第章算法初步

合集下载

高中数学第一章1.2.3循环语句人教A版必修3

高中数学第一章1.2.3循环语句人教A版必修3
正确的是( ) A.UNTIL 语句可以无限循环 B.WHILE 语句可以无限循环 C.循环语句中必须有判断条件 D.WHILE 语句不能实现 UNTIL 语句的功能 解析:选 C.语句是描述算法的一种方式,因此具有有限性,即 循环语句不能无限循环,因此 A,B 不正确.判断条件是循环 语句不可缺少的部分,因此 C 正确.WHILE 语句与 UNTIL 语句可以相互转化,因此 D 不正确.
循环结构的程序设计
写出计算 12+32+52+…+992 的程序.
【解】
用 WHILE 语句编写程序如下: S=0 i=1 WHILE i< =99 S=S+i∧2 i=i+2 WEND PRINT S END
用 UNTIL 语句编写程序如下: S=0 i=1 DO S=S+i∧2 i=i+2 LOOP UNTIL i>99 PRINT S END
【答案】 8
(1)WHILE 语句的适用类型 当型循环也叫“前测试”循环,也就是我们所讲的“先测试后 执行”“先判断后执行”. (2)使用 WHILE 语句应关注五点 ①当型循环以 WHILE 开头,以 WEND 作为结束标志; ②一般来讲,WHILE 语句与 UNTIL 语句可以相互转化;
③执行 WHILE 语句时,先判断条件,再执行循环体,然后再 判断条件,再执行循环体,反复执行,直至条件不满足; ④WHILE 语句中的条件是指循环体的条件,满足此条件时, 执行循环体,不满足时,则跳出循环,执行循环结构后面的语 句; ⑤WHILE 语句由于先判断条件,再执行循环体,因此,循环 体可能一次也不执行就退出循环结构.
A.3 C.15
下面程序的运行结果是( ) i=1 S=0 WHILE i<=4 S=S*2+1 i=i+1 WEND PRINT S END B.7 D.17

高中数学第一章算法初步12基本算法语句第7课时条件语句课件新人教A版必修3

高中数学第一章算法初步12基本算法语句第7课时条件语句课件新人教A版必修3
y=128,16<x≤32, 848-x,32<x≤48.
程序如下:
谢谢观赏!
Thanks!
结束
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
10.给出一个算法的程序,如果输出的 y 的值是 20,则输入 的 x 的值是 2 或 6 .
解析:当 x≤5 时,10x=20,即 x=2; 当 x>5 时,2.5x+5=20,解出 x=6.
11.如图给出的是用条件语句编写的程序,该程序的功能是求 函数 y=2x2x-,1x,≤x3>,3 的函数值.
解:算法分析: 数学模型实际上为 y 关于 t 的分段函数. 关系式如下:
0.22,0<t≤3, y=0.22+0.1t-3,t>3,t∈Z,
0.22+0.1[t-3]+1,t>3,t∉Z, 算法步骤如下: 第一步,输入通话时间 t. 第二步,如果 t≤3,那么 y=0.22;否则判断 t∈Z 是否成立, 若成立执行 y=0.22+0.1×(t-3);否则执行 y=0.22+0.1×([t-3] +1).
所以 x=0 或 2.
3.当输入 a=3 时,如图的程序输出的结果是( D )
A.9
B.3
C.10
D.6
解析:该程序的作用是求分段函数 y=2aa2
a<10, a≥10
的函数
值,当 a=3 时,y=2×3=6.
4.某程序如下:
当执行此程序时,没有执行语句 y=x+1,则输入的 x 值的范 围为( D )
(2)当输出的 y 值小于23时,求输入的 x 的取值范围.

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.1

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.1
数 学 必 修 ③ · 人 教 B 版
S6 输出运算结果 21.
返回导航
第一章 算法初步
命题方向3 ⇨非数值性问题的算法
有蓝和黑两个墨水瓶,但是错把黑墨水装在了蓝墨水瓶里面,而 蓝墨水装在了黑墨水瓶里面.请你设计一个算法,将其互换. 导学号 95064009
[分析]
数 学 必 修 ③ · 人 教 B 版
数 学 必 修 ③ · 人 教 B 版
S4 整理 S3 得到的方程,得到方程 3x-y+2- 3=0.
返回导航
第一章 算法初步
互动探究学案
数 学 必 修 ③ · 人 教 B 版
返回导航
第一章 算法初步
命题方向1 ⇨算法的概念
我们已学过的算法有一元二次方程的求根公式、加减消元法求二 元一次方程组的解、二分法求函数零点等.对算法的描述有: (1)对一类问题都有效; (2)对个别问题有效;
-b- b2-4ac x2= . 2a
数 学 必 修 ③ · 人 教 B 版
b S5 当 a≠0,b -4ac=0 时,原方程有两个相等实数解 x1=x2=- . 2a
2
S6 当 a≠0,b2-4ac<0 时,原方程没有实数解.
返回导航
第一章 算法初步
1.下面四种叙述中,能称为算法的是 导学号 95064013 ( B ) A.上学须有自行车 B.做米饭需要刷锅、淘米、添水、加热这些步骤 C.网上认识的朋友叫网友
数 学 必 修 ③ · 人 教 B 版
有限步后 能得出结果. 混不清,而且经过__________
返回导航
第一章 算法初步
1.算法的有穷性是指 导学号 95064000 ( C ) A.算法的最后包含输出 B.算法中每个操作步骤都是可执行的 C.算法的步骤必须有限

