广义逆矩阵
三矩阵相乘的广义逆

广义逆矩阵是线性代数中的一个重要概念,它可以用来解决线性方程组的求解等问题。
在这里,我将介绍广义逆矩阵的基本概念和性质,并讨论三矩阵相乘的广义逆的计算方法。
广义逆矩阵的定义:设 A 是一个 n 阶方阵,如果存在一个 n 阶方阵 B,使得 AB=BA=I,其中 I 是 n 阶单位矩阵,那么 B 就称为 A 的广义逆矩阵,记作 B=A^{-1}。
广义逆矩阵的性质:1. 如果 A 是可逆的,那么 A 的广义逆矩阵就是 A 的逆矩阵,即 A^{-1}=A^{-1}。
2. 如果 A 是非奇异的,那么 A 的广义逆矩阵就是 A 的伪逆矩阵,即 A^{-1}=A^+。
3. 如果 A 是奇异的,那么 A 的广义逆矩阵就是 A 的指数矩阵,即 A^{-1}=e^A。
4. 如果 A 是对称矩阵,那么 A 的广义逆矩阵也是对称矩阵,即 A^{-1}=A^{T}。
三矩阵相乘的广义逆的计算方法:设 A、B、C 是三个 n 阶方阵,那么它们的广义逆矩阵可以通过以下公式计算:(ABC)^{-1}=C^{-1}B^{-1}A^{-1}其中 C^{-1}、B^{-1}、A^{-1} 分别是 C、B、A 的广义逆矩阵。
这个公式可以通过矩阵运算的性质来证明,也可以通过计算 A、B、C 的指数矩阵来得到。
例如,如果 A、B、C 都是可逆的,那么它们的广义逆矩阵就是它们的逆矩阵,即(ABC)^{-1}=A^{-1}B^{-1}C^{-1}如果 A、B、C 都是非奇异的,那么它们的广义逆矩阵就是它们的伪逆矩阵,即(ABC)^{-1}=A^+B^+C^+如果 A、B、C 都是奇异的,那么它们的广义逆矩阵就是它们的指数矩阵,即(ABC)^{-1}=e^Ae^Be^C如果 A 是对称矩阵,B、C 是对称矩阵,那么它们的广义逆矩阵也是对称矩阵,即(ABC)^{-1}=(B^TA^TC^T)^{-1}=(C^TA^TB^T)^{-1}需要注意的是,三矩阵相乘的广义逆矩阵并不一定存在,例如如果 A、B、C 中有一个是零矩阵,那么它们的广义逆矩阵就不存在。
毕业论文广义逆矩阵与线性方程组的求解

广义逆矩阵与线性方程组的求解The solution of linear equations by the generalized inverse matrix专业: 数学与应用数学作者:指导老师:学校二○一摘要本文首先对矩阵的广义逆进行定义及其分类, 然后主要对一些重要的广义逆的性质和求解进行详细的讨论, 其中包括对减号逆的求解、Moore-Penrose 逆的存在性与唯一性的证明、左逆与右逆的性质与求解等等. 通过对这些重要的广义逆矩阵的性质和求解方法的研究, 最后探讨矩阵的广义逆在解线形方程组中的应用.关键词: 广义逆矩阵;线性方程组;相容方程组;通解AbstractThis article first to define the generalized inverse matrix and its classification, and then mainly on some important properties of generalized inverses and solution of a detailed discussion, including a minus sign for solving inverse, Moore-Penrose inverse of the existence and uniqueness of proof, the left inverse and right inverse of the nature of and solution and so on. On these important properties of generalized inverse matrix of the theory and method, the last of the generalized inverse matrix in the solution of linear equations.Keywords: generalized inverse matrix;linear equations;compatibility equations;general solution目录摘要 (I)ABSTRACT (II)0 引言 (2)1 矩阵的几种广义逆 (1)1.1)1(A的定义与计算 (3)1.5加号逆+A的性质及计算 (4)1.6左逆与右逆的定义 (5)2 用广义逆矩阵求解线性方程组 (7)2.1左右逆的应用 (7)2.2相容方程组的通解与-A的应用 (8)2.3+A的应用 (11)参考文献 (14)0 引言广义逆矩阵是通常逆矩阵的推广, 推广的必要性, 首先是从线性方程组的求解问题出发的, 设有线性方程组b Ax = (0.1)当A 是n 阶方阵, 且0det ≠A 时, 则方程组(0.1)的解存在, 并唯一. 1x A b -= (0.2)但是, 在许多实际问题中所遇到的矩阵A 往往是奇异方阵或是任意的n m ⨯矩阵 (一般n m ≠), 显然不存在通常的逆矩阵1-A , 这就促使人们去想象能否推广逆的概念, 引进某种具有普通逆矩阵类似性质的矩阵G , 使得其解仍可以表示为类似于式(0.2)的紧凑形式? 