⎝⎭D .52,2⎛⎫ ⎪⎝⎭5. 班主任要从甲、乙、丙、丁、戊5个人中随机抽取3个人参加活动,则甲、乙同时被抽到的概率为 A .110 B .15C .310D .256. 若()tan 2sin αα=-π,则cos2α=A .14-B .1C .12-或0D .12-或1 7. 已知平面α⊥平面β,直线,l m ααβ⊂=I ,则“m l ⊥”是“m β⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 已知过点()0,1的直线与抛物线24x y =交于()()1122,,,A x y B x y 两点,若1294y y +=,则AB =A .254B .174C .134D .949. 某校开设了素描、摄影、剪纸、书法四门选修课,要求每位同学都要选择其中的两门课程.已知甲同学选了素描,乙与甲没有相同的课程,丙与甲恰有一门课程相同,丁与丙没有相同课程.则以下说法错误..的是 A .丙有可能没有选素描 B .丁有可能没有选素描C .乙丁可能两门课都相同D .这四个人里恰有2个人选素描10. 定义在R 上的奇函数()f x 满足()()2f x f x -=,且当10x -≤<时,()21x f x =-,则()2log 20f =A .14 B .15C .15-D .14-11. 已知函数()sin cos f x x x =+,将()f x 图象上所有点的横坐标缩短到原来的12倍,纵坐标保持不变,得到函数()y g x =的图象.若()()122g x g x =-,则12||x x -的最小值为 A .π2B .πC .2πD .4π12. 已知双曲线2222:1x y C a b-=(0,0a b >>)的一条渐近线方程为20x y -=,,A B 分别是C 的左、右顶点,M 是C 上异于,A B 的动点,直线,MA MB 的斜率分别为12,k k ,若112k ≤≤,则2k 的取值范围为 A .11,84⎡⎤⎢⎥⎣⎦B .11,42⎡⎤⎢⎥⎣⎦C .11,48⎡⎤--⎢⎥⎣⎦D .11,24⎡⎤--⎢⎥⎣⎦二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13. 若实数x ,y 满足约束条件2,220,10,y x y x y -⎧⎪-+⎨⎪+-⎩≥≥≤则2z x y =+的最大值为 .14. ABC △的内角,,A B C 的对边分别为,,a b c ,若cos cos 2a B b A ac +=,则a = . 15. 勒洛三角形是具有类似圆的“定宽性”的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为1:3,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率为______.16. 在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,则所得截面圆的面积的最小值为 .2020届高三数学(文)“小题速练”1(答案解析)1.已知集合(){},|24A x y x y =+=,(){},|10B x y x y =-+=,则A B =I A .∅ B .{}2,1 C .(){}2,1 D .(){}1,2【答案】D .【解析】由24,10x y x y +=⎧⎨-+=⎩得1,2,x y =⎧⎨=⎩所以A B =I (){}1,2.2.已知复数z 满足6,25z z z z +=⋅=,则z = A .34i ± B .34i ±+ C .43i ± D .43i ±+【答案】A .【解析】设i z a b =+(,a b ∈R ),依题意得,2226,25a a b =+=,解得3,4a b ==±,所以z =34i ±.3.已知12,e e均为单位向量,若12-=e e 1e 与2e 的夹角为 A .30︒ B .60︒ C .120︒ D .150︒【答案】C .【解析】依题意,121==e e ,2123-=e e ,所以12223-⋅=e e ,即1212⋅=-e e ,所以1212121cos ,2⋅==-e e e e e e ,所以12,120=︒e e . 4.函数()335x f x x =+-的零点所在的区间为 A .()0,1 B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫ ⎪⎝⎭D .52,2⎛⎫ ⎪⎝⎭【答案】B .【解析】依题意,()f x 为增函数,()13150,f =+-<()2323250,f =+->32f ⎛⎫= ⎪⎝⎭2758-=1308->,所以()f x 的零点所在的区间为31,2⎛⎫⎪⎝⎭.5.班主任要从甲、乙、丙、丁、戊5个人中随机抽取3个人参加活动,则甲、乙同时被抽到的概率为 A .110 B .15C .310D .25【答案】C .【解析】从5个人中随机抽取3人,所有的情况为{甲,乙,丙},{甲,乙,丁},{甲,乙,戊},{甲,丙,丁},{甲,丙,戊},{甲,丁,戊},{乙,丙,丁},{乙,丙,戊},{乙,丁,戊},{丙,丁,戊},共10种结果.记“甲、乙同时被抽到”为事件A ,则A 包含基本事件{甲,乙,丙},{甲,乙,丁},{甲,乙,戊},共3个,故()310P A =. 6.若()tan 2sin αα=-π,则cos2α=A .14-B .1C .12-或0D .12-或1 【答案】D . 【解析】由题设得,sin 2sin cos ααα=-,所以sin 0α=,或1cos 2α=-. 所以cos2α=1-22sin 1α=,或21cos22cos 12αα=-=-.7.已知平面α⊥平面β,直线,l m ααβ⊂=I ,则“m l ⊥”是“m β⊥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C .【解析】若m l ⊥,则根据面面垂直的性质定理可得m β⊥;若m β⊥,则由l β⊂,可得m l ⊥.故选C .8.已知过点()0,1的直线与抛物线24x y =交于()()1122,,,A x y B x y 两点,若1294y y +=,则AB =A .254B .174C .134D .94【答案】B .【解析】依题意,点()0,1为抛物线的焦点,则由抛物线的定义可得 AB =122y y ++=917244+=.9.某校开设了素描、摄影、剪纸、书法四门选修课,要求每位同学都要选择其中的两门课程.已知甲同学选了素描,乙与甲没有相同的课程,丙与甲恰有一门课程相同,丁与丙没有相同课程.则以下说法错误..的是 A .丙有可能没有选素描 B .丁有可能没有选素描 C .乙丁可能两门课都相同 D .这四个人里恰有2个人选素描【答案】C .【解析】因为甲选择了素描,所以乙必定没选素描.那么假设丙选择了素描,则丁一定没选素描;若丙没选素描,则丁必定选择了素描.综上,必定有且只有2人选择素描,选项A ,B ,D 判断正确.不妨设甲另一门选修为摄影,则乙素描与摄影均不选修,则对于素描与摄影可能出现如下两种情况:由上表可知,乙与丁必有一门课程不相同,因此C 不正确.10.定义在R 上的奇函数()f x 满足()()2f x f x -=,且当10x -≤<时,()21x f x =-,则()2log 20f =A .14 B .15C .15-D .14-【答案】B .【解析】依题意,()()()2f x f x f x +=-=-,所以()()4f x f x +=,所以()f x 为周期函数,周期为4.又22log 53<<,所以212log 50--<<,所以()2log 20f =()22log 5f +=()()22log 522log 5f f -=--=()22log 521---=415⎛⎫--= ⎪⎝⎭15.11.已知函数()sin cos f x x x =+,将()f x 图象上所有点的横坐标缩短到原来的12倍,纵坐标保持不变,得到函数()y g x =的图象.若()()122g x g x =-,则12||x x -的最小值为 A .π2B .πC .2πD .4π【答案】A .【解析】()π4f x x ⎛⎫=+ ⎪⎝⎭,所以()π24g x x ⎛⎫=+ ⎪⎝⎭,故()g x 的周期为π,且()max g x ()min g x =.因为()()122g x g x ⋅=-,所以()()12g x g x =-=,或()()12g x g x =-=12ππ,2x x k k -=+∈N ,所以12min π||2x x -=. 12.已知双曲线2222:1x y C a b-=(0,0a b >>)的一条渐近线方程为20x y -=,,A B 分别是C的左、右顶点,M 是C 上异于,A B 的动点,直线,MA MB 的斜率分别为12,k k ,若112k ≤≤,则2k 的取值范围为 A .11,84⎡⎤⎢⎥⎣⎦B .11,42⎡⎤⎢⎥⎣⎦C .11,48⎡⎤--⎢⎥⎣⎦D .11,24⎡⎤--⎢⎥⎣⎦【答案】A .【解析】依题意,12b a =,则双曲线的方程为:222214x y b b -=,则()()2,0,2,0A b B b -,设()00,M x y ,则22002214x y b b-=,所以22022********2000014122444x b b y y y k k x b x b x b x b ⎛⎫- ⎪⎝⎭=⋅===+---,因为1[1,2]k ∈,所以1211,8414k k ⎡=⎤∈⎢⎥⎣⎦. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.若实数x ,y 满足约束条件2,220,10,y x y x y -⎧⎪-+⎨⎪+-⎩≥≥≤则2z x y =+的最大值为 . 【答案】4.【解析】作出可行域如图所示,则当直线2z x y =+过点(3,2)A -时z 取最大值4. 14.ABC △的内角,,A B C 的对边分别为,,a b c ,若cos cos 2a B b A ac +=,则a = . 【答案】12. 【解析】由题设及正弦定理得sin cos sin cos 2sin A B B A a C +=,所以()sin A B +=2sin a C .又πA B C ++=,所以sin 2sin C a C =,所以12a =. 15.勒洛三角形是具有类似圆的“定宽性”的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为1:3,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率为______.【答案】19.【解析】设图中的小的勒洛三角形所对应的等边三角形的边长为a ,则小勒洛三角形的面积1S =()222343262a a a π-3π⨯-⨯=,因为大小两个勒洛三角形,它们所对应的等边三角形的边长比为1:3,所以大勒洛三角形的面积2S =()()232a π-3=()292a π-3,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率12S P S ==19.16.在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,则所得截面圆的面积的最小值为 . 【答案】12π.【解析】将三棱锥P ABC -补成直三棱柱,则三棱锥和该直三棱柱的外接球都是球O ,记三角形ABC 的外心为1O ,设球的半径为R ,2PA x =,则球心O 到平面ABC 的距离为x ,即1OO x =,连接1O A ,则1152O A BC ==,所以2225R x =+.在ABC △中,取AC 的中点为E ,连接11,O D O E ,则1132O E AB ==,124DE AC ==,所以1O D =在1Rt OO D △中,OD =,由题意得到当截面与直线OD 垂直时,截面面积最小,设此时截面圆的半径为r ,则()22222251312r R OD x x =-=+-+=,所以最小截面圆的面积为12π.ABC1OO EDP2020届高三数学(文)“小题速练”2题号123456789101112答案13. 14. 15. 16.一、选择题(本大题共12小题,共60.0分)1.设集合M={x|x2=-x},N={x|lg x=0},则M∪N=()A. {−1,0}B. {−1,0,1}C. {0,1}D. {−1,1}2.已知i为虚数单位,若复数z=(1+i)21−i,则|z|=()A. 2B. 1C. √2D. √33.已知曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线方程为3x+y=0,则曲线的离心率为()A. 2B. 2√3C. 3D. √104.下列函数中是偶函数,且在区间(0,+∞)上为单调增函数的是()A. y=lnx2B. y=e x−e−xC. y=cosxD. y=x3+x5.已知在一次射击预选赛中,甲、乙两人各射击10次,两人成绩的条形统计图如图所示,则下列四个选项中判断不正确的是()A. 甲的成绩的平均数小于乙的成绩的平均数B. 甲的成绩的中位数小于乙的成绩的中位数C. 甲的成绩的方差大于乙的成绩的方差D. 甲的成绩的极差小于乙的成绩的极差6.已知向量a⃗=(1,2),b⃗ =(1,x),若|a⃗−b⃗ |=a⃗⋅b⃗ ,则x=()A. −3B. 13C. 3 D. 13或−37.从0,1,4,7这四个数中任取两个不同的数组成一个两位数,这个两位数是奇数的概率为()A. 49B. 12C. 59D. 138.如图,小正方形方格边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的体积为()A. 2π3B. 3π2C. π2D. 2π9.执行如图所示的程序框图,则输出的S为()A. 36B. −36C. 45D. −4510.已知函数f(x)=A cos(ωx+φ)(A,ω,φ为常数,ω>0,A<0)的部分图象如图所示,则A=()A. −2B. −3C. −2√2D. −√6),11.定义域为R的偶函数f(x)满足f(x+1)=-f(-x),且在区间[0,1]上单调递减.设a=f(152 b=f(2+√2),c=f(8),则a,b,c的大小关系是()A. a>b>cB. c>b>aC. b>c>aD. c>a>b12.在三棱柱ABC-A1B1C1中,底面三角形ABC是边长为2的等边三角形,侧棱AA1⊥底面ABC,AA1=3,M,N分别是BC,AB的中点,点P在棱CC1上,且CP=2PC1.设平面AMP与平面BNC1的交线为l,则直线C1N与l的位置关系是()A. 相交B. 平行C. 异面D. 垂直二、填空题(本大题共4小题,共20.0分)13.函数f(x)=x2+ln x在点(1,f(1))处的切线方程为______.14.已知实数x,y满足{x+y≤3x−y≤0x−1≥0,则z=yx−1的最小值是______.15.已知抛物线y2=2px(p>0),直线y=x-2与抛物线交于A,B两点,以线段AB为直径的圆过点P(2,-2),则p=______.16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a2+b2=√3ab+c2,AB=1,则AC+√3BC的最大值是______.2020届高三数学(文)“小题速练”2(答案解析)1.【答案】B【解析】∵集合M={x|x2=-x}={0,-1},N={x|lgx=0}={1},∴M∪N={-1,0,1}.2.【答案】C【解析】解:复数z====i-1,则|z|==.3.【答案】D【解析】∵曲线的一条渐近线方程为3x+y=0,∴b=3a,∴c==a,∴e==.故选:D.4.【答案】A【解析】A.函数的定义域为(-∞,0)∪(0,+∞),f(-x)=ln(-x)2=lnx2=f(x),则f(x)是偶函数,当x>0时,f(x)=2lnx为增函数,满足条件.B.f(-x)=e-x-e x=-(e x-e-x)=-f(x),则函数为奇函数,不满足条件.C.y=cosx在(0,+∞)上不是单调函数,不满足条件.D.f(-x)=-x3-x=-(x3+x)=-f(x),函数为奇函数,不满足条件.5.【答案】D【解析】在一次射击预选赛中,甲、乙两人各射击10次,两人成绩的条形统计图如图所示,在A中,甲的成绩的平均数为:=(5+6×2+7×2+8×2+9×2+10)=7.5,乙的成绩的平均数为:=(6+7×3+8×2+9×3+10×1)=8,∴甲的成绩的平均数小于乙的成绩的平均数,故A正确;在B中,甲的成绩的中位数为:,乙的成绩的中位数为:=8.5,∴甲的成绩的中位数小于乙的成绩的中位数,故B正确;在C中,由条形统计图得甲的成绩相对分散,乙的成绩相对分散,∴甲的成绩的方差大于乙的成绩的方差,故B正确.在D中,甲的成绩的极差为:10-5=5,乙的成绩的极差为:10-6=4,∴甲的成绩的极差大于乙的成绩的极差,故D不正确.6.【答案】B【解析】向量,若,可得:,(x).,解得x=-3(舍去)或x=.故选:B.7.【答案】A【解析】从0,1,4,7这四个数中任取两个不同的数组成一个两位数,基本事件总数n=3×3=9,这个两位数是奇数包含的基本事件个数m=2×2=4,∴这个两位数是奇数的概率为p=.8.【答案】D【解析】由三视图可得,直观图为一个完整的圆柱截去圆柱的一半,如图:V=π•12×4=2π,故选:D.由三视图可得,直观图为一个完整的圆柱截去圆柱的一半,即可求出几何体的体积.9.【答案】A【解析】模拟程序的运行,可得S=0,n=1执行循环体,S=-1,n=2满足条件4n2≥2n,执行循环体,S=3,n=3满足条件4n2≥2n,执行循环体,S=-6,n=4满足条件4n2≥2n,执行循环体,S=10,n=5满足条件4n2≥2n,执行循环体,S=-15,n=6满足条件4n2≥2n,执行循环体,S=21,n=7满足条件4n2≥2n,执行循环体,S=-28,n=8满足条件4n2≥2n,执行循环体,S=36,n=9此时,不满足条件4n2≥2n,退出循环,输出S的值为36.10.【答案】C【解析】由图象可得T=-==•,解得ω=3.可得:f(x)=Acos(3x+φ),由于点(,0)在函数图象上,可得Acos(3×+φ)=0,解得:3×+φ=kπ+,即:φ=kπ-,k∈Z,又由于点(,-2)在函数图象上,可得Acos(3×+kπ-)=-2,k∈Z,可得:Acos(+kπ)=-2,k∈Z,解得:A=-2,或2(舍去).11.【答案】D【解析】∵偶函数f(x)满足f(x+1)=-f(-x),∴f(x+1)=-f(-x)=-f(x),即f(x+2)=-f(x+1)=f(x),则f(x)为周期为2的周期函数,则c=f(8)=f(0),b=f(2+)=f()=f(-)=f(2-),=f(8-)=f(-)=f(),∵0<<2-,且f(x)在区间[0,1]上单调递减.∴f(0)>f()>f(2-),即c>a>b12.【答案】B【解析】∵在三棱柱ABC-A1B1C1中,底面三角形ABC是边长为2的等边三角形,侧棱AA1⊥底面ABC,AA1=3,M,N分别是BC,AB的中点,点P在棱CC1上,且CP=2PC1.设平面AMP与平面BNC1的交线为l,设AM∩CN=O,连结OP,∴C1N∥OP,∵OP⊂平面AMP,C1N⊄平面AMP,∴C1N∥平面APM,∵平面AMP与平面BNC1的交线为l,∴直线C1N与l的位置是平行.故选:B.13.【答案】3x-y-2=0【解析】f′(x)=2x+;故f′(1)=2+1=3;故函数f(x)=x2+lnx的图象在点A (1,1)处的切线方程为:y-1=3(x-1);即3x-y-2=0;14.【答案】3【解析】作出实数x,y满足对应的平面区域如图:的几何意义是区域内的点到定点D(1,0)的斜率,由图象知AD的斜率最小,由得(,),则AD的斜率k==3,即的最小值为:3,故答案为:3.15.【答案】1【解析】y2=2px(p>0)和直线y=x-2联立,可得x2-(4+2p)x+4=0,△=(4+2p)2-16>0,设A(x1,y1),B(x2,y2),即有x1+x2=4+2p,x1x2=4,线段AB为直径的圆过点P(2,-2),可得AP⊥BP,即有•=-1,即为=-1,可得x1x2=-[x1x2+4-2(x1+x2)],化为-4=8-2(4+2p),解得p=1.检验判别式大于0成立.16.【答案】2√7【解析】由a2+b2=ab+c2可得=,得cosC=,又0<C<π,∴C=,根据正弦定理可得==,∴AC=2sinB,BC=2sinA,∴AC+BC=2sinB+2sinA=2sin(-A)+2sinA=cosA+3sinA=2sin (A+φ)≤=2.2020届高三数学(文)“小题速练”313. 14. 15. 16. 一、选择题:本题共12小题,每小题5分,共60分。
导数的概念及应用(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)

