高中数学人教B版选修2-2第二章 2.1.2《演绎推理》

合集下载

_高中数学第二章推理与证明2

_高中数学第二章推理与证明2

跟踪练习
(2014~2015·合肥一六八中高二期中)观察下题的解答过
程:
已知正实数 a、b 满足 a+b=1,求 2a+1+ 2b+1的最
大值.
解:∵
2a+1· 2≤
2a+12+ 2
22=a+32,
2b+1· 2

2b+12+ 2
22=b+32,
相 加 得 2a+1 · 2 + 2b+1 · 2 = 2 ( 2a+1 + 2b+1)≤a+b+3=4.
综合法: ∵a、b、c∈R+,∴(a-b)2+(b-c)2+(c-a)2≥0, ∴2(a2+b2+c2)≥(ab+bc+ac), ∴3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac, ∴3(a2+b2+c2)≥(a+b+c)2, ∴ a2+b32+c2≥a+3b+c.
人教版 选修2-2
第二章 推理与证明
2.2 直接证明与间接证明
2.2.1 综合法和分析法
目标导航
• 了解综合法与分析法的特点,熟练应用分析法与综合法证明 命题.
重点难点
• 重点:综合法和分析法的概念及思考过程、特点. • 难点:综合法和分析法的应用.
新知导学
1.综合法证明不等式
• 1.定义 • 利用___已__知__条__件___和某些数学__定__义____、__定__理____、
、已知的重要不等式和逻辑推理的基本理论;
• (2)适用范围:对于一些条件复杂,结构简单的不等式的证明 ,经常用综合法.而对于一些条件简单、结论复杂的不等式 的证明,常用分析法;
• (3)思路方法:分析法证明不等式的思路是从要证的不等式出 发,逐步寻求使它成立的充分条件,最后得到的充分条件是 已知(或已证)的不等式;