即Gb x = (0.3)1920年摩尔(E.H.Moor )首先引进了广义逆矩阵这一概念, 其后三十年未能引起人们的重视, 指直到1955年, 彭诺斯(R.Penrose )以更明确的形式给出了Moore 的广义逆矩阵的定义后, 广义逆矩阵的研究才进入了一个新的时期, 由于广义逆矩阵在数理统计、系统理论、最优化理论、现代控制理论等许多领域中的重要应用为人们所认识,因而大大推动了对广义逆矩阵的研究, 使得这一学科得到迅速的发展, 已成为矩阵的一个重要分支. (见参考文献[1][2])1 矩阵的几种广义逆1955年, 彭诺斯(R.Penrose )指出, 对任意复数矩阵n m A ⨯, 如果存在复矩阵m n A ⨯,满足A AXA = (1.1) X XAX = (1.2)AX AX H =)( (1.3)XA XA H =)( (1.4)则称X 为A 的一个 Moore —Penrose 广义逆, 并把上面四个方程叫做 Moore —Penrose 方程, 简称 M —P 方程.由于 M —P 的四个方程都各有一定的解释, 并且应用起来各有方便之处, 所以出于不同的目的, 常常考虑满足部分方程的 X , 叫做弱逆, 为引用的方便, 我们给出如下的广义逆矩阵的定义.定义1.1 设n m C A ⨯∈, 若有某个m n C X ⨯∈, 满足 M —P 方程(1.1)~(1.4)中的全部或其中的一部分, 则称X 为A 的广义逆矩阵.(见参考文献[3])例如有某个X , 只要满足式(1.1) , 则X 为A 的{}1广义逆, 记为{}1A X ∈; 如果另一个Y , 满足式(1.1), (1.2)则Y 为A 的{}2,1广义逆, 记为{}2,1A Y ∈; 如果{}4,3,2,1A X ∈, 则X 同时满足四个方程, 它就是 Moore —Penrose 广义逆, 等等. 总之, 按照定义 1.1可推得, 满足1个, 2个, 3个, 4个Moore —Penrose 方程的广义逆矩阵共有1544342414=+++C C C C 种, 但应用较多的事一下五种{}1A , {}2,1A , {}3,1A , {}4,1A , {}4,3,2,1A .其中每一种广义逆矩阵又都包含着一类矩阵, 分述如下:1.{}1A : 其中任意一个确定的广义逆, 称作减号逆, 或g 逆, 记为-A ; 2.{}2,1A : 其中任意一个确定的广义逆, 称作自反广义逆, 记为r A ; 3.{}3,1A : 其中任意一个确定的广义逆, 称作最小范数广义逆, 记为m A ; 4.{}4,1A : 其中任意一个确定的广义逆, 称作最小二乘广义逆, 记为i A ;5.{}4,3,2,1A : 唯一,称作加号逆, 或伪逆, 或 Moore-Penrose 逆, 记为+A .为叙述简单起见, 下面我们以n R 及实矩阵为例进行讨论, 对于n C 及复的矩阵也有相应结果.本文着重介绍减号逆-A 和加号逆+A 以及左逆与右逆的性质及计算, 并讨论它们在解线性方程组中的应用.1.1 (1)A 的定义与计算定义 1.1.1 设m n A C ⨯∈, 若m n C G ⨯∈满足AGA A =, 则称G 为A 的{1}-逆记为(1)A ,由定义可知{}{}m n C G A AGA G A ⨯∈==,|1.例如设1100A ⎛⎫= ⎪⎝⎭, 则100a G ⎛⎫= ⎪⎝⎭就是A 的{1}-逆, 这里a 可以任取. 不难看出A 的{1}-逆并不唯一.定理 1.1.1 设m n r A C ⨯∈, P , Q 分别为m 阶与n 阶非奇异方阵, 且000rIPAQ ⎛⎫= ⎪⎝⎭则 122122{1}(,1,2)r ijI G A Q P G i j G G ⎧⎫⎛⎫⎪⎪==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为任意阶数的矩阵. (证明见参考文献[7]) 例1 求矩阵101002221453A -⎛⎫⎪= ⎪ ⎪-⎝⎭的广义逆)1(A .解 构造分块矩阵340AI B I ⎛⎫=⎪⎝⎭, 通过适当变化, 将A 进行行列变换化为000rI ⎛⎫⎪⎝⎭形式, 并求出变换P , Q .31314110111001000100022201002220101453001044400110000001011000010000001000000010000001000000010000001000r r c c c c ++--⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪- ⎪⎪−−−→- ⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭323242221/21000100010012000001211011000011100000100000001000r r c c c c r ---⎛⎫⎪⎪⎪- ⎪−−−→- ⎪ ⎪-- ⎪⎪ ⎪⎝⎭,因此有10001/20121P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 1011011100100001Q -⎛⎫⎪--⎪= ⎪⎪⎝⎭.