考向14导数的概念及应用【2022·全国·高考真题】曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】1ey x = 1e y x =-【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1ey x =;1e y x =-【2022·全国·高考真题】若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-, ∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞,故答案为:()(),40,-∞-+∞1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线()y f x =“在”点00(,)P x y 处的切线与“过”点00(,)P x y 的切线的区别:曲线()y f x =在点00(,)P x y 处的切线是指点P 为切点,若切线斜率存在,切线斜率为()0k f x '=,是唯一的一条切线;曲线()y f x =过点00(,)P x y 的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩. 2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.一、导数的概念和几何性质1.概念函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.二、导数的运算 1.求导的基本公式 基本初等函数 导函数 ()f x c =(c 为常数) ()0f x '= ()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠, ()ln x f x a a '=()log (01)a f x x a a =>≠, 1()ln f x x a'=()x f x e =()x f x e '=()ln f x x = 1()f x x'=()sin f x x = ()cos f x x '= ()cos f x x =()sin f x x '=-2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:1.(2022·青海·海东市第一中学模拟预测(理))曲线2e x y x -=在2x =处的切线方程为( ) A .34y x =+ B .43y x =+ C .34y x =- D .43y x =-【答案】C【解析】()21e x y x -'=+,2|3x y ='=,曲线2x y xe -=在点(2,2)处的切线方程为()232y x -=-,即34y x =-.故选:C.2.(2022·湖南·长沙县第一中学模拟预测)函数()2ln 1sin y x x =++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310 B .±310C .35D .±35【答案】C【解析】因为()2ln 1sin y x x =++ 所以2cos 1y x x '=++ 当0x =时,3y ,此时tan 3α=,∴2222sin cos 2tan 63sin 22sin cos sin cos tan 1915ααααααααα⋅=⋅====+++.故选:C.3.(2022·湖南·模拟预测)已知P 是曲线)2:ln 3C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)3,0⎡⎣ B .)22,0⎡⎣C .(,23-∞D .(,22-∞【答案】D【解析】因为)2ln 3y x x a x =++,所以123y x a x'=++, 因为曲线在M 处的切线的倾斜角ππ,32θ⎡⎫∈⎪⎢⎣⎭,所以πtan33y ≥'0x >恒成立,即1233x a x++-≥对任意0x >恒成立, 即12a x x≤+,又1222x x +≥,当且仅当12x x =,即22x =时,等号成立,故22a ≤, 所以a 的取值范围是(,22⎤-∞⎦. 故选:D .4.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( )A .1-B .23-C .12D .1【答案】A【解析】由切点()1,b 在曲线上,得23ab +=①; 由切点()1,b 在切线上,得60k b -+=②; 对曲线求导得()242ay x -'=+,∴2143x ay k ='-==,即49a k -=③, 联立①②③236049a b k b a k+⎧=⎪⎪-+=⎨⎪-=⎪⎩,解之得1351a b k =⎧⎪=⎨⎪=-⎩故选:A.1.(2022·广东·模拟预测)如图是网络上流行的表情包,其利用了“可倒”和“可导”的谐音生动形象地说明了高等数学中“连续”和“可导”两个概念之间的关系.根据该表情包的说法,()f x 在0x x =处连续是()f x 在0x x =处可导的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由“连续不一定可导”知,“()f x 在0x x =处连续”不能推出“()f x 在0x x =处可导”, 比如函数()f x x =在0x =处连续,但是()f x x =在0x =处不可导;由“可导一定连续”知,“()f x 在0x x =处可导”可以推出“()f x 在0x x =处连续”. 因此()f x 在0x x =处连续是()f x 在0x x =处可导的必要不充分条件 答案选:B2.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<- B .3n m >- C .0n < D .30n m <=-【答案】A【解析】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A3.(2022·全国·模拟预测(理))过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0 B .1 C .2 D .3【答案】D【解析】设切点为(),e mm m ,()1e x y x '=+,∴切线斜率()1e m k m =+, ∴切线方程为:()()e 1e m m y m m x m -=+-;又切线过()0,P b ,()2e 1e e m m mb m m m m ∴=-+=-;设()2e m f m m =-,则()()2e mf m m m '=-+,∴当()(),20,m ∈-∞-+∞时,()0f m '<;当()2,0m ∈-时,()0f m '>;()f m ∴在(),2-∞-,()0,∞+上单调递减,在()2,0-上单调递增,又()242e f -=-,()00f =,()0f m ≤恒成立,可得()f m 图象如下图所示,则当240e b -<<时,y b =与()f m 有三个不同的交点, 即当240eb -<<时,方程2e m b m =-有三个不同的解,∴切线的条数为3条. 故选:D.4.(2022·湖北·黄冈中学模拟预测)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则14a b+的最小值为( ) A .8B .9C .10D .13【解析】设切点为00(,)x y ,ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,令0011,1x b x b ==-+,则0ln(1)0y b b =-+= ,故切点为(1,0)b -, 代入y x a =-,得1a b +=, a 、b 为正实数,则141444()()5529b a b a a b a b a b a b a b+=++=++≥+⋅, 当且仅当13a =,23b =时,14a b +取得最小值9,故选:B5.(2022·四川省内江市第六中学模拟预测(理))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .eC eD .2e【答案】B【解析】()2f x x '=,()2a g x x'=,设公切线与()21f x x =+的图象切于点()211,1x x +,与曲线:()2ln 1C g x a x =+切于点()22,2ln 1x a x +,∴()()2221211221212ln 1122ln 2a x x a a x x x x x x x x +-+-===--,故12a x x =,所以212211212ln 2x x x x x x x -=-,∴122222ln x x x x =-⋅,∵12a x x =,故2222222ln a x x x =-,设22()22ln (0)h x x x x x =-⋅>,则()2(12ln )h x x x '=-,∴()h x 在e)上递增,在(e,)+∞上递减,∴max ()(e)e h x h ==, ∴实数a 的最大值为e 故选:B.6.(2022·云南师大附中模拟预测(理))若函数()y f x =的图象上存在两个不同的点A ,B ,使得曲线()y f x =在这两点处的切线重合,则称函数()y f x =为“自重合”函数.下列函数中既是奇函数又是“自重合”函数的是A .ln y x x =+B .3y x =C .cos y x x =-D .sin y x x =+【答案】D【解析】对于A ,C ,函数都不是奇函数,故排除. 若曲线()y f x =在这两点处的切线重合,则首先要保证两点处导数相同;对于B ,23y x '=,若斜率相同,则切点300()A x x ,,300()B x x --,,代入解得切线方程分别为230032y x x x =-,230032y x x x =+;若切线重合,则00x =,此时两切点A ,B 为同一点,不符合题意,故B 错误;对于D ,1cos y x '=+,令1cos 1y x '=+=,得π()2k x k =∈Z ,则取ππ5π5π112222A B ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,,,,切线均为1y x =+,即存在不同的两点A ,B 使得切线重合,故D 正确. 故选:D .7.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e em -<< B .250e m -<< C .10em -<<D .e m <【答案】B【解析】由()e xf x x =,()()1e x f x x '=+,故当1x <-时,()0f x '<,()f x 单调递减,且()0f x <;当1x >-时,()0f x '>,()f x 单调递增,结合图象易得,过点()()1,P m m ∈R 至多有3条直线与函数()xf x xe =的图像相切,故3n =.此时,设切点坐标为()00,x y ,则切线斜率()001e x k x =+⋅,所以切线方程为()()00000e e 1x xy x x x x -=+⋅-,将()1,P m 代入得()0201e x m x x =-++⋅,存在三条切线即函数()21e x m x x =-++⋅有三个不同的根,又()()()1e 2x g x x x '=--+⋅,易得在()2,1-上,()0g x '>,()g x 单调递增;在(),2-∞-和()1,+∞上,()0g x '<,()g x 单调递减,画出图象可得当()20g m -<<,即250e m -<<时符合题意故选:B8.(多选题)(2022·辽宁·渤海大学附属高级中学模拟预测)已知0a >,0b >,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是( ) A .219ab+≥ B .19ab ≤C 225a b +D 22a b ≤【答案】ACD【解析】设切点为()00,x y ,因为1e x y -'=,所以0010010e 12e 1x x y x a y b --⎧=⎪=+⎨⎪=-+⎩,解得01x =, 122a b +=-,即21a b +=,对于A ,2121(2)a b a b a b ⎛⎫+=++ ⎪⎝⎭2255249b a a b=++≥+=,当且仅当13a b ==时,等号成立,故A 正确; 对于B ,122a b ab =+≥18ab ≤,当且仅当14a =,12b =时,等号成立,故B 不正确;对于C 2222(12)a b a a ++-2541a a -+2215555a ⎛⎫=-+ ⎪⎝⎭,当且仅当25a =,15b =时,等号成立,故C 正确;对于D ,由2222a b a b ++≥⎝⎭22a b ⇒≤D 正确. 故选:ACD9.(多选题)(2022·山东潍坊·模拟预测)过平面内一点P 作曲线|ln |y x =两条互相垂直的切线12,l l ,切点为P 1、P 2(P 1、P 2不重合),设直线12,l l 分别与y 轴交于点A ,B ,则下列结论正确的是( ) A .P 1、P 2两点的横坐标之积为定值 B .直线P 1P 2的斜率为定值 C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(0,1] 【答案】ABC【解析】因为ln ,01ln ln ,1x x y x x x -<<⎧==⎨≥⎩,所以,当01x <<时,1y x '=-;当1≥x 时,1y x'=, 不妨设点1P ,2P 的横坐标分别为12,x x ,且12x x <, 若1201x x <<≤时,直线1l ,2l 的斜率分别为111k x =-,221k x =-,此时121210k k x x =>,不合题意; 若211x x >≥时,则直线1l ,2l 的斜率分别为111k x =,221k x =,此时121210k k x x =>,不合题意. 所以1201x x <≤<或1201x x <<≤,则111k x =-,221k x =,由题意可得121211k k x x =-=-,可得121=x x , 若11x =,则21x =;若21x =,则11x =,不合题意,所以1201x x <<<,选项A 对; 对于选项B ,易知点()111,ln P x x -,()222,ln P x x ,所以,直线12PP 的斜率为()1212212121ln ln ln 0P P x x x x k x x x x +===--,选项B 对;对于选项C ,直线1l 的方程为()1111ln y x x x x +=--,令0x =可得11ln y x =-,即点10,1ln A x , 直线2l 的方程为()2221ln y x x x x -=-,令0x =可得21ln 1ln 1y x x =-=--,即点()10,ln 1B x --, 所以,()()111ln 1ln 2AB x x =----=,选项C 对;对于选项D ,联立112211ln {1ln 1y x x x y x x x =-+-=+-可得1212121221P x x xx x x x ==++, 令()221xf x x =+,其中()0,1∈x ,则()()()2222101x f x x -'=>+,所以,函数()f x 在0,1上单调递增,则当()0,1∈x 时,()()0,1f x ∈, 所以,()121210,121ABP P x S AB x x =⋅=∈+△,选项D 错. 故选:ABC.10.(多选题)(2022·江苏·模拟预测)设函数()()()2e R xf x x ax a a -=++∈的导函数()f x '存在两个零点1x 、()212x x x >,当a 变化时,记点()()11,x f x 构成的曲线为1C ,点()()22,x f x 构成的曲线为2C ,则( )A .曲线1C 恒在x 轴上方B .曲线1C 与2C 有唯一公共点C .对于任意的实数t ,直线y t =与曲线1C 有且仅有一个公共点D .存在实数m ,使得曲线1C 、2C 分布在直线y x m =-+两侧 【答案】AD【解析】对于A 选项,因为()()()2e R x f x x ax a a -=++∈,则()()22e x f x a x x -'⎡⎤=--⎣⎦,令()0f x '=可得0x =或2x a =-,因为函数()f x '存在两个零点1x 、()212x x x >,则20a -≠,即2a ≠. 当20a -<时,即当2a >时,10x =,则()12f x a =>,当20a ->时,即当2a <时,12x a =-,则()()()()121124e 2e x a f x f a a x --=-=-=+,则曲线1C 为函数()()()2e0xg x x x -=+>的图象以及射线()02x y =>,且当0x >时,()()2e 0xg x x -=+>,所以,曲线1C 在x 轴上方,A 对;对于B 选项,当20a -<时,即当2a >时,22x a =-,则()()()()222224e 2e x a f x f a a x --=-=-=+,当20a ->时,即当2a <时,20x =,则()22f x a =< 所以,曲线2C 为函数()()()2e0xh x x x -=+<的图象以及射线()02x y =<,由图可知,曲线1C 、2C 无公共点,B 错; 对于C 选项,对于函数()2e x x g x +=,()()1210e exx x x g x -++'==-<, 此时函数()g x 在()0,∞+上单调递减,且()0g x >,结合图象可知,当0m ≤时,直线y t =与曲线1C 没有公共点,C 错;对于D 选项,对于函数()2e x x x ϕ+=,()1ex x x ϕ+'=-,则()01ϕ'=-, 又因为()02ϕ=,所以,曲线()y x ϕ=在0x =处的切线方程为2y x -=-,即2y x =-+. 构造函数()()2222e e x xx x p x x x ++=--+=+-,则()00p =, ()1e 11e e x x xx x p x +--'=-=,令()e 1xm x x =--,则()e 1x m x '=-,当0x <时,()0m x '<,此时函数()m x 单调递减,当0x >时,()0m x '>,此时函数()m x 单调递增,所以,()()00m x m ≥=,所以,()e 10ex xx p x --'=≥且()p x '不恒为零, 所以,函数()p x 在R 上为增函数, 当0x <时,()()00p x p <=,即22e xx x +<-+, 当0x >时,()()00p x p >=,即22e xx x +>-+, 所以,曲线1C 、2C 分布在直线2y x =-+的两侧,D 对.故选:AD.11.(2022·全国·南京外国语学校模拟预测)己知函数22f xx ,()3ln g x x ax =-,若曲线()y f x =与曲线()y g x =在公共点处的切线相同,则实数=a ________. 【答案】1【解析】设函数22f xx ,()3ln g x x ax =-的公共点为()00,x y ,则()()()()0000,,f xg x f x g x ''⎧=⎪⎨=⎪⎩即200000023,32,0,x lnx ax x a x x ⎧-=-⎪⎪=-⎨⎪⎪>⎩则2003ln 10x x +-=.令()23ln 1h x x x =+-,易得()h x 在()0,∞+上单调递增,所以以由2003ln 10x x +-=,解得01x =,所以切点为()1,1-,所以13ln1a =-,则1a =.故答案为:1.12.(2022·江苏·阜宁县东沟中学模拟预测)已知0a >,0b >,直线y x a =+与曲线1e 21x y b -=-+相切,则21a b+的最小值为___________. 【答案】8【解析】设直线y x a =+与曲线121x y e b -=-+相切于点()00,x y 由函数121x y e b -=-+的导函数为1x y e -'=,则001|e 1x x x k y -='===解得01x =所以0122y a b =+=-,即21a b +=则()21214424428b a b a a b a b a b a b a b ⎛⎫+=++=++≥+⨯ ⎪⎝⎭当且仅当4b aa b =,即11,24a b ==时取得等号. 故答案为:813.(2022·山东泰安·模拟预测)已知函数32()f x x ax =-+,写出一个同时满足下列两个条件的()f x :___________.①在[1,)+∞上单调递减;②曲线()(1)y f x x =≥存在斜率为1-的切线. 【答案】32()f x x x (答案不唯一)【解析】若()f x 同时满足所给的两个条件,则2()320f x x ax '=-+≤对[1,)x ∈+∞恒成立,解得:min32a x ⎛⎫≤ ⎪⎝⎭,即32a ≤, 且2()321f x x ax '=-+=-在[)1,+∞上有解,即3122x a x=-在[)1,+∞上有解,由函数的单调性可解得:31122x a x=-≥. 所以312a ≤≤.则32()f x x x (答案不唯一,只要()f x 满足32()f x x ax =-+(312a ≤≤即可) 故答案为:32()f x x x14.(2022·山东潍坊·模拟预测)已知()e 1xf x =-(e 为自然对数的底数),()ln 1g x x =+,请写出()f x 与()g x 的一条公切线的方程______. 【答案】e 1y x =-或y x =【解析】设公切线与()f x 相切于点(),e 1mm -,与()g x 相切于点(),ln 1n n +,()e x f x '=,()1g x x '=,∴公切线斜率1e mk n==; ∴公切线方程为:()e 1e m m y x m -+=-或()1ln 1y n x n n--=-, 整理可得:()e 1e 1m my x m =---或1ln y x n n=+, ()1e 1e 1ln m m n m n⎧=⎪∴⎨⎪-+=-⎩,即()ln 1e 1ln mm n m n =-⎧⎨-+=-⎩, ()()()1e 11e 10m m m m m ∴-+-=--=,解得:1m =或0m =, ∴公切线方程为:e 1y x =-或y x =.