高二数学选修2-2(B版)_总结归纳:推理与证明

高二数学选修2-2(B版)_总结归纳:推理与证明

推理与证明对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力形式.通过本章的复习,要有着扎实的推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一.推理部分1.知识结构:2.和情推理:归纳推理与类比推理统称为和情推理.①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或有个别事实概括出一般结论的推理,称为归纳推理.②类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.③定义特点;归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.例如:已知2()53f n n n =-+-,可以(1)10f =>,(2)30,f =>(3)30,(4)10f f =>=>,于是推出:对入任何n N *∈,都有()0f n >;而这个结论是错误的,显然有当5n =时,(5)30f =-<.因此,归纳法得到的结论有待证明.例如:“在平面内与同一条直线垂直的两条直线平行”;类比线与线得到:“在空间与同一条直线垂直的两条直线平行“;显然此结论是错误的”.类比线与面得到:在空间与同一个平面垂直的两个平面平行;显然此结论是错误的.④推理过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 猜想.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(逻辑推理).①定义特点:演绎推理是由一般到特殊的推理;②数学应用:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:已知的一般原理(M 是P );ⅱ小前提:所研究的特殊情况(S 是M );ⅲ结论:由一般原理对特殊情况作出判断(S 是P );集合简述:ⅰ大前提:x ∈M 且x 具有性质P ;ⅱ小前提:y ∈S 且S ⊆M ;ⅲ结论: y 也具有性质P ;例题1.若定义在区间D 上的函数()f x 对于D 上的n 个值12,,n x x x ,总满足[]12121()()()()n n x x x f x f x f x f n n ++++++≤,称函数()f x 为D 上的凸函数;现已知()sin f x x =在(0,)π上是凸函数,则ABC ∆中,sin sin sin A B C ++的最大值是 .解答:由[]12121()()()()n n x x x f x f x f x f n n ++++++≤(大前提)因为()sin f x x =在(0,)π上是凸函数 (小前提)得()()()3()3A B C f A f B f C f ++++≤ (结论)即sin sin sin 3sin 3A B C π++≤=因此,sin sin sin A B C ++的最大值是2 注:此题是一典型的演绎推理“三段论”题型4.和情推理与演绎推理的关系:①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;例2.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >且1a ≠) (1)5=2+3请你推测(5)g 能否用(2),(3),(2),(3)f f g g 来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解答:(1)由(3)(2)(3)(2)f g g f +=332a a -+222a a --+332a a --222a a -+ =552a a -- 又(5)g =552a a -- 因此,(5)g =(3)(2)(3)(2)f g g f +(2)由(5)g =(3)(2)(3)(2)f g g f +即(23)g +=(3)(2)(3)(2)f g g f +于是推测()g x y +=()()()()f x g y g x f y + 证明:因为:()2x x a a f x -+=,()2x xa a g x --=(大前提) 所以()g x y +=2x y x ya a ++-, ()g y =2y y a a --,()f y =2y ya a -+,(小前提及结论) 所以()()()()f x g y g x f y +=2x x a a -+2y y a a --+2x x a a --2y ya a -+ =2x y x ya a ++-=()g x y + 解题评注:此题是一典型的由特殊到一般的推理,构造(23)g +=(3)(2)(3)(2)f g g f +是此题的一大难点,要经过观察、分析、比较、联想而得到;从而归纳推出一般结论()g x y +=()()()()f x g y g x f y +.二.证明部分1.知识结构2.综合法与分析法①综合法;利用已知条件和某些数学定义、公理、定理等出发,经过一系列推理论证,推导出所要证明的结论成立.②分析法:从要证明的结论出发逐步寻求使它成立的充分条件,直至把要证明的结论归结为判别一个明显成立的条件为止.③综合应用:在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.例3.已知:0a b >>,求证:22()()828a b a b a b ab a b-+-<-< 证明:因为0a b >> 所以22()()828a b a b a b ab a b-+-<< ⇔222()()()44a b a b a b a b--<< ⇔|22a b a b<< ⇔2a b a b a b<< ⇔121b a a b < ⇔1b a a b<又由已知0a b >>1b a a b<<成立. 由于以上分析步步等价,因此步步可逆.故结论成立.解题评注:(1)以上解答采用恒等变形,其实质从上往下属于分析法,反之属于综合法.(2)1b a a b<,(0a b >>)是结论成立的充要条件,当然找到了结论成立的充分条件就可以了.例4.求证抛物线22(0)y px p =>,以过焦点的弦为直径的圆必与2p x =-相切. 证明:(如图)作AA /、BB /垂直准线,取AB 的中点M ,作MM /垂直准线. 要证明以AB 为直径的圆与准线相切只需证|MM /|=12|AB | 由抛物线的定义:|AA /|=|AF |,|BB /|=|BF |所以|AB |=|AA /|+|BB /|因此只需证|MM /|=12(|AA /|+|BB /|) 根据梯形的中位线定理可知上式是成立的. 所以以过焦点的弦为直径的圆必与2p x =-相切. 以上解法同学们不难以综合法作出解答.解题评注:分析法是从结论出发寻找证题思路的一种重要的思维方法,特别是题设和结论相结合,即综合法与分析法相结合,可使很多较为复杂的问题得到解决.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳递推)假设n=k (0(,)k n k n ≥∈*时命题成立,证明当1n k =+ 时命题也成立。

最新人教版高二数学选修2-2(B版)教学课件(所有课时)

最新人教版高二数学选修2-2(B版)教学课件(所有课时)

1.2 导数的运算
1.2.1 常数函数与冥函数的导
1.2.3 导数的四则运算法则
Hale Waihona Puke 1.3.2 利用导数研究函数的极值
1.4.2 微积分基本定理
阅读与欣赏
微积分与极限思想
2.1 合情推理与演绎推理
2.1.1 合情推理
2.2 直接证明与间接证明
2.2.1 综合法与分析
2.3 数学归纳法
2.3.1 数学归纳法
1.1.1 函数
的平均变化率
最新人教版高二数学选修2-2(B版) 教学课件(所有课时)
1.1.2 瞬时速度与导数
最新人教版高二数学选修2-2(B版) 教学课件(所有课时)
最新人教版高二数学选修2-2(B 版)教学课件(所有课时)目录
0002页 0075页 0089页 0118页 0162页 0181页 0228页 0230页 0262页 0323页 0334页 0374页 0438页 0474页 0514页 0550页 0552页
第一章 导数及其应用
1.1.2 瞬时速度与导数
本意小结
第三章 数系的扩充与复数
3.1.2 复数的概念
3.2 复数的运算
3.2.1 复数的加法与减法
3.2.3 复数的除法
阅读与欣赏
复平面与高斯
后记
第一章 导数及其应用
最新人教版高二数学选修2-2(B版) 教学课件(所有课时)
1.1 导数