高中数学人教A版必修三 第一章 算法初步 学业分层测评8 Word版含答案

高中数学人教A版必修三 第一章 算法初步 学业分层测评8 Word版含答案

算法案例一、选择题1.用更相减损术求1 515和600的最大公约数时需要做减法次数是()A.15 B.14C.13 D.12【解析】 1 515-600=915915-600=315600-315=285315-285=30285-30=255255-30=225225-30=195195-30=165165-30=135135-30=105105-30=7575-30=4545-30=1530-15=15∴1 515与600的最大公约数是15则共做14次减法.【答案】 B2.计算机中常用的十六进制是逢16进1的计数制采用数字0~9和字母A~F共16个计数符号这些符号与十进制数的对应关系如下表:十六0123456789 A B C D E F 进制十进0123456789101112131415 制例如用十六进制表示:E+D=1B则A×B等于()A.6E B.72C.5F D.B0【解析】A×B用十进制表示10×11=110而110=6×16+14所以用16进制表示6E【答案】 A3.以下各数有可能是五进制数的是()A.15 B.106C.731 D.21 340【解析】五进制数中各个数字均是小于5的自然数故选D【答案】 D二、填空题6.用更相减损术求36与134的最大公约数第一步应为________.【解析】∵36与134都是偶数∴第一步应为:先除以2得到18与67【答案】先除以2得到18与677.用秦九韶算法求f(x)=2x3+x-3当x=3时的值v2=________.【解析】f(x)=((2x+0)x+1)x-3v0=2;v1=2×3+0=6;v2=6×3+1=19【答案】198.将八进制数127(8)化成二进制数为________.【解析】先将八进制数127(8)化为十进制数:127(8)=1×82+2×81+7×80=64+16+7=87再将十进制数87化成二进制数:∴87=1010111(2)∴127(8)=1010111(2).【答案】1010111(2)三、解答题9.用更相减损术求288与153的最大公约数.【解】288-153=135153-135=18135-18=117117-18=9999-18=8181-18=6363-18=4545-18=2727-18=918-9=9因此288与153的最大公约数为910.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.【解】将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64由内向外依次计算一次多项式当x=2时的值v0=1v1=1×2-12=-10v2=-10×2+60=40v3=40×2-160=-80v4=-80×2+240=80v5=80×2-192=-32v6=-32×2+64=0所以f(2)=0即x=2时原多项式的值为0[能力提升]1.下面一段程序的目的是()A.求mn的最小公倍数B.求mn的最大公约数C.求m被n除的商D.求n除以m的余数【解析】本程序当mn不相等时总是用较大的数减去较小的数直到相等时跳出循环显然是“更相减损术”.故选B【答案】 B2.若k进制数123(k)与十进制数38相等则k=________.【解析】由k进制数123可知k≥4下面可用验证法:若k=4则38(10)=212(4)不合题意;若k =5则38(10)=123(5)成立所以k =5或者123(k )=1×k 2+2×k +3=k 2+2k +3∴k 2+2k +3=38k 2+2k -35=0k =5(k =-7<0舍去).【答案】 53.若二进制数10b 1(2)和三进制数a 02(3)相等求正整数ab【28750022】【解】 ∵10b 1(2)=1×23+b ×2+1=2b +9a 02(3)=a ×32+2=9a +2∴2b +9=9a +2即9a -2b =7∵a ∈{12}b ∈{01}∴当a =1时b =1符合题意;当a =2时b =112不符合题意.∴a =1b =14.用秦九韶算法求多项式f (x )=8x 7+5x 6+3x 4+2x +1当x =2时的值.【解】 根据秦九韶算法把多项式改写成如下形式: f (x )=8x 7+5x 6+0·x 5+3·x 4+0·x 3+0·x 2+2x +1=((((((8x +5)x +0)x +3)x +0)x +0)x +2)x +1而x =2所以有v 0=8v 1=8×2+5=21v 2=21×2+0=42v3=42×2+3=87v4=87×2+0=174v5=174×2+0=348v6=348×2+2=698v7=698×2+1=1 397所以当x=2时多项式的值为1 397。