故答案为:e 1y x =-或y x =.15.(2022·山东师范大学附中模拟预测)已知函数()()2e ,xf xg x x a==,若存在一条直线同时与两个函数图象相切,则实数a 的取值范围__________.【答案】2e (,0),4∞∞⎡⎫-⋃+⎪⎢⎣⎭【解析】数形结合可得:当0a <,存在一条直线同时与两函数图象相切;当0a >,若存在一条直线同时与两函数图象相切, 则,()0x ∈+∞时,2e xx a=有解,所以21,(0,)ex x x a ∞=∈+,令2(),(0,)ex x h x x ∞=∈+,因为22(2)()e e x x x x x x h x --==', 则当(0,2)x ∈时,()0h x '>,()h x 为单调递增函数; 当(2,)x ∈+∞时,()0h x '<,()h x 为单调递减函数; 所以()h x 在2x =处取得极大值,也是最大值, 最大值为24(2)eh =,且()0h x >在,()0x ∈+∞上恒成立, 所以2140,e a ⎛⎤∈ ⎥⎝⎦,即2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭. 故答案为:2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭16.(2022·广东佛山·模拟预测)已知函数()()211ln 21,4212,2x x f x x x a x ⎧->⎪⎪=⎨⎪++≤⎪⎩,函数在1x =处的切线方程为____________.若该切线与()f x 的图象有三个公共点,则a 的取值范围是____________. 【答案】 210x y --=【解析】切点坐标为()1,0,()142f x x '=-,()112k f '==,所以切线l 方程为1122y x =-. 函数5124f a ⎛⎫=+ ⎪⎝⎭,即()f x 过点15,24a ⎛⎫+ ⎪⎝⎭,当切线l 过点15,24a ⎛⎫+ ⎪⎝⎭时,切线l 与函数()f x 的图象有三个公共点,将其代入切线l 方程得32a =-;当切线l 与()22f x x x a =++(12x ≤)相切时直线与函数()f x 的图象只有两个公共点, 设切线l :1122y x =-与()22f x x x a =++(12x ≤)在0x x =处相切,()001222k f x x '==+=,034x =-,所以切点坐标为315,416a ⎛⎫-- ⎪⎝⎭,代入切线方程解得116a =,因此直线与曲线有三个交点时,31216a -<≤.故答案为:32-;31,216⎡⎫-⎪⎢⎣⎭1.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【解析】 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-, 由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.2.(2020·全国·高考真题(理))若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l 在曲线y x =(00x x ,则00x >,函数y x =2y x'=,则直线l 的斜率02k x , 设直线l 的方程为)0002y x x x x =-,即0020x x x -+=,由于直线l 与圆2215x y +=00145x + 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.3.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B. 【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 4.(多选题)(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,()231f x x '=-,令()0f x '>得3x >3x <, 令()0f x '<得33x <<, 所以()f x 在33(上单调递减,在3(,-∞,3()+∞上单调递增,所以3x =是极值点,故A 正确; 因323(10f =>,323(10f =>,()250f -=-<, 所以,函数()f x 在3,⎛-∞ ⎝⎭上有一个零点, 当3x ≥()30f x f ≥>⎝⎭,即函数()f x 在3⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误. 故选:AC.5.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】 1e y x = 1ey x =- 【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1e y x =;1ey x =- 6.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++,切线方程为:()()()0000e 1e x xy x a x a x x -+=++-,∵切线过原点,∴()()()0000e 1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞, 故答案为:()(),40,-∞-+∞7.(2021·全国·高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 【答案】0,1 【解析】 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1211x e A x M +,2221x e B x N =+,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11xxxxe e x x e AM e y M x -+=---+,所以()112221111x x x e x e x AM ++,同理2221x e B x N +, 所以()1111212222122221110,1111x x x x x x x e x e e e e e e Nx AM B -===+⋅++∈+++⋅=. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 8.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 【答案】520x y -+= 【解析】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=.9.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x =【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =. 【点睛】本题考查导数的几何意义,属于基础题.10.(2022·全国·高考真题(文))已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线. (1)若11x =-,求a ; (2)求a 的取值范围. 【答案】(1)3 (2)[)1,-+∞ 【解析】 【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围. (1)由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;(2)2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y xx x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭, 令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >, 令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭ 13-1,03⎛⎫- ⎪⎝⎭0 ()0,11 ()1,+∞()h x '-+-0 +()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.11.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+, 导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上 单调递增,在113113,33a a ⎡⎤⎢⎥⎣-+-⎦-上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+, 则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根. 12.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)[方法一]:导数法显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样), 则()423241441144(24)44t t S t t t t t++==++, 所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()St 在()0,2上递减,在()2,+∞上递增,所以2t =时,()St 取得极小值,也是最小值为()16162328S ⨯==. [方法二]【最优解】:换元加导数法()()2222121121()12(0)2|2|4||t t S t t t t t ++=⋅⋅+=⋅≠.因为()S t 为偶函数,不妨设0t >,221()4S t t =⋅,令a t 2,0t a a =>.令412()a g a a +=,则面积为21[()]4S g a =,只需求出412()a g a a +=的最小值.34422412312()a a a a g a a a ⋅---='=()()()222223223(2)(2)2a a a a a a a -++==. 因为0a >,所以令()0g a '=,得2a =随着a 的变化,(),()g a g a '的变化情况如下表: a()0,22()2,+∞()g a '-0 +()g a减 极小值增所以min [()](2)822g a g === 所以当2a =2t =时,2min 1[()](82)324S t =⨯=. 因为[()]S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==. 综上,当2t =±时,()S t 的最小值为32. [方法三]:多元均值不等式法同方法二,只需求出412()(0)a g a a a+=>的最小值. 令433412444444()482a g a a a a a a a a a a+==+++≥⋅⋅⋅= 当且仅当34a a=,即2a = 所以当2a =2t =时,2min 1[()](82)324S t =⨯=.因为()S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==.综上,当2t =±时,()S t 的最小值为32. [方法四]:两次使用基本不等式法同方法一得到()()()()()22222222222121241646464()41626416324||444tt t t S t t t t t t ++++++=≥==+++≥=+++ ,下同方法一. 【整体点评】(Ⅱ)的方法一直接对面积函数求导数,方法二利用换元方法,简化了运算,确定为最优解;方法三在方法二换元的基础上,利用多元均值不等式求得最小值,运算较为简洁;方法四两次使用基本不等式,所有知识最少,配凑巧妙,技巧性较高.。
导数及其应用(解答题)-高考真题文科数学分项汇编(解析版)

专题 04导数及其应用(解答题)1.【2020年高考全国Ⅰ卷文数】已知函数 f (x)e x a(x 2) .(1)当 a1时,讨论 f (x)的单调性;(2)若 f (x)有两个零点,求的取值范围.【解析】(1)当a=1时,f (x )=e –x –2,则 f (x )=e当x<0时, f (x )<0;当x>0时, f ( x )>0.所以f (x )在(–∞,0)单调递减,在(0,+∞)单调递增.(2) f ( x )=e–a . a xx–1.x当a ≤0时, f ( x )>0,所以f (x )在(–∞,+∞)单调递增, 故f (x )至多存在1个零点,不合题意. 当a>0时,由 f (x )=0可得x=lna .当x ∈(–∞,lna )时, f ( x )<0;当x ∈(lna ,+∞)时, f (x )>0.所以f (x )在(–∞,lna )单调递减,在(lna ,+∞)单调递增,故当x=lna 时,f (x )取得最小值,最小值为f (lna )=–a (1+lna ).1(i )若0≤a ≤,则f (lna )≥0,f (x )在(–∞,+∞)至多存在1个零点,不合题意.e 1(ii )若a>,则f (lna )<0.e 由于f (–2)=e–2 >0,所以f (x )在(–∞,lna )存在唯一零点. 由(1)知,当x>2时,ex –x –2>0,所以当x>4且x>2ln (2a )时, x xa(x 2) e ln(2a)( x 2) a(x 2) 2a 0.f (x) e 2 e 22故f (x )在(lna ,+∞)存在唯一零点,从而f (x )在(–∞,+∞)有两个零点. 1综上,a 的取值范围是(,+∞).e【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性, 根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线 y ex和 直线 ya(x 2)有两个交点,利用过点(2,0)的曲线 y e x 的切线斜率,结合图形求得结果.2.【2020年高考全国Ⅱ卷文数】已知函数 f (x )=2lnx+1.(1)若 f (x )≤2x+c ,求 c 的取值范围;(2)设 a>0时,讨论函数 g (x )= f (x)f (a)的单调性. xa【解析】设 h(x)=f(x )−2x −c ,则 h(x)=2lnx −2x +1−c ,2其定义域为(0,+∞), h (x)2 .x(1)当 0<x<1时,h'(x)>0;当 x>1时,h'(x)<0.所以 h(x)在区间(0,1)单调递增,在区间(1,+∞)单调递 减.从而当 x=1时,h(x)取得最大值,最大值为 h (1)=−1−c. 故当且仅当−1−c ≤0,即 c ≥−1时,f(x )≤2x+c. 所以 c 的取值范围为[−1,+∞).(2) g(x) f (x) f (a) x a 2(ln x lna),x ∈(0,a)∪(a ,+∞).x a2(x a ln a ln x) 2(1 a ln a) x x x g(x)(x a)2(x a) 2取 c =−1得 h(x)=2lnx −2x+2,h(1)=0,则由(1)知,当 x ≠1时,h(x)<0,即 a a1−x+lnx<0.故当 x ∈(0,a)∪(a ,+∞)时,1ln 0,从而 g (x) 0 . x x所以 g(x)在区间(0,a),(a ,+∞)单调递减.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了 数学运算能力,是中档题.3.【2020年高考全国Ⅲ卷文数】已知函数 f (x) x 3 kx k 2.(1)讨论 f (x)的单调性;(2)若 f (x)有三个零点,求 k 的取值范围. 【解析】(1) f (x) 3x k .2当k=0时, f (x) x3,故 f (x)在 (, )单调递增;当k<0时, f (x)3x2 k 0,故 f (x)在 (, )单调递增. 当k>0时,令 f (x) 0,得 x 3k .当 x (, 3k )时,f (x) 0;当 x ( 3k , 3k )时,(x) 0; 3 3 3 当 x ( 3k ,)时, f (x) 0.故 f (x)在 (, 3k ), ( 3k ,)单调递增,在 ( 3k , 3k 调递 3 333 3减.(2)由(1)知,当 k 0时, f (x)在 (, )单调递增, f (x)不可能有三个零点.当k>0时, x= 3k 为 f (x)的极大值点, x= 3k 为 f (x)的极小值点.3 3此时,k 1 3k 3k k 1且 f (k 1) 0, f (k 1) 0, f ( 3k ) 0. 3 3根据 f (x)的单调性,当且仅当 f ( 3k ) 0,即 k 32k 3k 90时, f (x)有三个零点,解得 2k 274.因此k 的取值范围为 (0,274 ).【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻 辑推理能力、数学运算能力,是一道中档题. 4.【2020年高考天津】已知函数 f (x)x3k ln x(k R), f (x)为 f (x)的导函数.(Ⅰ)当k 6时,(i )求曲线 yf (x)在点(1, f (1))处的切线方程; 9 (ii )求函数 g(x) f (x) f(x) 的单调区间和极值; x(Ⅱ)当k3时,求证:对任意的 x 1,x 2 [1,),且 x 1 x 2,有 fx 1 f x 2x 1f x 2. 2x 1x 26 【解析】(Ⅰ)(i )当k6时, f (x) x 3 6ln x ,故 f(x) 3x2.可得f (1) 1, f (1)9,x 所以曲线 y f (x)在点(1, f (1))处的切线方程为 y19(x 1),即 y 9x 8.3 6x 6 2,整理 3 (ii )依题意, g(x) x 3 3x26ln x ,x (0,).从而可得 g (x) 3x 2 x x x 可得 g(x)3(x 1)3(x1).令 g (x)0,解得 x1.x2 当 x 变化时, g (x), g(x)的变化情况如下表:x 1 0 (0,1)(1,)g (x)- + ↘极小值↗g(x)所以,函数 g(x)的单调递减区间为(0,1),单调递增区间为(1,);g(x)的极小值为 g(1) 1,无极大值.k . (Ⅱ)证明:由 f (x)xk ln x ,得 f (x)3x32 x x 1x 2对任意的 x 1,x 2 [1,),且 x 1 x 2,令 t(t 1),则x 1 x 2 fx 1 f x 2 2 f x 1f x 2k 3x 2 k k ln x 1 x 1 x 3x 12 2 2 x3 x 2 1 32x x 2 x 21 x 1 x2 2k ln x 1x 1 3 x 2 3 3x 1 2 x 2 3x 1x 2 2kx 2 x 1 x 2 3t1k t 2lnt . 1 ①x 2 3t 3 3t 2 t211 2 11 x x令h(x) x 2ln x,x [1,).当 x 1时,h (x) 1 0,由此可得h(x)在xx 2 1 [1,)单调递增,所以当t 1时,h(t) h(1),即t 2lnt 0.t因为 x1,t 23 3t 23t1 (t1) 30,k 3,1 1所以, x 23t 33t 23t 1k t2lnt (t3 3t 23t 1)3 t2lnttt3t 3 3t 2 6lnt1.②t3 由(Ⅰ)(ii )可知,当t 1时, g(t) g(1),即t3t6lnt1,3 2t3故t33t 26lnt1 0.③t由①②③可得x 1 x 2 f x 1 f x 2 2f x 1f x 20.所以,当k 3时,对任意的 x 1, x 2 [1,),且 x 1 x 2,有 fx 1f x 2 fx 1 fx 2.2 x 1 x 25.【2020年高考北京】已知函数 f (x) 12x .2(Ⅰ)求曲线 y f (x)的斜率等于2的切线方程;(Ⅱ)设曲线 yf (x)在点(t, f (t))处的切线与坐标轴围成的三角形的面积为 S(t),求 S(t)的最小值.【解析】(Ⅰ)因为f x 12 x 2,所以 f x 2x , 设切点为x 0,12 x 0,则2x 0 2,即 x 0 1,所以切点为1,11,y11 2 x 1,即 2xy13 0.由点斜式可得切线方程为: (Ⅱ)显然t 0,因为 yf x 在点t,12t 2处的切线方程为: y 12t22tx t,令 x 0,得 y t 12,令 y 0,得 x t 212, 2t 2 S t 1t 12t212, 所以22 2 |t |不妨设t0 (t0 )时,结果一样,则S tt4 24t 2144 1 (t 144 ),324t 4t 4 tS t 1 所以4144) 3(t 4 8t 4t 248) (3t 2 24 t 2 2 3(t 2 4)(t 2 12) 3(t 2)(t 2)(t212),4t 4t 22S t 0,得t 2,由S t 0,得0 t 2, 由 所以S t 在0,2上递减,在 2,上递增,所以t2时,S t 取得极小值,也是最小值为 S 2161632.8【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题. 6.【2020年高考浙江】已知1a 2,函数 f xe x x a ,其中 e=2.71828…是自然对数的底数.