最新人教版高二数学选修1-2(B版)电子课本课件【全册】

最新人教版高二数学选修1-2(B版)电子课本课件【全册】

2.1.2 演绎推理
2.2.2 反证法
阅读与欣赏
《原本》与公理化思想
第三章 数引入
3.2.2 复数的乘法和除法
阅读与欣赏
复平面与高斯
4.1 流程图
本章小结
附录 部分中英文词汇对照表
第一章 统计案例
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.1 独立性检验
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
阅读与欣赏
“回归”一
词的由来
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
最新人教版高二数学选修1-2(B 版)电子课本课件【全册】目录
0002页 0090页 0178页 0200页 0277页 0329页 0401页 0403页 0454页 0530页 0608页 0610页 0672页 0703页
第一章 统计案例
1.2 回归分析
阅读与欣赏
“回归”一词的由来
第二章 推理与证明
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.2 回归分析
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
本章小结

2014-2015学年高中数学(人教版选修1-2)课时训练第二章 2.1.2 演 绎 推 理

2014-2015学年高中数学(人教版选修1-2)课时训练第二章 2.1.2 演 绎 推 理

栏 目 链 接
点评:这些基本问题有助于准确理解“三段论”的表述形式, 应该重点掌握.

跟 踪 训 练
1.将下列的演绎推理写成“三段论”的形式. (1)三角形内角和为 180° ,所以正三角形的内角 和是 180° (2)0.332是有理数. (3)两直线平行,同旁内角互补.∠A 与∠B 是 两条平行直线的同旁内角,所以∠A+∠B=180° .
第二章
推理与证明
2.1 合情推理与演绎推理 2.1.2 演 绎 推 理
栏 目 链 接

1.结合已学过的数学实例和生活中的实例,体会演绎推理 的重要性,掌握演绎推理的基本模式,并能运用它们进行一些 简单推理. 栏 差异.
目 2.通过具体实例,了解合情推理和演绎推理之间的联系和链 接

基础 自测 3.命题 “ 有些有理数是无限循环小数,整数是有理数, 所以整数是无限循环小数 ” 是假命题,推理错误的原因是 ( ) A.使用了归纳推理 栏 B.使用了类比推理 目 C.使用了“三段式”,但大前提错误 链 接 D.使用了“三段式”,但小前提错误
解析:此推理使用了“三段式”,但小前提错误.故选 D.
栏 目 链 接Fra bibliotek基础 自测
1.推理:“①矩形是平行四边形;②三角形不是平行四边 形;③所以三角形不是矩形.”中的小前提是( ) A.① B.② C.③ D.①②
解析:此推理的小前提是 “三角形不是平行四边形”. 故选 B. 答案:B
栏 目 链 接

基础 自测

栏 目 链 接

基础 梳理
1.演绎推理. 一般性 的原理出发,推出某个特殊情况 从________ ________下的结论,这种推 理称为演绎推理.简言之,演绎推理是由一般到特殊的推理. 2.演绎推理的一般模式——“三段论”,包括: 大前提——已知的一般原理; (1)______ 小前提 ——所研究的特殊情况; (2)______ 结论 ——根据一般原理,对特殊情况作出的判断. (3)______

高中数学人教A版选修2-2课件2-1-2演绎推理2

高中数学人教A版选修2-2课件2-1-2演绎推理2
注意其中有无前提条件; • (3)看小前提是否正确,注意小前提必须在大前提范围之内; • (4)看推理过程是否正确,即看由大前提,小前提得到的结论
是否正确.
• 2.在应用三段论推理中,最常见的错误是偷换概念的错误, 即大前提与小前提中同一名称的概念含义不同;其次是推理 形式错误,大前提“所有M都是P”,则小前应是“S是M”, 而非“S是P”.
跟踪练习
下列推理是否正确,将有错误的指出错误之处. (1)求证:四边形的内角和等于 360°. 证明:设四边形 ABCD 是矩形,则它的四个角都是直角, 有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°.所以,四 边形的内角和等于 360°. (2)已知 2和 3都是无理数,试证: 2+ 3也是无理数. 证明:依题设, 2和 3都是无理数,而无理数与无理数的 和是无理数,所以 2+ 3也必是无理数.
• 3.三段论
• (1)“三段论”是演绎推理的一般模式,包括:
• ①大前提——已知的一_般__原__理___; • ②小前提——所研究的特_殊__情__况___; • ③结论——根据一般原理,对特殊情况做出的判__断______. • 其一般推理形式为
• 大前提:M是P.
• 小前提:S是M.
• 结 论:________. S是P
• [解析] (1)大前提:在一个标准大气压下,水的沸点是100℃, • 小前提:在一个标准大气压下把水加热到100℃, • 结论:水会沸腾. • (2)大前提:一切奇数都不能被2整除, • 小前提:2100+1是奇数, • 结论:2100+1不能被2整除.
• (3)大前提:两条直线平行,同旁内角互补, • 小前提:∠A与∠B是两条平行直线的同旁内角, • 结论:∠A+∠B=180°. • (4)大前提:一次函数都是单调函数; • 小前提:函数y=2x-1是一次函数; • 结论:y=2x-1是单调函数. • (5)大前提:各位数字的和能被3整除的整数,能被3整除; • 小前提:711的各位数字的和能被3整除; • 结论:711能被3整除.