于是我们取12G , 21G , 22G 均为0得()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000002100010000000100011P Q A .1.2 加号逆+A 的性质及计算定义1.2.1设n m R A ⨯∈, 若存在m n ⨯ 阶矩阵 X , 它同时满足: 1) A AXA = 2)X XAX = 3)()AX AX T= 4)()XA XA T=则称X 为 A 的加号逆, 或伪逆, 或 M oore-Penrose 逆, 记为+A .从定义中可看出, 加号逆必同时是减号逆、自反广义逆、最小范数广义逆和最小二乘广义逆, 在四个条件中, X 与A 完全处于对称地位. 因此A 也是+A 的加号逆, 即有()A A =++; 另外可见, 加号逆很类似于通常的逆阵, 因为通常的逆1-A 也有下列四个类似的性质:1.A A AA =-12. 111---=A AA A3. I AA=-14. I A A =-1由定义1.2.1 中的条件 3)和 4)还可看出, +AA 与A A +都是对称矩阵.前面已经介绍了什么样的矩阵称为M P -广义逆矩阵, 下面将讨论M P -广义逆矩阵的唯一性.定理1.2.1对任意m n A C ⨯∈, A +存在且唯一.证明 设()rank A r =, 若0r =则A 是m n ⨯阶零矩阵, 显然n m ⨯阶零矩阵满足条件.若0r >则A 的满秩分解为A FG =, 其中m r r F C ⨯∈, r n r G C ⨯∈, 于是11()()H H H H B G GG F F F --=即为所求的A +. 因为(1) ()11()()H H H H ABA FG G GG F F F FG FG A --===; (2) 1111()()()()H H H H H H H H BAB G GG F F F FGG GG F F F ----=11()()H H H H G GG F F F B --==;(3) 111()(()())(())H H H H H H H H H AB FGG GG F F F F F F F ---== 1()H H F F F F AB -==;(4) 111()(()())(())H H H H H H H H H BA G GG F F F FG G GG G ---== 1()H H G GG G BA -==. 由此说明了P M -广义逆的存在性.又设,{1,2,3,4}X Y A ∈则有()()()()H H H H H X XAX X AX XX AYA X AX AY XAY =====()()()()H H H H H H H XA YAY XA YA Y A X A Y Y YAY Y =====. 这便说明了A +的唯一性.定理 1.2.2 设A 为秩为r 的m n ⨯矩阵, 其满秩分解为A FG =, 其中m rr F C ⨯∈,r nr G C ⨯∈, 则11()()H H H H A G GG F F F +--=.A +的唯一性前面已经作出了说明, 此定理的证明见参考文献[7]1.3 左逆与右逆的定义定义 1.3.1 设A 是m n ⨯矩阵, 若有n m ⨯矩阵G 满足m AG I =(或n GA I =), 则称G 为A 的右逆(或左逆), 记为1R A -(或1L A -).定理1.3.1 设A 是m n ⨯的矩阵, A 有右(左)逆1R A -(1L A -)的充要条件是()rank A m =(()rank A n =).若A 有右(左)逆, 则其中一个右(左)逆是11()H H R A A AA --=(11()H H L A A A A --=), 通式为11()H H R A VA AVA --=(11()H H L A A VA A V --=)其中V 是任意满足()()()()()H H rank A rank AVA rank A rank A VA ==的矩阵.证明 充分性: 已知()rank A m =, 则()H rank AA m =, H AA 是可逆矩阵, 若记1()H H G A AA -=, 则1()H H m AG AA AA I -==, 因此G 是A 的右逆.必要性: 设G 是A 的一个右逆, 则AG =m I . 由于()()()m m rank I rank AG rank A m ==≤≤,因此()rank A m =.设V 是任意满足()()H rank A rank AVA =的矩阵, 最后证明右逆的通式可以表示成为11()H H R A VA AVA --=的形式.