(Ⅰ)证明:函数 y fx在 (0,)上有唯一零点;(Ⅱ)记 x 0为函数 yf x 在 (0,)上的零点,证明:(ⅰ) a1 x 0 2(a 1);(ⅱ) x 0 f (e x 0 ) (e 1)(a 1)a .2 a e【解析】(Ⅰ)因为 f (0) 1 a 0, f (2) e 4 0,所以 y f (x)在 (0,)上存在零点.2 2因为 f(x) ex1,所以当 x 0时, f (x) 0,故函数 f (x)在[0,) 上单调递增, 所以函数以 y f (x)在 (0,)上有唯一零点. (Ⅱ)(ⅰ)令 g(x) e x1 x x 1(x 0), g'(x) e 2x x 1 f (x) a 1,2 由(Ⅰ)知函数 g'(x)在[0,)上单调递增,故当 x 0时, g'(x) g'(0) 0,所以函数 g(x)在[0,)单调递增,故 g(x) g(0) 0. 由 g( 2(a 1)) 0得 f ( 2(a 1)) e 2(a 1)2(a 1) a 0 f (x 0), 因为 f (x)在[0,)单调递增,故 2(a1)x 0.令h(x) e x x 1(0 x 1),h'(x) e 2x1, x 2 x令h 1(x) e 2x1(0x1),h 1'(x) e 2,所以x x x 0(0,ln 2) (ln 2,1)ln 2 011e 2 h 1'(x) h 1(x)e 3故当 0 x 1时, h 1(x) 0,即 h'(x) 0,所以 h(x)在[0,1]单调递减, 因此当 0x1时, h(x)h(0)0.由h( a 1) 0得 f ( a 1) e a1a 1 a 0 f (x 0), 因为 f (x)在[0,)单调递增,故 a1x 0.综上, a 1 x 0 2(a 1). (ⅱ)令u(x)e (e 1)x 1,u'(x) ex x(e 1),所以当 x 1时,u'(x) 0, xa2 a 2,由x 0 a 1得x0 f (e x0 ) (e 1)(a 1)a.7.【2020年高考江苏】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO为铅垂线(O在AB上).经测量,左侧曲线AO上任一点D到MN的距离h (米)与D到OO的距离a(米)之间满足关系式h 1 1 a2 ;右侧曲线BO上任一点F到MN的距离1 401h2 (米)与F到OO的距离b(米)之间满足关系式h 2(1)求桥AB的长度;b 3 6b .已知点B到OO的距离为40米.800(2)计划在谷底两侧建造平行于OO的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括3端点)..桥墩EF每米造价k(万元)、桥墩CD每米造价k (万元)(k>0),问O E为多少米时,桥墩 CD2与EF的总造价最低?【解析】(1)设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.1由条件知,当O'B 40时,BB 1 4036 40 160,则AA 1160 .800由 1 O'A160,得O'A 80.240所以AB O'A O'B 80 40 120(米).(2)以O为原点,OO'为y轴建立平面直角坐标系xOy(如图所示).1设F(x, y2),x(0,40),则y 2 x 3 6x,8001EF 160 y 2 160 x36x .800因为CE 80,所以O'C 80x .设D(x 80, y1),则y1 1 (80x) , 240所以CD 160 y 1 160 1 (80x)1x 4x.2240 40记桥墩CD和EF的总造价为 f (x),1 6x) 3k( 1xf (x)=k(160 x 3 2 4x)800 2 40则k( 1800 x380 x 160)(0 x40).3 2f (x)=k( 3 x3 x 160) 3k x(x 20),240 800800令f (x)=0,得x20.所以当x 20时,f (x)取得最小值.答:(1)桥AB的长度为120米;(2)当O'E为20米时,桥墩CD和EF的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.8.【2020年高考江苏】已知关于x的函数y f (x), y g(x)与h(x) kx b(k,b R)在区间D上恒有f (x) h(x) g(x).(1)若f x x 2 2x ,g x x2 2x ,D (,),求h(x)的表达式;(2)若f (x) x2 x 1,g(x) k ln x ,h(x) kx k,D (0,),求k的取值范围;(3)若f (x) x 4 2x2,g(x) 4x 2 8,h(x) 4 t3 t x 3t 4 2t 2 (0 t 2),D m, n 2, 2求证:n m 7.【解析】(1)由条件f (x) h(x) g(x),得 x2 22x,2x kx b x取x 0,得0 b 0,所以b 0.由 x2所以 (2 k)20,则 k 2,此时 2x x 22x 恒成立,所以 h(x) 2x .(2) h(x) g(x) k(x 1 ln x),x (0,) .令u(x) x 1 ln x ,则u'(x) 1 1x ,令u'(x)=0,得 x 1.所以u(x)min u(1) 0 .则 x 1 ln x 恒成立,所以当且仅当 k 0时, f (x) g(x)恒成立. 另一方面, f (x) h(x)恒成立,即 x2x 1 kx k 恒成立,也即 x (1k)x1 +k 0恒成立.2因为 k 0,对称轴为 x 1 k 0, 2所以 (1 k)24(1 k) 0,解得 1 k3.因此,k 的取值范围是 0 k 3.(3)①当1t 2时,由 g(x) h(x),得 4x 28 4(t 3t)x3t 4 2t2,整理得 t)x 3t 4 2t 2 80.()x 2(t3 4令 =(t 3 t) 2 (3t 4 2t 28),则 =t 6 5t 3t4 28.记(t) t 6 5t 3t 8(1 t 2),4 2则'(t) 6t 20t 6t 2t(3t1)(t 3) 0恒成立,5 3 2 2所以(t)在[1, 2]上是减函数,则( 2) (t)(1),即 2(t)7.所以不等式 ()有解,设解为 x 1 x x 2,因此 nmx 2 x 17.②当 0 t 1时,f (1) h(1) 3t 4t 2t 4t1.4 3 2设v(t) = 3t 4t 2t 4t 1, v'(t)=12t 12t 4t 4 4(t 1)(3t1),4 3 2 3 2 2 令v (t) 0,得t 3.3 当t (0, 3)时,v (t) 0,v(t)是减函数;3 当t ( 3,1)时,v (t)0,v(t)是增函数.3v(0) 1,v(1) 0,则当 0 t 1时, v(t) 0.(或证:v(t)(t1) (3t 1)(t 1) 0.)则 f (1) h(1) 0,因此 1(m ,n).因为[m ,n ][- 2,2],所以 n m 2 17. 2③当 2 t 0时,因为 f (x), g(x)均为偶函数,因此 n m 7也成立. 综上所述,n m 7.【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导 数证明不等式,考查分类讨论的数学思想方法,属于难题. 9.【2020年新高考全国Ⅰ卷】已知函数 f (x)ae x1ln x lna .(1)当ae 时,求曲线y=f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围. x 1 1.【解析】 f (x)的定义域为 (0,), f (x)aex(1)当 a e 时, f (x)exln x 1, f (1) e 1, 曲线 y f (x)在点 (1, f (1))处的切线方程为 y (e 1) (e 1)(x 1),即 y (e 1)x2.直线 y (e 1)x 2在 x 轴, y 轴上的截距分别为 2, 2.e 12因此所求三角形的面积为 .e 1 (2)当 0a1时, f (1)alna1.x 1 1.当 a 1时, f (x) e x 1 ln x , f (x)ex 当 x (0,1)时, f (x) 0;当 x (1,)时, f (x) 0. 所以当 x 1时, f (x)取得最小值,最小值为 f (1) 1,从而 f (x) 1.当 a 1时, f (x) aex 1 ln x lna ex 1 ln x 1.综上, a的取值范围是[1, ). 【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨 论思想和等价转化思想,属较难试题.10.【2019年高考全国Ⅰ卷文数】已知函数 f(x)=2sinx-xcosx-x,f ′(x)为 f(x)的导数. (1)证明:f ′(x)在区间(0,π)存在唯一零点;(2)若 x∈[0,π]时,f(x)≥ax,求 a的取值范围.【答案】(1)见解析;(2)a,0 .【解析】(1)设 g(x) f (x),则 g(x) x.cos x当 x (0, π)时,g (x) 2调递减.0;当 x 时,g (x) π ,π 2xsin x 1,g (x) xcos0,所以 g(x)在(0,π)单调递增,在 π,π单22又 g(0) 0,g π 20,g(π)2,故 g(x)在(0,π)存在唯一零点.所以 f (x)在(0,π)存在唯一零点.(2)由题设知 f (π) aπ, f (π) 0,可得a≤0.由(1)知, f (x)在(0,π)只有一个零点,设为 x0,且当 x x x0,π 时,0,x0 时,f (x) 0,所以 f (x)在 0,x0 单调递增,在 x0,π 单调递减.f (x)0;当又 f (0) 0, f (π) 0,所以,当 x [0,π]时, f (x) 0 .又当a 0,x [0,π]时,ax≤0,故 因此,a的取值范围是( ,0] .f (x) ax .【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题. 对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成 函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.11.【2019年高考全国Ⅱ卷文数】已知函数 f (x) (x 1)ln x x 1.证明:(1) f (x)存在唯一的极值点;11(2) f (x)=0有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1) f (x)的定义域为(0,+ ).f (x) x ln x 1 ln x1x 1.x因为 y 1ln x单调递增, y 单调递减,所以 f x(x)单调递增,又f (2)ln 2 ln1 4 1 0,故存在唯一 x0 (1,2),使得 f220.又当 x x0时, f (x) 0, f (x)单调递减x;当x因此, f (x)存在唯一的极值点.0时, f (x)f (1) x01 0,0, f (x)单调递增.e(2)由(1)知 f x0 唯 由 x0一. 根 x0 1得 1 1f (1)2,又 f e3 0,所以 f (x) 0在 x0,内存又f 11x.综上, f (x)1 ln1 1 1 f ( ) 20,故2 1是 f (x) 0有且仅有两个实根,且两个实根互为倒数.0在 0,x0 的唯一根.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调 性、极值,以及函数零点的问题,属于常考题型.12.【2019年高考天津文数】设函数 f (x) ln x a(x 1)e x,其中a R .(Ⅰ)若 a≤0,讨论 f (x)的单调性;(Ⅱ)若0 a 1, e(i)证明 f (x)恰有两个零点;(ii)设 x0为 x【解析】(Ⅰ)f解(x:)的由极已值知点,,f (x)的定1为义域f (为x)(的0,零点,),且且x1 x0,证明3x0 x1 2 . 【答案】(Ⅰ) f (x)在(0, )内单调递增.;(Ⅱ)(i)见解析;(ii)见解析.12f (x) 1 aexx a(x 1x)eax12ex . x因此当 a≤0时,1 ax2(Ⅱ)证明:(i)由(Ⅰe)知 f (x) x 0,从而f12 ae x x (x).令0,g(所x)以f1(x)a在2ex(0,, 由0a1 )内单调递增.xx,e可知 g(x)在(0, )内单调递减,又 g(1) 1 ae 0,且g ln1 a1 211 a ln1aa12 ln 0 . a故 g(x) 0在(0, )内有唯一解,从而 f (x) 0在(0, )内有唯一解,不妨设为1.xag(x) g x00,则1 x0 ln当 x 0,xf(x) g(0x)时,gxf 0xxxx0,所以 f (x)在 0,x0 内单调递增;当(x)x x0,时,0,所以 f (x)在内单调递减,因此 x0是 f (x)的唯一极值点.x0,令h(x) 1ln x x 1,则当 x 1时,h'1(x) x1 0,故h(x)在(1, )内单调递减,从而当 x时,h(x) h(1) 0,所以ln x x 1.从而f lnlnln 1 a ln1eaaa1ln 1 alnln1ln aln1 a11 h1 a0,又因为 f x0从f (1) 0,所以 f (x)在(x0, )内有唯一零点.又 f (x)在 0,x0而, f (x)在(0, )内恰有两个零点.内有唯一零点fx0(ii)由题意, f axx101 ex120e,x 0 1, 0,即 ln x1ln x a , 从x1而 1当 x 1时,ln x x于是x 1,又 x1x0 1,故ex1 x x0 1 1x20 x1 1x11ex1x0,即exx0x 1 20x02 ln x1 .因为x1 102,两边取对数,得 02,ln ex1 x0ln x整理得3x0 x1 2 .x1 x0 2ln x0 2 x0 1,【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法 .13考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.ax13.【2019年高考全国Ⅲ卷文数】已知函数 f (x) 2x2.(2)当0<a<3时,记 f (x)在区间[0,1]的最大值为3 M,最2 小值为m,求M( 【1答)案讨】(论1f)(见x)的详单解调;(性2;)[8 27,2).m的取值范围.【解析】(1) f (x) 6x令 f (x)20,得 x=0或 2xax a.2x(3x a).3若 a>0,则当 x ( a,0) ,时, f (x)03 ;当xa 0,时, f (x)( ,0), a , 3若 a=0, f (x)在(若 a<0,则当 x ,单调递增,在 0, a单调递减;, )单调递增;3a (0,3x3)时, f (x)3 0;当 a ,0时, f (x)在0.故 f (x)在 0.故 f (x),a 3a,(0, )单调递增,,0在单调递减. 3(2)当 0 a 3时,由(1)知, f (x)在 a 0单, 调递减,在 a ,1 单调递增,所以 f (x)在[0,1]33的最小值为 f a32,最大值为 f (0)=2或 f (1)=4 a .于是3 27m327a2,M4 2,a,0 2,2a a3.所以M2 a 3 a ,0 a2, m27a3 ,22 a3.7当0 a 2时,可知 2 a3 单调递减,所以Ma27m的取值范围是 ,28. 2714当 2 a 3时,3 单调递增,所以M m的取值范围是[ 8 ,1).a2727综上,M m的取值范围是[ 8 ,2). 27【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.14.【2019年高考北京文数】已知函数 f (x) 13 x x x.42(Ⅰ)求曲线 y f (x)的斜率为 1的切线方程;(Ⅱ)当 x [ 2,4]时,求证: x 6 f (x) x;(Ⅲ)设 F(x) | f (x) (x a) | (a R),记 F(x)在区间[ 2,4]上的最大值为最小时,求 a的值.【答案】(Ⅰ) y x与 y x64 ;(Ⅱ)见解析;(Ⅲ)a 27【解析】(Ⅰ)由 f (x)13x 42x3x得 xf(x) 2 42x3. 1.令 f (x) 1,3即x2 42x 1 1,得 x 80或.x 3又 f (0) 0, f (8) 8, 3 27所以曲线 y f (x)的斜率为 1的切线方程是 y x与 y 8 x 8,27 3即 y x与 y x64 . 27(Ⅱ)令 g(x) f (x) x,x [ 2,4].由 g(x) 13 x 2x得 g'(x) 32 x 2x.44令 g'(x) 0得 x 0或 x 8.3g'(x),g(x)的情况如下:M(a),当 M(a)x2 ( 2,0) 0(0, 8) 38 3(8 ,4) 34g'(x)15g(x)6064 270所以 g(x)的最小值为 6,最大值为0.故 6 g(x) 0,即 x 6 f (x) x.(Ⅲ)由(Ⅱ)知,当a3时, M (a) F(0) | g(0) a | a 3;当a3时, M (a) F( 2) | g( 2) a | 6 a3;当 综a上,当 M3时(a,)最M小(时a),a 3. 3.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法, 分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.15.【2019年高考浙江】已知实数a 0,设函数 f (x)=aln x x 1,x 0.(1)当a3时,求函数 f (x)的单调区间; 4(2)对任意 x [ 12 ,2ae)均有 f (x)x ,求a的取值范围.注:e=2.71828…为自然对数的底数.【答案】(1) f x 的单调递增区间是 0,3【解析】(1)当a3时, f (x) 3443, ln x2,单调递减区;(间2是) 0,.41 x,x 0.f'(x)314x 2 1x( 1x 2)(2 1 4x 1 xx1),所以,函数 f (x)的单调递减区间为(0,3),单调递增区间为(3,+ ).(2)由 f (1) 1,得0 a 2.2a4当0a2时, 4f (x)x等价于 2x 2 1 x2aa0. a2ln x16令t 1,则t a设 g(t) 2 t x2 2. 2t 1 x2ln x,t2 2,则 g(t) x(t 11 2 ) 1 x 2ln x.xx(i)当 x1, 7则时,1 1 2 2,g(t) g(2 2) 8 x 4 x2 1 x 2ln x.记 p(x) 14x22 1 xln x,,x则 7p'(x)2 x2 1 2 x x 1 2xx 1 1xxx 1x(x 1)[1 x x1)] 1( x 2x)故x( 2x 2 . 1)( x 1x1(1 ,1)177p'(x)0p(x)p(1)单调递减极小值 p(1)7所以, p(x) p(1) 0.因此, g(t) g(2 2) 2p(x) 0.(ii)当 x1 , 1时, g(t) g 2e 7 1).1 1x令q(x) 1 ,12 x ln x (x 1),x,2e 7则q'(x) ln x 2 1 0, x2 x ln x (x 2x(1, )+ 单调递增17故q(x)在11, 2e 7上单调递增,所以q(x)1q.7由(i)得,q 1(1) 0.77所以,q(x)<0.2 7p 1772 7p因此 g(t) g 110.xq(x) 2x由(i)(ii)知对任意 x,1 2e0,,t [2 2,),g(t)即对任意 x ,12ef (x),均有 x. 2a综上所述,所求 a的取值范围是 0, 2 . 4【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相 联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最 值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.16.【2019年高考江苏】设函数 f (x) (x a)(x b)(x c),a,b,c R、 f '(x)为 f(x)的导函数.(1)若 a=b=c,f(4)=8,求 a的值;(2)若 a≠b,b=c,且 f(x)和 f '(x)的零点均在集合{3,1,3}中,求 f(x)的极小值;(3)若a 0,0 b 1,c 1,且 f(x)的极大值为 M,求证:M.≤ 4 27【答案】(1)a 2;(2)见解析;(3)见解析.【解析】(1)因为a b c,所以 f (x)因为 f (4) 8,所以(4 a) 8,3解得a 2. (2)因为b c,(x a)(x b)(xc) (x a).3所以 f (x) (x a)(x b) x (a 2b)x b(2a b)x ab,232218从而 f'(x)3(x b) x 2a.令b f'(x) 30,得 x b或 x 2a b. 3因为a,b, 2a b都在集合{ 3,1,3}中,且a b,3 所以 2a b 1,a 3,b3. 3此时 f (x) (x 3)(x 3), f'(x) 3(x 3)(x 1).2令 f'(x) 0x,得 x ( 3,或 3x) 1.列表3 如下: ( 3,1)f'(x)+0–f (x)极大值1 0 极小值(1, )+所以 f (x)的极小值为 f (1) (1 3)(12 3) 32. (3)因为a 0,c 1,所以 f (x) x(x b)(x 3 1)(b x12)x bx, f'(x) 32x2(b 1)x b.2因为0 b 1,所以4(b 1) 12b (2b 1)由 f'(x) 0,得 x1 b 1 2 b 3列表如下:则 f'(x)有2个不同的零点,设为 x1,x2b 1b ,2x12 2 b b 1. 