高中数学选修2-2课时作业12:2.1.2 演绎推理

2.1.2 演绎推理一、选择题1.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( )A .类比推理B .归纳推理C .演绎推理D .一次三段论2.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数.以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确3.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A .使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误4.函数y =x cos x -sin x 在下列哪个区间内是增函数( )A .(π2,3π2) B .(π,2π) C .(3π2,5π2) D .(2π,3π)5.定义在R 上的函数f (x )满足f (-x )=-f (x +4),且f (x )在(2,+∞)上为增函数.已知x 1+x 2<4且(x 1-2)·(x 2-2)<0,则f (x 1)+f (x 2)的值( )A .恒小于0B .恒大于0C .可能等于0D .可正也可负6.下面几种推理中是演绎推理的是( )A .因为y =2x 是指数函数,所以函数y =2x 经过定点(0,1)B .猜想数列11×2,12×3,13×4,…的通项公式为a n =1n (n +1)(n ∈N *) C .由圆x 2+y 2=r 2的面积为πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积为πab D .由平面直角坐标系中圆的方程为(x -a )2+(y -b )2=r 2,推测空间直角坐标系中,球的方程为(x -a )2+(y -b )2+(z -c )2=r 27.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <128.设是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有a b ∈A ,则称A 对运算封闭.则下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集 二、填空题9.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是__________________.10.有一段演绎推理:大前提:整数是自然数;小前提:-3是整数;结论:-3是自然数.这个推理显然错误,则错误的原因是________错误.(填“大前提”“小前提”“结论”)11.若不等式ax 2+2ax +2<0的解集为∅,则实数a 的取值范围为__________.12.若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f (2)f (1)+f (4)f (3)+…+f (2 018)f (2 017)=________. 三、解答题13.把下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,(22 015+1)是奇数,所以(22 015+1)不能被2整除;(2)三角函数都是周期函数,y =tan α是三角函数,因此y =tan α是周期函数;(3)因为△ABC 三边的长依次为3,4,5,所以△ABC 是直角三角形.四、探究与拓展14.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n).若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.15.如图,A ,B ,C ,D 为空间四点,在△ABC 中,AB =2,AC =BC = 2.等边三角形ADB 以AB 为轴旋转.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.[答案]精析1.C 2.C 3.C 4.B 5.A 6.A 7.C 8.C9.y =log 2x -2的定义域是[4,+∞)10.大前提 11.[0,2] 12.2 01813.解 (1)一切奇数都不能被2整除,大前提22 015+1是奇数,小前提22 015+1不能被2整除.结论(2)三角函数都是周期函数,大前提y =tan α是三角函数,小前提y =tan α是周期函数.结论(3)一条边的平方等于其他两条边平方和的三角形是直角三角形,大前提 △ABC 三边的长依次为3,4,5,且32+42=52,小前提△ABC 是直角三角形.结论 14.33215.解 (1)取AB 的中点E ,连接CE ,DE . 因为AC =BC =2,AB =2,所以△ABC 为等腰直角三角形,所以CE ⊥AB .因为△ADB 是等边三角形,所以DE ⊥AB .又平面ADB ⊥平面ABC ,且平面ADB ∩平面ABC =AB ,所以DE ⊥平面ABC ,所以DE ⊥CE .由已知得DE =32AB =3,CE =1. 所以在Rt △CDE 中,CD =DE 2+CE 2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD. 证明如下:当D在平面ABC内时,因为BC=AC,AD=BD,所以C,D都在AB的垂直平分线上,所以AB⊥CD.当D不在平面ABC内时,由(1)知AB⊥DE,AB⊥CE,又DE∩CE=E,所以AB⊥平面CDE.又CD⊂平面CDE,所以AB⊥CD.综上所述,当△ADB转动时,总有AB⊥CD.。