由于1()H H m AVA AVA I -=, 因此1()H H VA AVA -是A 的右逆. 设G 是A 的任意右逆,记H V GG =, 则H H H m AVA AGG A I ==因此()()H rank A rank AVA m ==. 又因为1()H H VA AVA -=H H m m GG A I GI G ==,由上分析可知A 的任意右逆G 都可找到V 使其表示为1()H H G VA AVA -=的形式.因此矩阵A 的右逆的通式为11()H H R A VA AVA --=.对于左逆同理证明.例2求矩阵111000A ⎛⎫⎪= ⎪ ⎪⎝⎭的左逆1L A -. 解 由于1111021101001100H A A ⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭, 所以我们有11121110010()11100110H HL A A A A ---⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭例3 设 ⎥⎦⎤⎢⎣⎡--=210121A ,试求其右逆. 解 易知rank 2=A ,即A 是最大秩矩阵,有11210121210121210121--⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=R A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡824365141.2 用广义逆矩阵求解线性方程组考虑非齐次线性方程b Ax = (2.1) 其中n m C A ⨯∈, m C b ∈给定, 而m C x ∈为待定向量. 若()rankA b A rank =, 则方程(2.1)有解, 或称方程组相容, 否则, ()rankA b A rank ≠, 则方程(2.1)无解, 或称方程组不相容或矛盾方程组.2.1 左右逆的应用定理2.1.1 设Ax b =是相容性线形方程组, A 是行满秩矩阵, 1R A -是它的一个右逆.显然11()R R A A b AA b b --==, 因此1R A b -是线形方程组的解. 又若A 为列满秩矩阵, 1L A -是它的一个左逆, 则1L A b -是线形方程组的解.例4 求方程组Ax b =的解其中111000A ⎛⎫⎪= ⎪⎪⎝⎭, 210b ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 解 显然方程组是相容的. 由于从前面已经知道1010110L A -⎛⎫= ⎪-⎝⎭,因此方程组的解为120101111010L x A b -⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎝⎭.2.2 相容方程组的通解与-A 的应用线性方程组相容时, 若系数矩阵n m C A ⨯∈, 且非奇异(即0det ≠A ), 则有唯一的解b A X 1-= (2.2) 但当A 为奇异方阵或长方矩阵时, 它的解不是唯一的, 此时1-A 不存在或无意义,那么我们自然会想到, 这时是否能用某个矩阵G 把一般解(无穷多)表示成 Gb X = (2.3) 的形式呢? 这个问题是肯定的. 我们将会发现A 的减号逆A 充当了这一小角色.对于一个m n ⨯阶相容的线性方程组, 不论系数矩阵A 是方阵还是长方矩阵, 是满秩的还是降秩的, 我们都有一个标准的求解方法, 并且能把它的解表达成非常简洁的形式. 下面定理形式给出.定理2.2.1 如果线性方程组(2.1)是相容的, -A 是A 的任一个减号逆, 则线性方程组(2.1)的一个特解可表示成b A X -= 而通解可以表示成()z A A I b A X ---+= (2.4)其中z 是与X 同维的任意向量.(见参考文献[6])证 因为b AX =相容, 所以必有一个n 维向量, 使 b AW = 成立, 又由于是-A 是A 的一个减号逆, 所以A A AA =-,则有AW AW AA =-.亦即b b AA =-.由此得出b A X -= (2.5) 是方程组(2.1)的一个特解.其次, 在式子(2.4)两端左乘A . 则有b AA Z A A I A b AA AX ---=-+=)(由于b b A A =-)(, 所以式(2.4)确定的X 是方程组(2.1)的解, 且当x ~为任意一个解时, 令b A X Z --=~, 有)~)(()(b A X A A I Z A A I -----=- =Ab A X A A b A X ---+--~~ =b A b A b A X ---+--~=b A X --~从而得()Z A A I b A X ---+=~证毕.这表明由式(2.4)确定的解时方程组(2.1)的通解. 