3 3 0,x1 x2 .x( , x1)x1x1,x2x2f'(x)+0–0f (x)极大值极小值(x2, )+所以 f (x)的极大值Mf x1 .解法一:M f x1 bx1x1 (b 1)x13219[3x12 2b b 1x12 2(b 1)x1 b] 3 9 x192 b2 b1b 1 (b b(b 1) 231)279b2b1b(b 1) 2(b2(b 1) 2 2(7 b(b 1)31)27271)27b(b 1) 2 4.因此M 4.27 27 2727解法二:b(b 1) 9因为0 b 1,所以 x1 (0,1).当 x (0,1)时, f (x) x(x b)(x 1) x(x 1).2令 g(x) x(x 2,1x) (0,1),则 g'(x) 3 1x (x 1). 3令 g'(x) 0,得 x 1.列表如下: 3x(0, 1) 31 3g'(x) g(x)+0极大值(1 ,1) 3–所以当 x 1时, g(x)取得极大值,且是最大值,故 gm(xax)31g.3 27所以当 x (0,1)时, f (x) g(x) 4,因此M4.2727【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.17.【2018年高考全国Ⅲ卷文数】已知函数 f (x) ax2x 1. e (1)求曲线 y f (x)在点(0, 1)处的切线方程; x(2)证明:当a 1时, f (x) e 0.20【答案】(1) 2x y 1 0;(2)见解析.【解析】(1) f (x)ax(22a 2 ex1)x , f(0)2.因此曲线 y f (x)在点(0, 1)处的切线方程是 2x y 1 0.(2)当a 1时, f (x) e 2 x(xx1令 g(x) 2 x x 1 e x 1,则 g 1 ex 11 )ee x. (x) 2x.当x1时, g (x) 0, g(x)单调递x减; 1时, g (x)当0, g(x)单调递增;所以 g(x) g( 1)=0.因此 f (x) e 0. 【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当a 1时, f (x) e 2 (x x 1 )ee x,令 g(x) 2 x 1 e x 1,求出 g(x)的最小值即可证明.x1x18.【2018年高考全国Ⅰ卷文数】已知函数 f x x alne x 1.a(1)设 x 2是 f x 的极值点,求,并求间 (; 2)证明:当a1时,fx0.ef x 的单调区【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f(x)的定义域为(0,),f ′(x)=aex1–. x1由题设知,f ′(2)=0,所以 a= 2.2e从而 f(x)= 12 ex ln x 1,f ′(x)21e=2 ex 1 .2ex当 0<x<2时,f ′(x)<0;当 x>2时,f ′(x)>0.所以 f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)当1 时,f(x)≥a≥eexln x1.e设 g(x)= xe ln x 1,则 g (xx) 1.eeex当 0<x<1时,g′(x)<0;当 x>1时,g′(x)>0.所以 x=1是 g(x)的最小值点. 故当 x>0时,g(x)≥g(1)=0.21因此,当a 1 时, f (x) 0. e【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与 函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.19.【2018年高考全国Ⅱ卷文数】已知函数 f x 3 1 ax x 32(1)若a 3,求 f (x)的单调区间;x 1.(2)证明: f (x)只有一个零点.【答案】(1)在(–∞,3 2 3),( 3 2 3,+∞)单调递增,在( 3 2 3,3 2 3)单调递减;(2)见解析.【解析】(1)当 a=3时,f(x)= 1 x 3x3323x 3,f ′(x)= x 6x 3.令 f ′(x)=0解得 x=3 2 3或 x=3 2 3.2当 x∈(–∞,3 2 3)∪(3 2 3,+∞)时,f ′(x)>0; 当 x∈(3 2 3,3 2 3)时,f ′(x)<0.故 f(x)在(–∞,3 2 3),(3 2 3,+∞)单调递增,在(3 2 3,3 2 3)单调递减.(2)由于 x2x 1 0,所以 f (x)0等价x于33a 0.x2 x 1设 g(x) = x3 23a,x x1则 g ′(x)=x2(x(x222x 3) x 1) ≥0,仅当 x=0时2所以 g(x)在(–∞,+∞)单调递增.g ′(x)=0,故 g(x)至多有一个零点,从而 f(x)至多有一个零点.又 f(3a–1)=62 a2a 1 1) 36(a2 1 0, 66f(3a+1)=1 0,故 f(x)有一个零点. 3综上,f(x)只有一个零点.22【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数 ࠀࠀ)的定义域;②求导数ࠀࠀ);③ 由ࠀࠀ) ⺁ (或ࠀࠀ) )解出相应的 ࠀ的取值范围,当ࠀࠀ) ⺁ 时,ࠀࠀ)在相应区间上是增函数; 当ࠀࠀ) 时,ࠀࠀ)在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数 ࠀࠀ)有唯一零点, 可先证明其单调,再结合零点存在性定理进行论证.20.【2018年高考北京文数】设函数 f (x) [a2x (3a 1)x 3a 2]ex.(Ⅰ)若曲线 y f (x)在点(2, f (2))处的切线斜率为 0,求 a; (Ⅱ)若 f (x)在 x 1处取得极小值,求 a的取值范围.【答案】(Ⅰ)a;1(Ⅱ)(1,).2【解析】(Ⅰ)因为 f (x) [ax2 (3a 1)x 2]e所以 f (x) [2ax3a x ,2 ,(a 1)x 1]e .x20,解得a 1 . 2(f Ⅱ)(2方) 法一(2:a由(1Ⅰ)e)得 f (x) [ax (a 1)x 1]e由 若题a设>1知,则f 当(2x) (10,,1即)时(2,a f 1)(ex2) 0; x a当 x (1, 0.)时, f (x)所以 f (x)在 x=1处取得极小值. 若a 1,则当 x (0,1)时,ax 1x 1 0,所以 f (x) 0 .(ax 1)(x 1)e .x所以 1不是 f (x)的极小值点. 综上可知,a的取值范围是(1, ) . 方法二: f (x) (ax 1)(x 1)ex.(1)当 a=0时,令 f (x) 0得 x=1.23f (x), f (x)随 x的变化情况如下表:xf (x) f (x)( ,1)+ ↗1 0 极大值(1, )− ↘∴ f (x)在 x=1处取得极大值,不合题意.(2)当 a>0时,令 f得(x)x 011 , x2 a1.①当 x1 x2,即 a=1时, f (x) (x 1)e 0,∴ f (x)无极值,不合题意.2x∴ ②当f (xx1)在Rx上2,单即调递0<增a<,1时, f (x), f (x)随 x的变化情况如下表:xf (x) f (x)( ,1)+ ↗1 0 极大值(1, 1) a−↘1 a0极小值(1 , ) a+ ↗∴ f (x)在 x=1处取得极大值,不合题意. ③当 x1 x2,即 a>1时, f (x), f (x)随 x的变化情况如下表:xf (x) f (x)( , 1) a+↗1 a0极大值(1 ,1) a−↘10 极小值(1, )+ ↗∴ f (x)在 x=1处取得极小值,即 a>1满足题意.(3)当 a<0时,令 f得(x)x 011 , x2 a1.24f (x), f (x)随 x的变化情况如下表:xf (x) f (x)( , 1) a−↘1 a0极小值(1 ,1) a+↗10 极大值(1, )− ↘∴ f (x)在 x=1处取得极大值,不合题意. 综上所述,a的取值范围为(1, ) .【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查 导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③ 利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不 同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒 成立问题属于高考中的难点,要注意问题转换的等价性.21.【2018年高考天津文数】设函数 f (x)=(x t1)(x t2)(x等差数列.t3),其中t1,t2,t3(I)若t2 0,d 1,求曲线 y f (x)在点(0, f (0))处的切线方程;R ,且t1,t2,t3是公差为d的(II)若d 3,求 f (x)的极值;(III)若曲线 y f (x)与直线 y(x t2) 6 3有三个互异的公共点,求 d的取值范围.【答案】(I)x+y=0;(II)函数 f(x)的极大值为 6 3;函数 f(x)的极小值为−6 3;(III)d的取值范围为( , 10) ( 10, ) .【解析】(Ⅰ)解:由已知,可得 f(x)=x(x−1)(x+1)=x3又因为曲线 y=f(x)在点(0,f(0))处的切线方程为 y−f(0−)=x,f 故(0f ) (x(−x0) )=,3x2−1, 因 故此 所求f(切0)线=0方,程f为 (x0+)y==0−.1,(Ⅱ)解:由已知可得2533223f(x)=(x−t2+3)(x−t2)(x−t2−3)=(x−t2) −9(x−t2)=−x3t2x +(3t2 −9)x−t2 +9t2.故 f (x) =3x2−6t2x+3t22−9.f令 (x) =0,解得 x=t 33.−,或 x=t2+2当 x变化时, f (x),f(x)的变化如下表:x(−∞,t2− 3 ) t2− 3 (t2− 3,t2+ 3 ) t2+ 3f (x)+0−0f(x)↗极大值↘极小值(t2+ 3,+∞)+ ↗所以函数 f(x)的极大值为 f(t2− 3 )=(− 3 ) −9×(− 3 )=6 3;函数 f(x)的极小值为 f(t2+ 3 )=( 3 ) −339(×Ⅲ( )3解)=:−6曲线3.y=f(x)与直线 y=−(x−t2)−6 3有三个互异的公共点等价于关于 x的方程(x−t2+d)(x−t2)(x−t2 −d)+(x−t2)+ 6 3 =0有三个互异的实数解,令 u=x−t2,可得3 u +(12 −d )u+6 3 =0.设函数 g(x)=x3+(1−d2)x+6 3,则曲线 y=f(x)与直线 y=−(x−t2)−6 3有三个互异的公共点等价于函数y=g(x)有三个零点.g'(x) =3x3+(1−d2).当 d≤1时, g'(x) ≥0,这时 g(x)在 R上单调递增,不合题意.2当 d>1时, g'(x)=0,解得2d 2 1,x2= dx1=321.易得,g(x)在(−∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增.33g(x)的极大值 g(x1)=g( d 2 1 )= 2 3(d 1) 6 3 >0.2 23g(x)的极小值 g(x2)=g( d2 31 )=− 2 3(2d 12)3996 3.若 g(x2)≥0,由 g(x)的单调性可知函数 y=g(x)至多有两个零点,不合题意.若 g(x ) (d22|d |30,即 2 1)2且x1,g( 2| d |)27,也就是 | d | 10,此时 | d | x2, g(| d |) | d | 6 336| d | 2| d | 6 362 10 6 3 0,从而由 g(x)的单调性,可知函数y g(x)在区间( 2 | d |, x1),(x1, x2),(x2,| d |)内各有一个零点,符合题意.26所以,d的取值范围是( ,10) ( 10,).【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和 方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力.22.【2018年高考浙江】已知函数 f(x)= x −lnx.(Ⅰ)若 f(x)在 x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2; (Ⅱ)若 a≤3−4ln2,证明:对于任意 k>0,直线 y=kx+a与曲线 y=f(x)有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)函数 f(x)的导函数 f (x) 11,2x x由 f (x1) 2x1 11 1f(x2)得1x1 2 x2 x2 ,因为 x11 x2,所以 x111 x2 2.1由基本不等式得x1x22因为 x1 x2,所以 x1x2x1 x2 2 x1x2.4256.由题意得 f (x1) f (x2)x1 ln x1 x2 ln x2 1 x1x2 ln(x1x2).2设 g(x) 1x ln x, 2则 g (x) 1 ( x 4), 4x所以x(0,16)16(16,+∞)g (x)−0+g(x)2−4ln2所以 g(x)在[256,+∞)上单调递增,故 g(x1x2) g(256) 8 8ln 2,即 f (x1) f (x2) 8 8ln 2.27(Ⅱ)令 m=e(aa k),n=2( k1 )1,则f(m)–km–a>|a|+k–k–a≥0,f(n)–kn–a<n( 1 a k) |≤an(| 1 k) <0,nnn所以,存在 x0∈(m,n)使 f(x0)=kx0+a, 所以,对于任意的 a∈R及 k∈(0,+∞),直线 y=kx+a与曲线 y=f(x)有公共点.由 f(x)=kx+a得kx ln x a. x设h(x)x ln x a, xln x x 1 则h (x) a 2x2其中 g(x) x ln x. 2g(x) 1 a, x2由(Ⅰ)可知 g(x)≥g(16),又 a≤3–4ln2, 故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0, 所以 h′(x)≤0,即函数 h(x)在(0,+∞)上单调递减,因此方程 f(x)–kx–a=0至多 1个实根. 综上,当 a≤3–4ln2时,对于任意 k>0,直线 y=kx+a与曲线 y=f(x)有唯一公共点. 【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综 合应用能力.23.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆 O的一段圆弧 MPN(P为此圆弧的 中点)和线段 MN构成.已知圆 O的半径为 40米,点 P到 MN的距离为 50米.现规划在此农田上修 建两个温室大棚,大棚Ⅰ内的地块形状为矩形 ABCD,大棚Ⅱ内的地块形状为△CDP,要求 A,B均在 线段 MN上,C,D均在圆弧上.设 OC与 MN所成的角为 .(1)用 分别表示矩形 ABCD和△CDP的面积,并确定 sin 的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为 4 : 3.求当 为何值时,能使甲、乙两种蔬菜的年总产值最大.28【答案】(1)矩形 ABCD的面积为 800(4sinθcosθ+cosθ)平方米,△CDP的面积为 1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[ 1,1];(2)当θ=时π,能使甲、乙两种蔬菜的年总产值最大.46【解析】(1)连结 PO并延长交 MN于 H,则 PH⊥MN,所以 OH=10.过 O作 OE⊥BC于 E,则 OE∥MN,所以∠COE=θ,故 OE=40cosθ,EC=40sinθ,则矩形 ABCD的面积为 2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP的面积为 1 ×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).2过 N作 GN⊥MN,分别交圆弧和 OE的延长线于 G和 K,则 GK=KN=10.令∠GOK=θ0,则 sinθ0= 1,θ0∈(0,π).46当θ∈[θ0, π ]时,才能作出满足条件的矩形 ABCD,2所以 sinθ的取值范围是[ 1,1]. 4答:矩形 ABCD的面积为 800(4sinθcosθ+cosθ)平方米,△CDP的面积为 1600(cosθ–sinθcosθ)平方 米,sinθ的取值范围是[ 1,1].4(2)因为甲、乙两种蔬菜的单位面积年产值之比为 4∶3, 设甲的单位面积的年产值为 4k,乙的单位面积的年产值为 3k(k>0), 则年总产值为 4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈[θ0, π ].229设 f(θ)=sinθcosθ+cosθ,θ∈[θ0, π ], 2则f ( ) 2sinsincos1)(sin1).令 f ( )=0,得πθ=,26(2sin2sin 1) (2sin当θ∈(θ0,)π时, 6f ()0,所以 f(θ)为增函数;当θ∈( π, π)时, f ( )620,所以 f(θ)为减函数,因此,当θ=时π ,f(θ)取到最大值. 6答:当θ=时π ,能使甲、乙两种蔬菜的年总产值最大. 6【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.24.【2018年高考江苏】记 f (x),g (x)分别为函数 f (x), g(x)的导函数x.若存R,在满足 f (x0)0且 f (x0) g (x0),则x 称0为函g数(x)的f 一(x个)与“S点”.g(x0)(1)证明:函数 f (x) x与 g(x) 2 x 2x 2不存在“S点”;(2)若函数 f (x) a2x 1与 g(x) ln x存在“S点”,求实数 a的值;(3)已知函数 f (x)2 x a,g(x)xb.e 对任意ax0,判断是否存在b0,使函数 f (x)与 g(x)在区间(0, )内存在“S点”,并说明理由.【答案】(1)见解析;(2) e;(3)见解析. 22【解析】(1)函数 f(x)=x,g(x)=x +2x-2,则 f′(x)=1,g′(x)=2x+2.由 f(x)=g(x)且 f′(x)= g′(x),得xx212x2x22,此方程组无解,因此,f(x)与 g(x)不存在“S”点.(2)函数(f x) ax 1, g(x) lnx,则 f( x) 2a2x,g( x)1.x设 x0为 f(x)与 g(x)的“S”点,30由 f (x 0)=g (x 0)且 f ′(x 0)=g ′(x 0),得ax 0 2 1 ln x 0 ax 0 2 1 ln x 0,(*) 2ax 0 1 ,即 2ax 02 1x0 得ln x 0 1,即 x 0e 1 ,则 a 1 e 2 . 2 2 2(e 2 ) 2 1 当 a e 满足方程组(*),即 x 0为f (x )与g (x )的“S ”点. 2时, x 0 e 2因此,a 的值为 e . 2(3)对任意 a>0,设h(x) x 3x ax a . 3 2 因为h(0) a 0,h(1)13 a a 2 0,且 h (x )的图象是不间断的,所以存在 x 0∈(0,1),使得h(x 0) 0.2x 0 3 令 b ,则 b>0. e 0 (1 x 0)x a ,g(x) be x 函数 f (x)x 2 , x 则 f ′(x) 2x ,g (x) be x (x 1).x 2 由 f (x )=g (x )且 f ′(x )=g ′(x ),得2x 0 e x (1 x 0) x 3 a be x x2 a x 2x e 0 x ,即 ,(**) (x 1) 2x bex (x 1) 2x 0 e x 0 (1 x 0) 3 e x 2x2 x 2 x 此时, x 0满足方程组(**),即 x 0是函数 f (x )与 g (x )在区间(0,1)内的一个“S 点”. 因此,对任意 a>0,存在 b>0,使函数 f (x )与 g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决 问题以及逻辑推理能力.31。
专题6 导数-备战2021年高考数学解答题专项必杀100题(真题+经典)(新高考)(解析版)