第二章 2.1.2 演绎推理(优秀经典公开课比赛教案)


人教A版数学·选修1-2
返回导航 上页 下页
探究一 把演绎推理写成三段论的形式 [例 1] 把下列推断写成三段论的形式: (1)因为△ABC 三条边的长依次为 3,4,5,所以△ABC 是直角三角形; (2)y=sin x(x∈R)是周期函数.
人教A版数学·选修1-2
返回导航 上页 下页
[解析] (1)一条边长的平方等于其他两条边长平方和的三角形是直角三角形,(大前 提) △ABC 三条边的长依次为 3,4,5,且 32+42=52,(小前提) 所以△ABC 是直角三角形.(结论) (2)因为三角函数是周期函数,(大前提) y=sin x(x∈R)是三角函数,(小前提) 所以 y=sin x(x∈R)是周期函数.(结论)
人教A版数学·选修1-2
返回导航 上页 下页
[自我检测]
1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( )
A.一般的原理
B.一般的命题
C.特定的命题
D.定理、公式
解析:演绎推理是根据一般的原理,对特殊情况做出的判断,故其推理的前提是一般
的原理.
答案:A
人教A版数学·选修1-2
人教A版数学·选修1-2
返回导航 上页 下页
提示:喜马拉雅山所在的地方,曾经是一片汪洋推理过程: 大前提:鱼类、贝类、鱼龙,都是海洋生物,它们世世代代生活在海洋里, 小前提:在喜马拉雅山上发现它们的化石, 结论:喜马拉雅山曾经是海洋.
人教A版数学·选修1-2
返回导航 上页 下页
知识梳理 1.演绎推理的概念 从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理.
返回导航 上页 下页
人教A版数学·选修1-2
返回导航 上页 下页

高中数学人教B版教材目录

高中数学人教B版教材目录高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算本章小结阅读与欣赏聪明在于学习,天才由于积累──自学成才的华罗庚第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用(Ⅰ)2.4函数与方程本章小结(1)阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用(Ⅱ)实习作业本章小结阅读与欣赏对数的发明对数的功绩附录1科学计算自由软件──SCILAB简介附录1部分中英文词汇对照表后记高中数学(B版)必修二第一章立体几何初步1.1空间几何体实习作业1.2点、线、面之间的位置关系本章小结第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系本章小结阅读与欣赏附录部分中英文词汇对照表后记高中数学(B版)必修三第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例本章小结附录参考程序第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性实习作业本章小结阅读与欣赏附录随机数表第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用本章小结阅读与欣赏后记高中数学(B版)必修四第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质数学建模活动本章小结阅读与欣赏第二章平面向量2.1向量的线性运算2.2 向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用本章小结阅读与欣赏第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化积本章小结阅读与欣赏附录部分中英文词汇对照表后记高中数学(B版)必修五第一章解直角三角形1.1正弦定理和余弦定理1.2应用举例实习作业本章小结阅读与欣赏第二章数列2.1数列2.2等差数列2.3等比数列本章小结阅读与欣赏第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题本章小结附录部分中英文词汇对照表后记高中课标实验教材B版选修1-1选修1-1扉页本册导引编写人员版权页目录第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线级其标准方程2.3.2 抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用本章小结阅读与欣赏微积分与极限思想附录部分中英文词汇对照表后记高中课标实验教材B版选修1-2封面扉页编写人员版权页本册导引目录第一章统计案例1.1 独立性检验1.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法本章小结阅读与欣赏复平面与高斯第四章框图4.1 流程图4.2 结构图本章小结阅读与欣赏冯·诺伊曼附录部分中英文词汇对照表后记高中课标实验教材B版选修2-1选修2-1扉页本册引导编写人员版权页目录第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)本章小结阅读与欣赏向量的叉积及其性质附录部分中英文词汇对照表后记高中课标实验教材B版选修2-2选修2-2版权页编写内容本册引导目录第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与冥函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法2.3.1 数学归纳法2.3.2 数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章小节阅读与欣赏复平面与高斯附录部分中英文词汇对照表后记高中课标实验教材B版选修2-3选修2-3扉页本册导引版权页目录编写人员第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3 二项式定理1.3.2 杨辉三角本章小结第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1 独立性检验3.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记。