例5 求解⎩⎨⎧=+-=-+221232321x x x x x解 将方程组写成矩阵形式 b AX = 其中⎥⎦⎤⎢⎣⎡--=210121A ,⎥⎦⎤⎢⎣⎡=21b 由于()rankA b A rank ==2, 所以方程组是相容的, 现在只要要求得A 的一个减号就可以了, 由例1.3.2知矩阵A 的一个减号逆为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-8326451411RA 利用公式(2.4), 我们就可立即求得方程组的通解:()Z A A I b A X R R 11---+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-++---+=321321321213192461036913141z z z z z z z z z 也即()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧++-=++-=--+=32133212321123191412461014136913141z z z x z z z x z z z x其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321z z z Z 为任一向量. 例6 求方程组Ax b =其中101102221453A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 101b ⎛⎫⎪= ⎪ ⎪-⎝⎭的解.解 不难看出, 该方程组是相容的, 由于前面已经求得(1)1000120000000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以方程组的通解为1342343344110010001011011012001000120002220000010000114530000001000y y y y y y x y y y y +-⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪⎪⎪-- ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪=+-= ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎢⎥ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中3y , 4y 为任意实数.2.3 +A 的应用(一)判别线性方程组有解.普通线性代数中判别方程组b AX =有解的方法是用矩阵的秩,即()rankA b A rank =时有解;而有了广义逆矩阵理论之后, 便可用广义逆矩阵的方法判别, 并可同时求出解.结论1: 线性方程组b AX =有解b AA b +=⇔. 证 若线性方程组b AX =有解.不妨设其解为a ,则()()b AA Aa AA a A AA Aa b +++====反之, 若有b AA b +=, 则()()b A X A b A X b A X A b AA b AX ++++=⇒≠=-⇒=-⇒==000即b A X +=为线性方程组的一个解. (二)求齐次线性方程组的解空间利用广义逆矩阵可以求出齐次方程组的一切解结论2: 齐次线性方程组0=AX 的解空间=W {()Y Y A A E +-为任意列向量} 证 任取()W A A E a ∈-=+β, 有()()0=-=-=++ββA AA A A A E A Aa , 则a 为齐次线性方程组的解. 反之.若a 为方程组的解, 即0=Aa (2.3.1)两边左乘以A A +, 得0=+AAa A (2.3.2 )联立以上两式有()0=-+a A A E A (2.3.3)由(2.3.3)知: ()a A A E +-为方程组的解, 且()W a A A E ∈-+.(三) 判别齐次线性方程组有唯一解一般由个方程以及个未知数组成的齐次线性方程组0=AX 有唯一解的充分必要条件是0≠A . 但是当方程组的个数与未知数的个数不相等时, 不是方阵, 不能有用行列式判别. 可以用广义逆矩阵的方法判别如下:结论3: 齐次线性方程组0=AX 有唯一解E A A =⇔+证 ⇒ 若齐次线性方程组有唯一解, 则唯一解即为零解. 若E A A ≠+, 则0≠-+A A E由结论2知, 0≠∃Y , 使得()0≠-=+Y A A E a , 为方程组的解, 这与方程组有唯一零 解矛盾. 所以E A A =+.⇐ 若E A A =+, 则0=-+A A E , 由结论2知此时解空间有唯一零解. (四)求非齐次线性方程组的解空间结论4: 非齐次线性方程组b AX =的解空间=H {()Y Y A A E b A ++-+为任意 列向量}.事实上, 由线性方程组的一般理论知, 非齐次方程组的通解应该为对应齐次 的通解和自身的一个特解之和. 结论1、2告诉我们: b A +为其自身的一个特解; 而()Y Y A A E +-为对应齐次的通解(Y 取任意列向量). 显然即为其解空间.例7 求b AX =的通解. ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=201,420021b A解 因为 ()2,1201⎪⎪⎪⎭⎫ ⎝⎛==FG A , 5=H GG , 5=F F H ,所以()b b AA A =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=+--+2012012001000010052512014022012514200214022012512,0,1552111 通解为()Y Y A A E X ⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=-+⎪⎪⎭⎫ ⎝⎛=+12245121512151. 其中Y 为任意列向量.致谢 本文是在 的指导和帮助下完成的, 在此对汪教授表示衷心的感谢!参考文献[1] 姜同松编. 高等代数解题方法[M]. 石油大学出版社. 2001.[2] 北京大学数学系几何与代数教研室代数小组编. 高等代数[M]. 北京:高等教育出版社,1988.[3] 蔡剑芳. 高等代数综合题解[M]. 湖北科学技术出版社. 1986.[4] 王品超. 高等代数新方法[M]. 济南:山东教育出版社. 1989.[5] 黄有度, 狄成恩, 朱士信. 矩阵理论及其应用[M]. 合肥: 中国科学技术大学出版社, 1995.[6] 林升旭. 矩阵论学习辅导与典型题解析[M]. 武汉: 华中科技大学出版社, 2003.[7] 苏育才, 姜翠波, 张跃辉. 矩阵理论[M]. 北京: 科学出版社, 2006.[8] 李新, 何传江. 矩阵理论及其应用[M]. 重庆: 重庆大学出版社, 2005.[9]Verler.W.J.Vectors Structures and Solutions of linear Matrix Equation, linear Algebra Appl;1975.180-187.[10] Dai Hua.On the symmetric Solutions of linear Matrix Equation, linear Algebra Appl.1990(131)1-7.。
矩阵的广义逆和极小二乘解法

矩阵的广义逆和极小二乘解法矩阵是线性代数中非常基础的概念之一,其应用非常广泛,涉及到各个领域,如计算机科学、工程学、物理学、统计学等等。
然而,在矩阵的运算之中,我们常常会遇到矩阵的求逆问题。
然而,实际上,在一些情况下,矩阵并没有逆矩阵,这时候,我们就需要引入矩阵的广义逆(Generalized Inverse),来解决问题。
1.矩阵的广义逆在一些情况下,我们无法找到一个矩阵A的逆矩阵,这时候,我们可以引入矩阵的广义逆概念。
对于矩阵A,如果存在一个矩阵B,使得B满足以下条件:AB = A,BA = B,(AB)^T = AB,(BA)^T = BA,那么我们称矩阵B是矩阵A的广义逆。
矩阵A不一定存在逆矩阵,但是一定存在广义逆矩阵。
矩阵的广义逆具有如下性质:(1)A A+ A=A;(2) A+A A+= A+;(3) (A A+)A= A;(4) (A+A)A+= A+.在数值计算中,广义逆矩阵的应用非常广泛,常常用于求解那些没有精确解的问题,如线性回归、最小二乘法等等。
2. 矩阵的极小二乘法矩阵的极小二乘法(Least Squares)是一种数据拟合方法,用于寻找一条曲线(or 平面)最能拟合给定的数据点。
假设我们有n个数据点(x, y),我们想寻找一条形如y = A + Bx的线性函数,使得它最能拟合这n个数据点。
在这个问题中,我们令y为坐标轴上的纵坐标,x为坐标轴上的横坐标,A为垂直截距,B为斜率。
同时,我们假设y和x之间的关系是线性关系,即y ≈ A + Bx。
对于给定的n个数据点(x1, y1), (x2,y2),…, (xn, yn),我们可以将其表示为一个矩阵形式:y = [y1 y2 … yn]^T,X = [1 x1; 1 x2; … ; 1 xn];其中y是一个n维列向量,X是一个n行2列的矩阵,对于每一行i,它表示为[1 xi]。
我们的目的是寻找一个2维列向量β,使得它最能拟合y,即:y ≈ Xβ在这里,我们考虑一个误差函数,它描述了我们模型的预测值与真实值之间的差异。
矩阵的广义逆行列式

矩阵的广义逆行列式
矩阵的广义逆行列式是指一个矩阵在广义逆的定义下所对应的行列式。
在线性
代数中,给定一个矩阵A,如果存在一个矩阵B使得AB和BA都是广义单位矩阵(设为I),则B被称为矩阵A的广义逆,记作A⁺。
对于一个矩阵A的广义逆行列式,我们可以通过以下步骤计算得出。
首先,我们需要求出A的广义逆矩阵A⁺,这可以通过奇异值分解(SVD)来得出。
将矩阵A
作SVD,可以得到矩阵A的奇异值分解形式为A = UΣV^T,其中U和V是正交矩阵,Σ是对角阵。
我们可以将矩阵Σ的对角元素进行求逆,得到Σ的伪逆矩阵Σ⁺。
然后,将U
和V^T进行转置操作,得到U^T和V的转置矩阵(V^T)^T=V,分别表示U和V的伪逆矩阵。