专题06 导数真题再现1.(2020北京高考)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 2.(2020山东高考)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.【答案】(1)21e -(2)[1,)+∞ 【解析】(1)()ln 1x f x e x =-+,1()x f x e x'∴=-,(1)1k f e '∴==-. (1)1f e =+,∴切点坐标为(1,1+e ),∴函数f(x)在点(1,f (1)处的切线方程为1(1)(1)y e e x --=--,即()12y e x =-+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e --, ∴所求三角形面积为1222||=211e e -⨯⨯--; (2)解法一:1()ln ln x f x ae x a -=-+,11()x f x ae x-'∴=-,且0a >. 设()()g x f x =',则121()0,x g x ae x-'=+> ∴g(x )在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增, 当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e -<∴,111()(1)(1)(1)0a f f a e a a-''∴=--<,∴存在唯一00x >,使得01001()0x f x aex -'=-=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,011x aex -∴=,00ln 1ln a x x ∴+-=-, 因此01min 00()()ln ln x f x f x ae x a -==-+001ln 1ln 2ln 12ln 1a x a a a x =++-+≥-+=+>1, ∴()1,f x >∴()1f x ≥恒成立;当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立. 综上所述,实数a 的取值范围是[1,+∞). 解法二:()111x lna x f x aelnx lna e lnx lna -+-=-+=-+≥等价于11lna x lnx e lna x lnx x e lnx +-++-≥+=+,令()xg x e x =+,上述不等式等价于()()1g lna x g lnx +-≥,显然()g x 为单调增函数,∴又等价于1lna x lnx +-≥,即1lna lnx x ≥-+,令()1h x lnx x =-+,则()111x h x x x-=-=' 在()0,1上h’(x)>0,h(x)单调递增;在(1,+∞)上h’(x)<0,h(x)单调递减, ∴()()10max h x h ==,01lna a ≥≥,即,∴a 的取值范围是[1,+∞).3.(2020天津高考)已知函数3()ln ()f x x k x k R =+∈,()'f x 为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(Ⅰ)(i )98y x =-;(ii )()g x 的极小值为(1)1g =,无极大值;(Ⅱ)证明见解析.【解析】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x=-+-, 整理可得:323(1)(1)()x x g x x'-+=, 令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞); g (x )的极小值为g (1)=1,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x=--∈+∞.当x >1时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当t >1时,()()1h t h >,即12ln 0t t t-->.因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt ⎛⎫⎛⎫-+-+------- ⎪+ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(Ⅰ)(ii)可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++-> ③ 由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 4.(2020浙江高考)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤;(ⅱ)00(e )(e 1)(1)x x f a a ≥--.【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析.【解析】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;(II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10xg x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),x xe x x e x x ∴--≤≤--≤ (ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--,即只需证明224(2)(1)(1)a e e a -≥--,令22()4(2)(1)(1),(12)a s a e e a a =----<≤,则22()8(2)(1)8(2)(1)0a a s a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x 0e(e 1)(1)x f a a ≥--.高考模拟(1)当1a =-时,求()f x 的单调区间;(2)若方程()()f x g x =在[]1,e (e 为自然对数的底数)上存在唯一实数解,求实数a 的取值范围.【答案】(1)单调递增区间为()1,+∞,单调递减区间为()0,1;(2)21(,1](,)2e --∞+∞.【解析】(1)当1a =-时,()()22ln 0f x x x x =->则()()22122x f x x x x-'=-=当()0,1x ∈时,()0f x '<,()f x 为减函数当()1,x ∈+∞时,()0f x '>,()f x 为增函数故()f x 的单调递增区间为()1,+∞,单调递减区间为()0,1 (2)Ⅱ()()f x g x =,Ⅱ222ln 21x a x x +=- 即22ln 10x a x --=;令()22ln 1F x x a x =--,由题意得只需函数()y F x =在[]1,e 上有唯一的零点;又()()2222x a a F x x x x-'=-=,其中[]1,x e ∈, Ⅱ当1a ≤时,()0F x '≥恒成立,()F x 单调递增, 又()10F =,则函数()F x 在区间[]1,e 上有唯一的零点; Ⅱ当2a e ≥时,()0F x '≤恒成立,()F x 单调递减, 又()10F =,则函数()F x 在区间[]1,e 上有唯一的零点;Ⅱ当21a e <<时,当1x ≤≤()0F x '<,()F x 单调递减,又()10F =,Ⅱ()10F F <=,则函数()F x 在区间上有唯一的零点;x e <≤时,()0F x '>,()F x 单调递增,则当()0F e <时,()F x在]e 上没有零点,符合题意,即21022e a --<,解得:212e a ->,Ⅱ当2212e a e -<<时, ()F x在]e 上没有零点,此时函数()F x 在区间[]1,e 上有唯一的零点;所以实数a 的取值范围是21(,1](,)2e --∞+∞.(1)若()f x 在定义域内是单调函数,求a 的取值范围;(2)当1a =时,求证:对任意()0,x ∈+∞,恒有()cos f x x <成立.【答案】(1)1,e ⎡⎫+∞⎪⎢⎣⎭;(2)证明见解析.【解析】(1)因为()ln xf x x x ae a =-+,所以()'ln 1xf x x ae =+-,要使()f x 在定义域内是单调函数,需满足()'0f x ≥或()'0f x ≤. ①若()'0f x ≥,则ln 1xx a e +≤, 令ln 1()(0)xx G x x e +=>,得1ln 1'()xx x G x e --=,易知()'10G =,且函数1ln 1y x x=--在()0,∞+上单调递减, 当0x >时,e 1x >,所以在区间()0,1上,()'0G x >;在()1,+∞上()'0G x <, 所以()ln 1xx G x e+=在()0,1上单调递增,在()1,+∞上单调递减,此时()ln 1xx G x e+=无最小值,不满足题意; ②若()'0f x ≤,则ln 1xx a e+≥, 由①知,()G x 的最大值为()11G e=, 所以当1a e≥时,()f x 在定义域上单调递减,满足题意. 综上,a 的取值范围是1,e⎡⎫+∞⎪⎢⎣⎭.(2)当1a =时,()ln 1xf x x x e =-+,要证()cos f x x <,即证ln cos 1x x x e x <+-,当01x <≤时,ln 0x x ≤,而cos 11cos11cos10x e x +->+-=>, 所以ln cos 1x x x e x <+-成立,即()cos f x x <成立.当1x >时,令()()cos ln 11xh x e x x x x =+-->,则()'sin ln 1xh x e x x =---,设()()sin ln 11xg x e x x x =--->,则()1'cos xg x e x x=--,∵1x >,所以()1co 's 110xe x g e xx =-->-->,所以当1x >时,()g x 单调递增, 所以()sin 10g x e x >-->,即()'0h x >,所以()h x 在()1,+∞上单调递增, 所以()cos110h x e >+->,即()cos f x x <成立. 综上,对任意()0,x ∈+∞,恒有()cos f x x <成立.(1)求函数()f x 在区间[]1,e 上的最大值和最小值; (2)若()21()f x a x >-有解,求实数a 的取值范围.【答案】(1)最大值为2112e +,最小值为12;(2)11,22e ⎛⎫-+∞ ⎪⎝⎭. 【解析】(1)由题可知()f x 的定义域为()0,∞+函数21()ln 2f x x x =+,1()0f x x x '=+>所以函数()f x 在区间[1,]e 上是增函数.()f x 在区间[1,]e 上的最大值为()2112f e e =+,最小值为1(1)2f =. (2)2()(1)f x a x >-,令221()()(1)ln 2g x f x a x x a x ⎛⎫=--=+-⎪⎝⎭, ()1(21)g a x xx '=-+. 当12a ≥时,()0g x '>.1(1)02g a =-≥,显然()0g x >有解.当12a <时,由()1(21)0g x a x x '=-+=得x =当x ⎛∈ ⎝时,()0g x '>,当x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在x =11ln(12)22g a =---. 若使()0g x >有解,只需11ln(12)022a ---> 解得1122a e>-.结合12a <,此时a 的取值范围为111,222e ⎛⎫-⎪⎝⎭. 综上所述,a 的取值范围为11,22e ⎛⎫-+∞⎪⎝⎭.(Ⅰ)当a =1时,求曲线y =f (x )在点(0,1)处的切线方程; (Ⅱ)求函数y =f (x )的单调区间;(Ⅲ)当x ∈(0,2)时,比较f (x )与|1|a --的大小.【答案】(Ⅰ)10x y +-=;(Ⅱ)答案见解析;(Ⅲ)()|1|f x a >--.【解析】(Ⅰ)当1a =时,31()13f x x x =-+, 因为2()1f x x '=-,所以(0)1f '=-,所以曲线()y f x =在点(0,1)处的切线方程为()110y x -=-⨯-,即10x y +-=. (II )()f x 定义域为R .因为2()f x x a '=-,①当a =0时,()0f x '≥恒成立,所以函数()f x 在R 上单调递增, ②当a <0时,()0f x '>恒成立,所以函数()f x 在R 上单调递增.③当a >0时,令()0f x '=,则x =x =所以当()0f x '>时,x <x当()0f x '<时,x <<所以函数()f x 在(,-∞和)+∞上单调递增,在(上单调递减,综上可知,当0a ≤时,函数()f x 在R 上单调递增;当a >0时,函数()f x 在(,-∞和)+∞上单调递增,在(上单调递减.(III )由(Ⅱ)可知,(1)当0a ≤时,函数()f x 在R 上单调递增, 所以当(0,2)x ∈时,min ()(0)f x f a >=,因为|1|(1)1a a a --=--=-,所以()|1|f x a >--,(2)当a >0时,函数()f x 在(,-∞和)+∞上单调递增,在(上单调递减.①当01<≤,即01a <≤时,|1|0a --≤.所以当(0,2)x ∈时,函数()f x 在上单调递减,2)上单调递增,min ()10f x f a ⎛⎫==> ⎪⎝⎭,所以()|1|f x a >--.②当12,即1<a <4时,|1|10a a --=-<.由上可知,min ()1f x f a ⎛⎫== ⎪⎝⎭,因为()1121a a a ⎛⎫--=- ⎪⎝⎭,设2()21,(14)3g x x x =--<<.因为()20g x '=,所以()g x 在(1,4)上单调递增.所以()()1103g x g =>>.所以()11210a a a ⎛⎫--= ⎪⎝⎭>所以()|1|f x a >--,2≥,即4a ≥时,|1|10a a --=-<.因为函数()f x 在上单调递减,所以当(0,2)x ∈时,min 8()(2)13f x f a a ==->-. 所以()|1|f x a >--.综上可知,(0,2)x ∈时,()|1|f x a >--.(1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>. 【答案】(1)最大值为1b --;(2)证明见解析. 【解析】ln ()()()xF x f x g x ax b x=-=-- (1)解:当1a =时,ln ()xF x x b x=-- 所以21ln ()1xF x x -'=-. 注意(1)0F '=,且当01x <<时,()0F x '>,()F x 单调递增;当1x >时,()0F x '<,()F x 单调递增减.所以()F x 的最大值为(1)1F b =--.(2)证明:由题知,121212ln ln x xax b ax b x x =+=+,, 即2111ln x ax bx =+,2222ln x ax bx =+,可得212121ln ln ()[()]x x x x a x x b -=-++.121212122()()2()x x g x x a x x b x x ++>⇔++>+212112ln ln 2x x x x x x -⇔>-+. 不妨120x x <<,则上式进一步等价于2211212()lnx x x x x x ->+. 令21x t x =,则只需证2(1)ln (1)1t t t t ->>+. 设2(1)()ln (1)1t t t t t ϕ-=->+,22(1)()0(1)t t t t ϕ-'=>+, 所以()t ϕ在(1+)∞,上单调递增, 从而()(1)0t ϕϕ>=,即2(1)ln (1)1t t t t ->>+, 故原不等式得证.(1)若1a ≥,证明:当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >; (2)若0x =是()f x 的极大值点,求正实数a 的取值范围. 【答案】(1)证明见解析;(2)01a << 【解析】(1)由题知()222cos 1f x ax x x'=+-+,()00f '=,令()() h x f x '=,则()()21'2sin 1h x a x x ⎛⎫=-+ ⎪ ⎪+⎝⎭, 若1a ≥,当0,2x π⎛⎫∈ ⎪⎝⎭时, ()()()22112sin 21sin 011h x a x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪'=-+≥-+>+ +⎪⎝⎭⎝⎭, 所以()h x 在0,2π⎛⎫⎪⎝⎭上单调递增, 所以()()00h x h >=,所以()f x 在0,2π⎛⎫⎪⎝⎭上单调递增; 所以()()00f x f >=.(2)①若1a ≥,由(1)知:()f x 在0,2π⎛⎫⎪⎝⎭上单调递增; 因此0x =不可能是()g x 的极大值点.②若01a <<,令()()()212sin 1x h x a x x ϕ⎛⎫ ⎪ ⎪⎝'==+⎭-+, 因为当1,2x π⎛⎫∈- ⎪⎝⎭时,()()342cos 01x x x ϕ'=+>+,所以()x ϕ即()h x '在1,2π⎛⎫- ⎪⎝⎭上单调递增.又因为()()'0210(0)h a ϕ==-<,212102212h a ππϕπ⎡⎤⎢⎥⎛⎫⎛⎫⎢⎥'==+-> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎛⎫+⎢⎥⎪⎝⎭⎣⎦, 因此存在0,2a π⎛⎫∈ ⎪⎝⎭满足:() 0h a '=,所以当()1,x a ∈-时,()()0a h x h ''<=,所以()()f x h x '=在()1,a -上单调递减,()()000f h '==,所以当()1,0x ∈-时,()0f x '>;当()0,x a ∈时,()0f x '<; 所以()f x 在()1,0-上单调递增;在()0,a 上单调递减; 综上,当0x =是()f x 的极大值点时,01a <<.(Ⅰ)若1a =,讨论()f x 的单调性;(Ⅰ)若()f x 有两个零点,求实数a 的取值范围.【答案】(Ⅰ)()f x 在0,2⎛ ⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增;(Ⅱ)10,2e ⎛⎫ ⎪⎝⎭. 【解析】(Ⅱ)当1a =时,()()2ln 0f x x x x =->,()21212x f x x x x-'=-=.令()2210x f x x '-==,解得2x =.当02x <<时,()0f x '<,()f x 单调递减;当2x >时,()0f x '>,()f x 单调递增.综上,()f x 在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞⎪ ⎪⎝⎭上单调递增.(Ⅱ)()()212120ax f x ax x x x-'=-=>.当0a ≤时,()0f x '<,()f x 单调递减,此时()f x 仅有1个零点,不满足题意.当0a >时,令()0f x '=,解得2x a=.当0x <<时,()0f x '<,()f x 单调递减;当x >()0f x '>,()f x 单调递增.所以()min111ln ln 222222f x f a a a ⎛==-=+ ⎝⎭. 因为()f x 有两个零点,所以()min 0f x <,即11ln 2022a +<,解得12a e<.当102a e <<时,101a<<<, 而()10f a =>,11ln f a a a⎛⎫=+⎪⎝⎭. 而()1ln u a a a=+,当10,2a e ⎛⎫∈ ⎪⎝⎭时,()210a u a a '-=<,则()12ln 2102u a u e e ⎛⎫>=--> ⎪⎝⎭, 故()f x 存在两个零点.所以实数a 的取值范围是10,2e ⎛⎫ ⎪⎝⎭.(1)求函数()g x 的单调区间和极值;(2)当1≥x 时,若不等式1()0x g x x e---≤恒成立,求实数m 的取值范围;(3)若存在()12,0,x x ∈+∞,且当12x x ≠时,12()()f x f x =,证明:12214x x m<. 【答案】(1)当0m ≥时,单调递增区间为()0,∞+,无极值;当0m <时,单调递增区间为(),m -+∞,单调递减区间为()0,m -;极小值为()ln 1m m m -+-+,无极大值;(2)1m ;(3)详见解析. 【解析】(1)()ln 1g x x m x =++,定义域()0,∞+,()1m x mx xg x +=+=', (i )当0m ≥时,()0g x '>,()g x 在()0,∞+单调递增,无极值;(ii )当0m <时,令()0g x '>,解得x m >-,∴()g x 的单调递增区间为(),m -+∞; 令()0g x '<,解得x m <-,∴()g x 的单调递减区间为()0,m -. 此时()g x 有极小值()()ln 1g m m m m -=-+-+,无极大值.(2)令11()()ln 10x x h x g x x em x e --=--=-+≤,[)1,x ∀∈+∞,则11()x x m m xe h x e x x---'=-=.(i )1m 时,()0h x '<,()h x 在[)1,+∞上单调递减, ∴()()max 10h x h ==, ∴()0h x ≤恒成立,满足题意. (ii )1m 时,令()1x x m xeϕ-=-,()110x x x exe ϕ--'=--<,∴()x ϕ在[)1,+∞上单调递减,∴()()max 110x m ϕϕ==->,其中()1()10m m m e ϕ-=-<,且()x ϕ在[)1,+∞上单调递减, ∴根据零点存在性定理[]01,x m ∃∈,使得()00x ϕ=,即()01,x x ∀∈,()0x ϕ>;()0,x x ∀∈+∞,()0x ϕ<∴()01,x x ∀∈,()0h x '>,()h x 在()01,x 上单调递增,又∵()10h =,∴()01,x x ∀∈,()0h x >,不满足题意,舍掉;综上可得1m .(3)不妨设120x x <<,则21ln ln 0x x ->.∵()()12f x f x =,∴11122211sin ln 1sin ln 122x x m x x x m x -++=-++,令()sin P x x x =-,()1cos 0P x x '=-≥,∴()P x 在()0,∞+上单增, ∴2211sin sin x x x x ->-,从而2121sin sin x x x x ->-;∴()()()2121212111ln ln sin sin 22m x x x x x x x x --=--->-, 即212120ln ln x x m x x -->>-;下面证明2121ln ln x x x x ->-21x t x =,则1t >,即证明1ln t t ->ln 0t -<,设()ln 1)h t t t=>,∴()0h t '=<在()1,+∞上恒成立, ∴()h t 在()1,+∞单调递减,故()()10h t h <=.∴2m -,即12214x x m <.。