人教a版数学【选修2-2】备选练习:2.1.2演绎推理(含答案)

选修2-2第二章 2.1 2.1.2
1.推理:“①矩形是平行四边形,②三角形不是平行四边形,③所以三角形不是矩形”中的小前提是()
A.①B.②
C.③D.①②
[答案] B
[解析]由①②③的关系知,小前提应为“三角形不是平行四边形”.故应选B.
2.求函数y=log2x-2的定义域时,第一步推理中大前提是a有意义时,a≥0,小前提是log2x-2有意义,结论是________.
[答案]log2x-2≥0
[解析]由三段论方法知应为log2x-2≥0.
3.以下推理过程省略的大前提为:________.
∵a2+b2≥2ab,
∴2(a2+b2)≥a2+b2+2ab.
[答案]若a≥b,则a+c≥b+c
[解析]由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若a≥b,则a+c≥b+c.
4.先解答下题,然后分析说明你的解题过程符合演绎推理规则.设m为实数,求证:方程x2-2mx+m2+1=0没有实数根.
[解析]已知方程x2-2mx+m2+1=0的判别式Δ=(-2m)2-4(m2+1)=-4<0,所以方程x2-2mx+m2+1=0没有实数根.
说明:此推理过程用三段论表述为:
大前提:如果一元二次方程的判别式Δ<0,那么这个方程没有实数根;
小前提:一元二次方程x2-2mx+m2+1=0的判别式Δ<0;
结论:一元二次方程x2-2mx+m2+1=0没有实数根.
解题过程就是验证小前提成立后,得出结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结:在实际使用三段论推理时,为使得语言叙述简洁, 可以省略大前提或小前提,甚至两者都可略去.
概念辨析 思维升华
练习:下列推理是否正确,说明理由?
大前提错误

(1)自然数是整数,
(2)整数是自然数,
3是自然数,
-3是整数,
3是整数. (3)自然数是整数, 小前提错误-3是自然数,
-3是自然数.
(4)自然数是整数, -3是整数,推理形式错误
(d)东南
类比推理
归纳推理
互动交流 研讨新知
从一般性的原理出发,推出某个特殊 情况下的结论,这种推理称为演绎推理.
引例:

所有的平行四边形对角线互相平分,

菱形是平行四边形,
菱形的对角线互相平分.