通过上述步骤,我们可以得到矩阵A的广义逆矩阵A⁺=VΣ⁺U^T。
最后,我
们可以计算矩阵A的广义逆行列式。
由于矩阵A⁺并不一定是方阵,所以其行列式并不能简单地通过行列式的计算公式求得。
因此,矩阵的广义逆行列式并不是一个常见或常规的矩阵特征。
在求解过程中,我们更关注广义逆矩阵A⁺的性质,如A⁺A和AA⁺的性质,以及广义逆在线性方程组求解、最小二乘问题等方面的应用。
总结而言,矩阵的广义逆行列式是一个复杂且非常规的特征,不能通过简单的
行列式计算公式直接求得。
对于矩阵A的广义逆行列式的计算,我们首先需要求
出A的广义逆矩阵A⁺,然后可以通过该矩阵的性质进行进一步的研究和应用。
mp广义逆矩阵的秩

mp广义逆矩阵的秩MP广义逆矩阵是一种特殊的广义逆矩阵,它是由Mazur-Penrose泛函诱导出来的。
这种广义逆矩阵具有一些重要的性质,其中之一就是它可以表示为原矩阵与其转置矩阵的奇异值分解(SVD)的特定组合。
接下来,我们来看一下MP广义逆矩阵的秩的计算方式。
设原矩阵为A,其秩记为r(A)。
根据奇异值分解,我们有:A = UΣV*其中U和V是正交矩阵,Σ是对角矩阵,对角线上的元素即为奇异值。
对于MP广义逆矩阵,我们可以将其表示为:A+ = VΣ+U*其中Σ+是Σ的Moore-Penrose逆,即Σ+ΣΣ+=ΣΣ+Σ+=I,同时Σ+Σ=ΣΣ+Σ+=A。
由于Σ是对角矩阵,所以其Moore-Penrose逆也是对角矩阵,且对角线上的元素为奇异值的倒数。
因此,我们可以得到MP广义逆矩阵的秩的计算公式:r(A+) = rank(Σ+) = sum(1/σ)其中σ表示奇异值。
由于奇异值的倒数就是MP广义逆矩阵的对角线上的元素,所以我们可以得到结论:MP广义逆矩阵的秩等于原矩阵奇异值的倒数之和。
最后,我们来看一下MP广义逆矩阵的秩的性质。
由于MP广义逆矩阵是原矩阵与其转置矩阵的奇异值分解的特定组合,所以它具有与原矩阵相似的性质。
具体来说,如果原矩阵是满秩的,则其MP广义逆矩阵也是满秩的;如果原矩阵是行满秩或列满秩的,则其MP广义逆矩阵也是行满秩或列满秩的。
此外,MP广义逆矩阵还可以保持原矩阵的正定性、奇异性等性质。
总之,MP广义逆矩阵的秩是一个重要的概念,它与原矩阵的秩有一定的关系。
同时,MP广义逆矩阵还具有一些其他的重要性质,这些性质可以应用于不同的数学领域和实际应用中。
线性代数中的广义逆与伪逆

线性代数中的广义逆与伪逆线性代数是数学的一个分支,研究向量空间及其上的线性变换。
在线性代数中,广义逆矩阵和伪逆矩阵是非常重要的概念。
本文将介绍广义逆和伪逆的定义、性质和应用。
1. 广义逆广义逆是矩阵理论中非常重要的概念。
设A为复数域上的m×n矩阵,如果存在一个n×m矩阵B,满足下面四个条件:1) AB = I_m,其中I_m为m阶单位矩阵;2) BA = I_n,其中I_n为n阶单位矩阵;3) ABBA = AB;4) BAAB = BA。
则称B为A的广义逆,记作A^#。
广义逆具有一些重要的性质:1) 若A的广义逆存在,则广义逆唯一;2) 若A的广义逆存在,则A的秩等于其行数;3) 若A的广义逆存在,则A^#的广义逆是A本身。
广义逆的应用非常广泛,例如在最小二乘问题的求解中,可以使用广义逆矩阵来确定最佳拟合曲线或平面等。
2. 伪逆伪逆是广义逆在实数域上的推广。
设A为实数域上的m×n矩阵,如果存在一个n×m矩阵B,满足下面三个条件:1) AB是一个对称矩阵;2) BA是一个对称矩阵;3) BAB = A。
则称B为A的伪逆,记作A^+。
伪逆和广义逆具有一些相似的性质,例如:1) 若A的伪逆存在,则伪逆是唯一的;2) 若A的伪逆存在,则A的秩等于其行数;3) 若A的伪逆存在,则A^+的伪逆是A本身。
伪逆在数据处理、图像处理和信号处理等领域有着广泛的应用。
例如,在正则化方法中,可以使用伪逆矩阵求解最优逼近问题。
3. 广义逆与伪逆之间的关系广义逆和伪逆之间存在着紧密的联系。
对于实数域上的矩阵A,如果A的广义逆存在,则该广义逆也是A的伪逆。
特别地,当A为满秩矩阵时,广义逆就是伪逆。
另外,广义逆和伪逆还满足一些性质:1) 若A、B都有伪逆,则AB的伪逆存在,并且为B的伪逆乘以A的伪逆;2) 若A、B都有广义逆,则AB的广义逆存在,并且为B的广义逆乘以A的广义逆;3) 若A的伪逆存在,则(A^+)^+ = A。
线性代数中的广义逆

线性代数中的广义逆线性代数中的广义逆是一种特殊的矩阵运算,它在解决线性方程组、最小二乘问题以及矩阵逆的计算中具有重要作用。
本文将详细介绍广义逆的定义、性质和应用,以加深对该概念的理解。
一、广义逆的定义与性质广义逆是针对非方阵而言的。
对于一个m×n的矩阵A,在矩阵A的扩展实数域中,若存在一个n×m的矩阵B,使得AB和BA均为投影矩阵,则称B为A的广义逆,记作A^+。
广义逆具有以下性质:1. 幂等性:(A^+)^+ = A^+2. 逆性:(AB)^+ = B^+A^+3. 秩性:(A^+)A和A(A^+)的秩相等4. 唯一性:若A^+和B^+都是A的广义逆,则A^+ = B^+二、广义逆的应用广义逆在线性方程组的求解中扮演着重要角色。