2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1导数(文科)解答题20题1.(2021年北京市高考数学试题)已知函数()232xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间,以及其最大值与最小值. 【答案】(1)450x y +-=;(2)函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-,最大值为1,最小值为14-.【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)由()10f '-=可求得实数a 的值,然后利用导数分析函数()f x 的单调性与极值,由此可得出结果. 【详解】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=;(2)因为()232x f x x a -=+,则()()()()()()222222223223x a x x x x a f x x a x a -+----'==++, 由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下:x (),1-∞-1-()1,4-4()4,+∞()f x ' +-+()f x增 极大值 减 极小值 增所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <.所以,()()max 11f x f =-=,()()min 144f x f ==-.2.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))已知函数()(1)ln 1f x x x x =---.试卷第2页,共27页证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数. 【答案】(1)见详解;(2)见详解 【分析】(1)先对函数()f x 求导,根据导函数的单调性,得到存在唯一0x ,使得0()0f x '=,进而可得判断函数()f x 的单调性,即可确定其极值点个数,证明出结论成立;(2)先由(1)的结果,得到0()(1)20f x f <=-<,22()30f e e =->,得到()0f x =在0(,)x +∞内存在唯一实根,记作x α=,再求出1()0f α=,即可结合题意,说明结论成立. 【详解】(1)由题意可得,()f x 的定义域为(0,)+∞, 由()(1)ln 1f x x x x =---, 得11()ln 1ln x f x x x x x-'=+-=-, 显然1()ln f x x x'=-单调递增;又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>, 故存在唯一0x ,使得0()0f x '=;又当0x x >时,0()0f x '>,函数()f x 单调递增;当00x x <<时,0()0f x '<,函数()f x 单调递减;因此,()f x 存在唯一的极值点;(2)由(1)知,0()(1)2f x f <=-,又22()30f e e =->, 所以()0f x =在0(,)x +∞内存在唯一实根,记作x α=. 由01x α<<得011x α<<,又1111()()(1)ln 10f f αααααα=---==, 故1α是方程()0f x =在0(0,)x 内的唯一实根;综上,()=0f x 有且仅有两个实根,且两个实根互为倒数. 【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值、以及函数零点的问题,属于常考题型.33.(2021年全国高考乙卷数学(文)试题)已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性; (2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+,导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113a ⎛---∞ ⎝⎭,113a⎫+-+∞⎪⎪⎝⎭上单调递增,在113113a a ⎡⎢⎣-+-⎦-上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+, 则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-, 切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,试卷第4页,共27页整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根.4.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知函数1()e ln ln x f x a x a -=-+. (1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围. 【答案】(1)21e -(2)[1,)+∞ 【分析】(1)先求导数,再根据导数几何意义得切线斜率,根据点斜式得切线方程,求出与坐标轴交点坐标,最后根据三角形面积公式得结果;(2)解法一:利用导数研究,得到函数()f x 得导函数()’f x 的单调递增,当a=1时由5()’10f =得()()11min f x f ==,符合题意;当a>1时,可证1()(1)0f f a''<,从而()'f x 存在零点00x >,使得01001()0x f x ae x -'=-=,得到min ()f x ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得()1x ≥恒成立;当01a <<时,研究()f 1.即可得到不符合题意.综合可得a 的取值范围.解法二:利用指数对数的运算可将()111lna x lnx f x elna x e lnx +-≥++-≥+转化为, 令()xg x e x =+,上述不等式等价于()()1g lna x g lnx +-≥,注意到()g x 的单调性,进一步等价转化为1lna lnx x ≥-+,令()1h x lnx x =-+,利用导数求得()max h x ,进而根据不等式恒成立的意义得到关于a 的对数不等式,解得a 的取值范围. 【详解】 (1)()ln 1x f x e x =-+,1()x f x e x'∴=-,(1)1k f e '∴==-. (1)1f e =+,∴切点坐标为(1,1+e ),∴函数f(x)在点(1,f (1)处的切线方程为1(1)(1)y e e x --=--,即()12y e x =-+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e --, ∴所求三角形面积为1222||=211e e -⨯⨯--;(2)解法一:1()ln ln x f x ae x a -=-+, 11()x f x ae x-'∴=-,且0a >. 设()()g x f x =',则121()0,x g x ae x -'=+> ∴g(x )在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增, 当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e -<∴,111()(1)(1)(1)0a f f a e a a-''∴=--<,∴存在唯一00x >,使得01001()0x f x ae x -'=-=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,011x ae x -∴=,00ln 1ln a x x ∴+-=-, 因此01min 00()()ln ln x f x f x ae x a -==-+000011ln 1ln 2ln 122ln 1a x a a x a x x =++-+≥-+⋅=+>1, ∴()1,f x >∴()1f x ≥恒成立;试卷第6页,共27页当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立. 综上所述,实数a 的取值范围是[1,+∞).解法二:()111x lna x f x ae lnx lna elnx lna -+-=-+=-+≥等价于 11lna x lnx e lna x lnx x e lnx +-++-≥+=+,令()xg x e x =+,上述不等式等价于()()1g lna x g lnx +-≥,显然()g x 为单调增函数,∴又等价于1lna x lnx +-≥,即1lna lnx x ≥-+, 令()1h x lnx x =-+,则()111x h x x x-=-=' 在()0,1上h’(x)>0,h(x)单调递增;在(1,+∞)上h’(x)<0,h(x)单调递减, ∴()()10max h x h ==,01lna a ≥≥,即,∴a 的取值范围是[1,+∞).【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,属较难试题.5.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析; (2)(],0a ∈-∞. 【分析】(1)求导得到导函数后,设为()g x 进行再次求导,可判断出当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,从而得到()g x 单调性,由零点存在定理可判断出唯一零点所处的位置,证得结论;(2)构造函数()()h x f x ax =-,通过二次求导可判断出()()min 2h x h a π''==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭;分别在2a ≤-,20a -<≤,202a π-<<和22a π-≥的情况下根据导函数的符号判断()h x 单调性,从而确定()0h x ≥恒成立时a 的取值范围.【详解】7(1)()2cos cos sin 1cos sin 1f x x x x x x x x '=-+-=+-令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++= 当()0,x π∈时,令()0g x '=,解得:2x π=∴当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '< ()g x ∴在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减又()0110g =-=,1022g ππ⎛⎫=-> ⎪⎝⎭,()112g π=--=-即当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x >,此时()g x 无零点,即()f x '无零点()02g g ππ⎛⎫⋅< ⎪⎝⎭ 0,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x = 又()g x 在,2ππ⎛⎫ ⎪⎝⎭上单调递减 0x x ∴=为()g x ,即()f x '在,2ππ⎛⎫⎪⎝⎭上的唯一零点综上所述:()f x '在区间()0,π存在唯一零点(2)若[]0,x π∈时,()f x ax ≥,即()0f x ax -≥恒成立 令()()()2sin cos 1h x f x ax x x x a x =-=--+ 则()cos sin 1h x x x x a '=+--,()()cos h x x x g x '''==由(1)可知,()h x '在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减且()0h a '=-,222h a ππ-⎛⎫'=- ⎪⎝⎭,()2h a π'=-- ()()min 2h x h a π''∴==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭①当2a ≤-时,()()min 20h x h a π''==--≥,即()0h x '≥在[]0,π上恒成立()h x ∴在[]0,π上单调递增()()00h x h ∴≥=,即()0f x ax -≥,此时()f x ax ≥恒成立 ②当20a -<≤时,()00h '≥,02h π⎛⎫'> ⎪⎝⎭,()0h π'<1,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()10h x '=()h x ∴在[)10,x 上单调递增,在(]1,x π上单调递减又()00h =,()()2sin cos 10h a a ππππππ=--+=-≥()0h x ∴≥在[]0,π上恒成立,即()f x ax ≥恒成立试卷第8页,共27页③当202a π-<<时,()00h '<,2022h a ππ-⎛⎫'=-> ⎪⎝⎭20,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()20h x '=()h x ∴在[)20,x 上单调递减,在2,2x π⎛⎫⎪⎝⎭上单调递增()20,x x ∴∈时,()()00h x h <=,可知()f x ax ≥不恒成立④当22a π-≥时,()max 2022h x h a ππ-⎛⎫''==-≤ ⎪⎝⎭()h x ∴在0,2π⎛⎫⎪⎝⎭上单调递减 00h x h可知()f x ax ≥不恒成立 综上所述:(],0a ∈-∞ 【点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.6.(2021年全国高考甲卷数学(文)试题)设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>,当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.9(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.7.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【分析】(1)'2()3f x x k =-,对k 分0k ≤和0k >两种情况讨论即可; (2)()f x 有三个零点,由(1)知0k >,且()03(03kf kf ⎧->⎪⎪⎨⎪<⎪⎩,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可. 【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增; 当0k >时,令'()0f x =,得3k x =±'()0f x <,得33kkx < 令'()0f x >,得3kx <-3kx >()f x 在(,)33k k -上单调递减,在 (,3k-∞-,(,)3k +∞上单调递增.(2)由(1)知,()f x 有三个零点,则0k >,且(03()03kf kf ⎧>⎪⎪⎨⎪<⎪⎩试卷第10页,共27页即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<, 所以()f x在(1,k --上有唯一一个零点,又()f x在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27. 【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.8.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))已知函数f (x )=2ln x +1. (1)若f (x )≤2x +c ,求c 的取值范围; (2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.【答案】(1)1c ≥-;(2)()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间 【分析】(1)不等式()2f x x c ≤+转化为()20f x x c --≤,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数()g x 求导,把导函数()'g x 的分子构成一个新函数 ()m x ,再求导得到()m x ',根据()m x '的正负,判断 ()m x 的单调性,进而确定()'g x 的正负性,最后求出函数()g x 的单调性. 【详解】(1)函数()f x 的定义域为:(0,)+∞()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有 22(1)()2x h x x x-'=-=, 当1x >时,()0,()h x h x '<单调递减, 当01x <<时,()0,()h x h x '>单调递增,所以当1x =时,函数()h x 有最大值, 即max ()(1)2ln11211h x h c c ==+-⨯-=--, 要想不等式()*在(0,)+∞上恒成立, 只需max ()0101h x c c ≤⇒--≤⇒≥-; (2)()()()2ln 12ln 12ln ln (0x a x a g x x x a x a+-+-==>--且 )x a ≠因此22(ln ln )()()x a x x x a g x x x a --+'=-,设 ()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<, ()m x 单调递减,因此有()()0m x m a <=,即 ()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>, ()m x 单调递增,因此有()()0m x m a <=,即 ()0g x '<,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和 (,)a +∞上单调递减,没有递增区间. 【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.9.(2020年北京市高考数学试卷)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--, 令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样), 则()423241441144(24)44t t S t t t t t++==++, 所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.10.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,将其转化为2xe a x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果. 【详解】(1)当1a =时,()(2)x f x e x =-+,'()1x f x e =-, 令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)若()f x 有两个零点,即(2)0x e a x -+=有两个解, 从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞, 所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞. 【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果.11.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.【答案】(1)见详解;(2) 8[,2)27. 【分析】(1)先求()f x 的导数,再根据a 的范围分情况讨论函数单调性;(2) 讨论a 的范围,利用函数单调性进行最大值和最小值的判断,最终求得M m -的取值范围. 【详解】(1)对32()22f x x ax =-+求导得2'()626()3af x x ax x x =-=-.