互动交流 研讨新知
问题:能否举出生活或者各科学习中,演绎推理的例子?
所有的金属都能导电, 因为铜是金属, 所以铜能导电.
演绎推理的特征:当前提为真,推理形式正确时,结论必然为真
延伸课堂 丰富学识
“三段论”是由古希腊的亚里 士多德创立的,亚里士多德在西 方哲学史,逻辑学史上占有很重 要的地位,是古典形式逻辑的创 始人,在西方被称为“逻辑学之父 ”,亚里士多德提出用演绎推理的 方法来建立各门学科的体系。
延伸课堂 丰富学识
演绎推理
情境激趣 温故知新
1.填入空缺数字:5,9,15,(23),33,45 归纳推理
2.鱼饵:鱼竿 (a)笔:书籍 (c)锅铲:炒锅
(b)写诗:笔 (d)电脑:手机
类比推理
3.从(a)(b)(c)(d)中选出一个合适的 图案 ,填在问号处
4.南之于西北,正如西之于( )
(a)西北
(b)东北
(c)西南
古希腊数学家欧几里 得把人们公认的一些几何 知识作为定义和公理(公 设),在此基础上研究图 形的性质,推导出一系列 定理,组成演绎体系,写 出《几何原本》,形成了 欧氏几何,按所讨论的图 形在平面上或在空间,又 分别成为“平面几何”与“ 立体几何”
概念辨析 思维升华
练习:将下列演绎推理写成三段论形式,并指出大,小前提及结论
1. 太阳系的大行星都以椭圆形轨道绕太阳运行,海王星是
太阳大系前中题 的大行星,所以海王星以椭圆形轨道绕太阳运行.
太阳系的大行星都以椭圆形轨道绕太阳运行,
小前题
海王星是太阳系中的大行星, 所以海王星以椭圆形轨道绕太阳运行.
大前题 2.正切函数y=tanx是周期函数
结论
小前题
三角函数是周期函数 正切函数y=tanx是三角函数 正切函数y=tanx是周期函数 结论
1、世界青睐有雄心壮志的人。成功所依靠的惟一条件就是思考。当你的思维以最高速度运转时,乐观欢快的情绪就会充斥全身。没有人能在 消极的思维火光中做好一件事。一个人最完美的作品都是在充满愉快、乐观、深情的状态下完成的。
3 、生活中若没有朋友,就像生活中没有阳光一样。 3 、生活中若没有朋友,就像生活中没有阳光一样。 2、这个世界上任何奇迹的产生都是经过千辛万苦的努力而得的,首先承认自己的平凡,然后用千百倍的努力来弥补平凡。 6 、有朝一日你动了爱情,千万保守秘密,没有弄清楚对方的底细,决不能掏出你的心来。 6 、经营自己的长处,能使你人生增值;经营你的短处,能使你人生贬值。 3、人在身处逆境时,适应环境的能力实在惊人。人可以忍受不幸,也可以战胜不幸,因为人有着惊人的潜力,只要立志发挥它,就一定能渡 过难关。
一切奇数都不能被2整除, 2017是奇数, 所以2017不能被2整除.
互动交流 研讨新知
三段论推理------演绎推理的基本模式
引例:
大前题
所有的平行四边形的对角线互相平分,---已知的一般原理---大前提
菱形是平行四边形,
---所研究的特殊情况------小前提
小前题
菱形的对角线互相平分. ---根据一般原理,对特殊情况做出的判断---结论
课外延伸 布置作业
作业:
1、课本P34: 练习A 练习B 2、探究生活中的演绎推理实例
再见
9 、如果你不能很好地珍惜时间,那么就看看对手那在不停地翻动书页的手吧。 20 、不要总是去评价别人,在你不了解别人的情况下。 10、成长是快乐的,但肯定也伴随着挫折,只要我们想办法,动脑筋,不要轻易言败,定能把他们一个个克服,成功以后将是给我们带来一 段美好的回味。比如说,小学毕业前的那次军训就是一次美好的回忆。
做出什么猜想
?
并证明 .
巩固深化
关系推理,也是演绎推理的一种模式,在不等式的证明中 经常用到。
概念应用 巩固深化
例 3:证明f(函 x)x 数 6x3x2x1的值恒为
完全归纳推理,也是演绎推理的一种常见模式。把某类 事物所包含的每一对象一一列举出来,逐一分析论证, 进而做出关于这一类事物的一般性结论。分类讨论的思想 就是这一推理形式的具体应用。
概念应用 巩固深化
问题:如何应用演绎推理解决数学问题?
例1:已知空间四边形ABCD中,点E、F分别是AB、AD的中点,
试判断EF与面BCD的位置关系,并证明.
A
E
F
B
D
数学问题的求解论证过程中,大量运用到三段论的
C
演绎推理模式,是我们应该熟练掌握的。
概念应用
例 2 : 观察
log 2 3 log 3 2 log 3 4 log 4 3 log 4 5 log 5 4
课堂总结 整体认识
合情推理与演绎推理的区别联系
合情推理 归纳推理
类比推理
演绎推理
推理 由部分到整体,特
由特殊到特殊
形式 殊到一般的推理.
的推理.

别 推理 结论
结论不一定正确,有待进一 步证明.
由一般到特殊的 推理.
在大前提、小前提 和推理形式都正确 的前提下,得到 的结论一定正确.
联系
合情推理的结论需要演绎推理的验证,而演绎 推理的方向和思路一般是通过合情推理获得的.
-3是整数.
-3是自然数.
小结:三段论推理中,(1)大、小前提的判断必须是真实的; (2)推理过程必须符合正确的逻辑形式和规则.
概念辨析 思维升华
演绎推理在生活中的应用 (1)中国的大学分布于中国各地, 北京大学是中国的大学, 所以北京大学分布于中国各地。
(2)有一次,德国著名诗人歌德在公园里散步。 在一条能让一个人通过的小道上,他遇到了一位 自负傲慢的批评家。两人越走越近。“我是从来 不给蠢货让路的!”批评家先开口道。“我却正好相 反!”歌德说完,笑着退到路旁。
结论
概念辨析 思维升华
问题:如何用集合的观点理解三段论推理?
所有的平行四边形(A)对角线互相平分(P),---A是P
菱形(B)是平行四边形(A),
---B是A
所以,菱形(B)对角线互相平分(P).
---B是P
P BA
若集合A的所有元素都具有性质P, B是A的一个子集,那么B中所有 元素也都具有性质P.
相关文档
最新文档