对于一个m×n的线性方程组Ax=b,其中A为系数矩阵,x为未知数向量,b为已知向量。
若A的行秩等于列秩,则该方程组有唯一解。
然而,在实际问题中,方程组常常出现行秩小于列秩的情况,此时无法直接求解。
利用广义逆的概念,我们可以构造最小二乘解。
最小二乘解是指使得||Ax-b||^2(欧氏范数下的二范数)最小的解。
通过广义逆的求解方法,可以找到最接近方程组Ax=b的解x*,即使得||Ax*-b||^2取得最小值。
特别地,当A的列秩等于n(A是满秩列)时,最小二乘解与精确解重合。
广义逆还在矩阵逆的计算中起到重要作用。
当方阵A不可逆时,可以使用广义逆来近似计算逆矩阵。
通过广义逆的逆性质,我们可以得到A的近似逆矩阵A^+的逼近解析表达式。
三、广义逆的计算方法1. 伪逆法:通过奇异值分解(SVD)求解广义逆,即A^+=VΣ^+U^T,其中U、Σ、V分别是A的左奇异向量矩阵、对角奇异值矩阵和右奇异向量矩阵。
2. 矩阵分块法:将矩阵A分块,利用分块矩阵性质求解广义逆。
3. Moore-Penrose逆矩阵:Moore-Penrose逆矩阵是一种特殊的广义逆矩阵,是广义逆的一种常用表示形式。
求矩阵的广义逆例题简单

求矩阵的广义逆例题简单
假设我们有一个2x2的矩阵A:
\[
A = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\]
我们可以计算出这个矩阵的行列式:
\[
\det(A) = |A| = 1(1) - 1(1) = 0
\]
因为行列式为0,所以矩阵A不可逆。
我们称这样的矩阵为奇异矩阵。
那么,矩阵A的广义逆是什么呢?广义逆是一个与方阵的逆相对应的概念,可以应用于任何一个矩阵。
在这个例子中,矩阵A的广义逆可以通过计算伪逆来获得:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A)
\]
其中,\(\text{adj}(A)\)表示矩阵A的伴随矩阵。
对于我们的例子,\(\text{adj}(A)\)可以计算如下:
\[
\text{adj}(A) = \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix}
\]
然后,我们可以计算广义逆:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A) = \frac{1}{0} \cdot \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix} = \text{undefined}
\]
由于行列式为0,我们的广义逆的计算结果是未定义的。
这也是为什么奇异矩阵没有逆矩阵或者广义逆的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义逆矩阵
广义逆矩阵,又称广义反矩阵,是一种在线性代数理论中研究基于多维向量空间的矩阵反置、求解方法。
它也可以把多维空间中多个向量组成的矩阵反置成一个单独的向量,并对多维空间中的变量进行分析及处理。
本文将介绍广义逆矩阵的定义、原理、应用以及实际计算方法。
首先,什么是广义逆矩阵?一般情况下,矩阵反置是指给定一个n×n矩阵A,求出另一个n×n矩阵B,使得 AB=I,其中I是单位矩阵,称矩阵B为矩阵A的逆矩阵。
而广义逆矩阵则是把上面的定义进行拓展,把n×n矩阵A拓展为m×n矩阵C,其中m>n,求出另一个n×m矩阵D,使得CD=I,而矩阵D则就是广义逆矩阵。
其次,广义逆矩阵的原理是什么?首先要知道,无论是矩阵反置还是广义逆矩阵,它们都需要满足输入与输出之间的一致性。
这也是矩阵反置和广义逆矩阵最主要的原理,即:根据输入的信息,找到一组输出的信息,使得它们组合在一起,能够恢复到原来的输入信息。
第三,广义逆矩阵的应用。
广义逆矩阵在多项式模型参数估计、统计模型中均有应用。
在多项式模型参数估计中,首先要得到输入数据的特征矩阵,然后用广义逆矩阵求取未知参数的传播矩阵。
在统计模型中,广义逆矩阵通常用于拟合样本点,解决参数估计问题。
另外,广义逆矩阵还能够用于求解线性方程组,尤其是非方阵的情况;可以用于分析多维数据,以及解决信息处理中的大型线性系统等问题。
第四,实际计算方法。
在实际中计算广义逆矩阵主要有两种方法,
一种是线性规划方法,另一种是最小二乘法。
线性规划方法是通过线性规划模型,把问题转化为线性规划问题进行求解;使用最小二乘法则是通过求解几何分布最小二乘法,可以用广义逆矩阵求解出最优解。
总之,广义逆矩阵的定义、原理、应用及实际计算方法有着十分重要的作用。
它不仅能够用于多项式模型参数估计及统计模型,而且可以用于求解线性方程组,以及分析多维数据及信息处理中的大型线性系统等问题。
本文介绍了广义逆矩阵的概念、原理及其应用,以期帮助读者了解广义逆矩阵在线性代数理论中在矩阵反置中所起的作用,以及实际计算方法。