所以有当0a <时,(,)3a -∞区间上单调递增,(,0)3a区间上单调递减,(0,)+∞区间上单调递增;当0a =时,(,)-∞+∞区间上单调递增;当0a >时,(,0)-∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a+∞区间上单调递增.(2)若02a <≤,()f x 在区间(0,)3a 单调递减,在区间(,1)3a单调递增,所以区间[0,1]上最小值为()3af .而(0)2,(1)22(0)f f a f ==-+≥,故所以区间[0,1]上最大值为(1)f .所以332(1)()(4)[2()()2]233327a a a a M m f f a a a -=-=---+=-+,设函数3()227x g x x =-+,求导2'()19x g x =-当02x <≤时)'(0g x <从而()g x 单调递减.而02a <≤,所以38222727a a ≤-+<.即M m -的取值范围是8[,2)27.若23a <<,()f x 在区间(0,)3a 单调递减,在区间(,1)3a单调递增,所以区间[0,1]上最小值为()3af 而(0)2,(1)22(0)f f a f ==-+≤,故所以区间[0,1]上最大值为(0)f .所以332(0)()2[2()()2]33327a a a a M m f f a -=-=--+=,而23a <<,所以3812727a <<.即M m -的取值范围是8(,1)27.综上得M m -的取值范围是8[,2)27. 【点睛】(1)这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充. 12.(2018年全国卷Ⅲ文数高考试题文档版)已知函数()21xax x f x e +-=.(1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.【答案】(1)切线方程是210x y --=(2)证明见解析 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当a 1≥时,()12f x e 1x x e x x e +-+≥++-(),令12gx 1x e x x +=++-,只需证明gx 0≥即可. 【详解】 (1)()()2212xax a x f x e-++'-=,()02f '=.因此曲线()y f x =在点()0,1-处的切线方程是210x y --=.(2)当1a ≥时,()()211x xf x e x x e e +-+≥+-+.令()211x g x x x e +=+-+,则()121x g x x e +=++',()120x g x e +''=+>当1x <-时,()()10g x g '-'<=,()g x 单调递减;当1x >-时,()()10g x g '-'>=,()g x 单调递增;所以()g x ()1=0g ≥-.因此()0f x e +≥. 【点睛】本题考查函数与导数的综合应用,由导数的几何意义可求出切线方程,第二问构造12g(x)1x e x x +=++-很关键,本题有难度.13.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.【答案】(1)f (x )在(–∞,323-,(33++∞)单调递增,在(323-33+单调递减. (2)见解析. 【详解】分析:(1)将3a =代入,求导得2()63f x x x '=--,令()0f x '>求得增区间,令()0f x '<求得减区间;(2)令321()(1)03f x x a x x =-++=,即32301x a x x -=++,则将问题转化为函数32()31x g x a x x =-++只有一个零点问题,研究函数()g x 单调性可得. 详解:(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =33-x =323+当x ∈(–∞,33-∪(323++∞)时,f ′(x )>0; 当x ∈(323-33+ f ′(x )<0.故f (x )在(–∞,33-,(323++∞)单调递增,在(323-33+递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++. 设()g x =3231xa x x -++,则g ′(x )=()()2222231x x x x x ++++≥0,仅当x =0时g ′(x )=0,所以g(x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=221116260366a a a ⎛⎫-+-=---< ⎪⎝⎭,f (3a +1)=103>,故f (x )有一个零点.综上,f (x )只有一个零点.点睛:(1)用导数求函数单调区间的步骤如下:①确定函数()f x 的定义域;②求导数()'f x ;③由()0f x '>(或()0f x '<)解出相应的x 的取值范围,当()0f x '>时,()f x 在相应区间上是增函数;当()0f x '<时,()f x 在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数()g x 有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.14.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))(2018年新课标I 卷文)已知函数()e 1xf x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.【答案】(1) a =212e ;f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析. 【详解】分析:(1)先确定函数的定义域,对函数求导,利用f ′(2)=0,求得a =212e ,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a ≥1e 时,f (x )≥e ln 1exx --,之后构造新函数g(x )=e ln 1exx --,利用导数研究函数的单调性,从而求得g (x )≥g (1)=0,利用不等式的传递性,证得结果.详解:(1)f (x )的定义域为()0+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增. (2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则()e 1'e x g x x=-.当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1a e≥时,()0f x ≥.点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要保证函数的生存权,先确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.15.(2018年全国普通高等学校招生统一考试文科数学(北京卷))设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12 (Ⅱ)(1,)+∞ 【详解】分析:(1)求导()'f x ,构建等量关系(2)0k f ='=,解方程可得参数a 的值;(2)对a 分1a >及1a ≤两种情况进行分类讨论,通过研究()'f x 的变化情况可得()f x 取得极值的可能,进而可求参数a 的取值范围. 详解:解:(Ⅰ)因为()()23132e x f x ax a x a ⎡⎤=-+++⎣⎦, 所以()()211e xf x ax a x ⎡⎤=-++⎣⎦'.()()2221e f a -'=,由题设知()20f '=,即()221e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得()()()()211e 11e x xf x ax a x ax x ⎡⎤=-++=--⎣⎦'. 若a >1,则当1,1x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当()1,x ∈+∞时,()0f x '>.所以()f x 在x =1处取得极小值.若1a ≤,则当()0,1x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是()1,+∞.方法二:()()()11e xf x ax x =--'.(1)当a =0时,令()0f x '=得x =1.()(),f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1x x a==. ①当12x x =,即a =1时,()()21e 0x f x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,()(),f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,()(),f x f x '随x 的变化情况如下表:x1,a ⎛⎫-∞ ⎪⎝⎭ 1a 1,1a ⎛⎫ ⎪⎝⎭1()1,+∞()f x ' + 0 − 0+()f x↗ 极大值 ↘ 极小值 ↗∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1x x a==. ()(),f x f x '随x 的变化情况如下表:x1,a ⎛⎫-∞ ⎪⎝⎭ 1a 1,1a ⎛⎫ ⎪⎝⎭1()1,+∞()f x ' − 0 + 0−()f x↘ 极小值 ↗ 极大值 ↘∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为()1,+∞.点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数单调性或求单调区间问题;③利用导数求函数的极值最值问题;④关于不等式的恒成立问题.解题时需要注意的有以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值最值问题时常常会涉及到分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.16.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版))已知函数2()ln (21)f x x ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a≤--. 【答案】(1)见解析;(2)见解析. 【分析】(1)先求函数导数(21)(1)'()(0)ax x f x x x++=>,再根据导函数符号的变化情况讨论单调性:当0a ≥时,'()0f x >,则()f x 在(0,)+∞单调递增;当0a <时,()f x 在1(0,)2a-单调递增,在1(,)2a-+∞单调递减. (2)证明3()24f x a≤--,即证max 3()24f x a ≤--,而max 1()()2f x f a =-,所以需证11ln()1022a a-++≤,设g (x )=ln x -x +1 ,利用导数易得max ()(1)0g x g ==,即得证. 【详解】(1)()f x 的定义域为(0,+∞),()()‘1211)22(1x ax f x ax a x x++=+++=. 若a ≥0,则当x ∈(0,+∞)时,’)(0f x >,故f (x )在(0,+∞)单调递增. 若a <0,则当10,2x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>时;当x ∈1()2a ∞-+,时,’)(0f x <. 故f (x )在’)(0f x >单调递增,在1()2a∞-+,单调递减. (2)由(1)知,当a <0时,f (x )在12x a=-取得最大值,最大值为111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设g (x )=ln x -x +1,则’1(1)g x x=-. 当x ∈(0,1)时,()0g x '>;当x ∈(1,+∞)时,()0g x '<.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,11ln()1022a a-++≤,即3()24f x a ≤--.【点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式. (2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.17.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版))设函数2()(1)x f x x e =-.(I )讨论函数()f x 的单调性;(II )当0x ≥时,()1f x ax ≤+,求实数a 的取值范围.【答案】(I )函数()f x 在(,1)-∞和1,+)∞上单调递减,在(1)上21单调递增. (II )[1,)+∞. 【详解】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间;(2)对a 分类讨论,当a ≥1时,()()()11e 11x f x x x x ax =-+≤+≤+,满足条件;当0a ≤时,取()()()200000511111x f x x x ax -=>-+=>+,当0<a <1时,取0541a x --=()()()20000111f x x x ax >-+>+. 试题解析: 解(1)f ’(x )=(1-2x -x 2)e x令f’(x )=0得x 2,x 2当x ∈(-∞,2时,f’(x )<0;当x ∈(22时,f’(x )>0;当x ∈(2+∞)时,f’(x )<0所以f (x )在(-∞,2),(2+∞)单调递减,在(2,2 (2) f (x )=(1+x )(1-x )e x当a ≥1时,设函数h (x )=(1-x )e x ,h ’(x )= -xe x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1当0<a <1时,设函数g (x )=e x -x -1,g ’(x )=e x -1>0(x >0),所以g (x )在在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1当0<x <1,()()()211f x x x >-+,()()()221111x x ax x a x x -+--=---,取0541a x --=则()()()()20000000,1,110,1x x x ax f x ax ∈-+-=>+ 当 ()()0000051011211a x f x x x ax -≤=>-+=>+时,取() 综上,a 的取值范围[1,+∞)点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.(2020年天津市高考数学试卷)已知函数3()ln ()f x x k x k R =+∈,()'f x 为()f x 的导函数.(Ⅰ)当6k =时,试卷第22页,共27页(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值;(Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(Ⅰ)(i )98y x =-;(ii )()g x 的极小值为(1)1g =,无极大值;(Ⅱ)证明见解析. 【分析】(Ⅰ) (i)首先求得导函数的解析式,然后结合导数的几何意义求解切线方程即可; (ii)首先求得()g x '的解析式,然后利用导函数与原函数的关系讨论函数的单调性和函数的极值即可;(Ⅱ)首先确定导函数的解析式,然后令12x t x =,将原问题转化为与t 有关的函数,然后构造新函数,利用新函数的性质即可证得题中的结论. 【详解】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞.从而可得()2263'36g x x x x x =-+-, 整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);23g (x )的极小值为g (1)=1,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+.对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x=--∈+∞.当x >1时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当t >1时,()()1h t h >,即12ln 0t t t-->.因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-, 所以()()332322113312ln 33132ln x t t t k t t tt t t t t t ⎛⎫⎛⎫-+-+------- ⎪+ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(Ⅰ)(ii)可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>,故32336ln 10t t t t-++-> ③由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题.试卷第24页,共27页(4)考查数形结合思想的应用.19.(2019年天津市高考数学试卷(文科))设函数()ln (1)x f x x a x e =--,其中a R ∈. (Ⅰ)若0a ≤,讨论()f x 的单调性; (Ⅱ)若10a e<<, (i )证明()f x 恰有两个零点(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(I )()f x 在(0,)+∞内单调递增.; (II )(i )见解析;(ii )见解析. 【分析】(I );首先写出函数的定义域,对函数求导,判断导数在对应区间上的符号,从而得到结果;(II )(i )对函数求导,确定函数的单调性,求得极值的符号,从而确定出函数的零点个数,得到结果;(ii )首先根据题意,列出方程组,借助于中介函数,证得结果. 【详解】(I )解:由已知,()f x 的定义域为(0,)+∞, 且211'()[(1)]x x xax e f x ae a x e x x-=-+-=,因此当0a ≤时,210x ax e ->,从而'()0f x >, 所以()f x 在(0,)+∞内单调递增.(II )证明:(i )由(I )知,21'()xax e f x x-=,令2()1x g x ax e =-,由10a e<<,可知()g x 在(0,)+∞内单调递减,又(1)10g ae =->,且221111(ln )1(ln )1(ln )0g a a a a a=-=-<,故()0g x =在(0,)+∞内有唯一解,从而'()0f x =在(0,)+∞内有唯一解,不妨设为0x , 则011lnx a <<,当0(0,)x x ∈时,0()()'()0g x g x f x x x=>=, 所以()f x 在0(0,)x 内单调递增; 当0(,)x x ∈+∞时,0()()'()0g x g x f x x x=<=, 所以()f x 在0(,)x +∞内单调递减,25因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减, 从而当1x >时,()(1)0h x h <=,所以ln 1x x <-,从而1ln 111111(ln )ln ln (ln 1)ln ln ln 1(ln )0a f a e h a a aa a a a=--=-+=<,又因为0()(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点,又()f x 在0(0,)x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,01'()0()0f x f x =⎧⎨=⎩,即0120111ln (1)x x ax e x a x e ⎧=⎨=-⎩, 从而1011201ln x x x x e x --=,即102011ln 1x x x x e x -=-,因为当1x >时,ln 1x x <-,又101x x >>,故10220101(1)1x x x x ex x --<=-,两边取对数,得120ln ln x x e x -<,于是10002ln 2(1)x x x x -<<-,整理得0132x x ->, 【点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想,考查综合分析问题和解决问题的能力. 20.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【分析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立. 【详解】(1)函数的定义域为()0,∞+,。