高中数学必修三课后习题答案

高中数学必修三课后习题答案

高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。

第02课时 流程图—顺序结构

第02课时  流程图—顺序结构

总 课 题 第一章 算法初步 总课时 第 2 课时 分 课 题1.2.1 流程图——顺序结构分课时 第 1 课时教学目标 了解常用流程图符号(输入输出框、处理框、判断框、起止框、流程线)的意义.能用流程图表示顺序结构.能识别简单的流程图所描述的算法.重点难点流程图框的分类和应用;用流程图表示顺序结构的算法.将自然语言表示的算法转化成流程图;各种图框的正确应用.引入新课1.问题:(1)=++++100321 ;(2)=++++n 321 ;(3)求当2004321>++++n 时,满足条件的n 的最小正整数;请设计第(3)个问题的算法:2.流程图:程序框 名称 功能起止框 表示一个算法的起始和结束输 入 输出框 表示一个算法输入和输出的信息处理框赋值、计算判断框 判断某一个条件是否成立,成立的在出口处标明“是”或“Y ”;不成立时标明“否”或“N ”.3.问题:写出作△ABC 的外接圆的算法,并用流程图表示.4.顺序结构的含义及其表示.例题剖析例1 已知两个单元分别存放了变量x 和y 的值,试交换这两个变量值.开始 输入n 计算2)1(+n n 的值>2004 使n 的值增加1N输出n结束Y例2 半径为r 的圆的面积计算公式为2r S =π,当10=r 时,写出计算圆面积的算法,画出流程图.例 3 已知点()00y x P ,和直线0:=++C By Ax l ,写出求点()00y x P ,到直线l 的距离d 的算法,并画出流程图.巩固练习1.画出下列图框:(1)起止框 (2)输入输出框 (3)处理框 (4)判断框 2.依次进行多个处理的结构称为 结构. 3.写出作棱长全为2的正三棱柱的直观图的算法.4.写出解方程组⎪⎩⎪⎨⎧=+=+=+453x z z y y x 的一个算法,并用流程图表示算法过程.课堂小结了解流程图框的分类和应用,能用流程图表示顺序结构的算法.。

人教a版必修3数学教学课件第1章算法初步第3节算法案例

多项式改写,依次计算一次多项式,由于后项计算用到前项的结果,
故应认真、细心,确保中间结果的准确性.若在多项式中有几项不
存在,可将这些项的系数看成0,即把这些项看成0·xn.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
【变式训练3】 用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1
当x=2时的值.
v3=-24×(-2)+2=50.故f(-2)=50.
错因分析:所求f(-2)的值是正确的,但是错解中没有抓住秦九韶算
法原理的关键,正确改写多项式,并使每一次计算只含有x的一次项.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
HONGNANJUJIAO
D典例透析
IANLITOUXI
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做2】 用秦九韶算法求f(x)=2x3+x-3当x=3时的值的过程
中,v2=
.
解析:f(x)=((2x+0)x+1)x-3,
v0=2;
减小数.
解:(1)用辗转相除法求840和1 785的最大公约数.
1 785=840×2+105,
840=105×8.
所以840和1 785的最大公约数是105.

第一章算法初步基础训练

第一章算法初步基础训练一、选择题:1. 流程图中表示判断框的是.A 矩形框 .B 菱形框 .C 圆形框 .D 椭圆形框 2. 算法共有三种逻辑结构,下列说法不正确的是.A 三种结构是顺序结构、条件结构、循环结构 .B 循环结构一定包含条件结构.C 一个算法必须含有所有三种逻辑结构 .D 一个算法一定含有顺序结构3. 已知二进制数 100001 化为十进制数为 34.33.32.31.D C B A4. 秦九韶算法求多项式6)(236+++=x x x x f 当0x x =时的值,共需加法和乘法运算次次次次12.11.10.9.D C B A5. 下左程序运行后输出的结果为.A.B 130.C 280.D 706. 阅读如图所示的程序框图,运行相应的程序,则输出的i 值等于( )第6题 A .2 B .3 C .4 D .57.下面为一个求20个数的平均数的程序,.D题8、阅读右上的程序框图,则其循环体执行的次数是.A 50 .B 49 .C 48 .D 479. 如图所示,是关于判断闰年的流程图,则以下年份是闰年的为.A 1996年 .B 1998年 .C 2010年 .D 2100年10. 阅读下列程序:input x 第 11题 if x <0 then y =32x π+else if x > 0 then y =52x π-+else y = 0end ifend ifprint yend 如果输入 x =-2 ,则输出结果y 为 A. 3+π B. 3-π C. π-5 D. -π-5 11、在如图所示的算法流程图中,输出S 的值为A. 11B. 12C. 13D. 15第9题图二、填空题12. 已知程序: A = 15 ,A = A + 3 PRINT AEND 则A 的输出值是_______.13. 两个数228 和1995 的最大公约数是________. 14. 阅读下列程序:INPUT “=x ”; x IF 2=>x THEN Y =π/x + 3 ELSE Y = x + 1 END IF PRINT Y END若输入x 的初值为π15. 阅读右上流程图:若5log,6.0,56.056.0===c b a ,则输出的数是__________.班别: 姓名: 座号:答题卡12、 13、 14、 15、第一章算法初步基础训练一、选择题:BCCDC CABABB二、填空题:12、18 13、57 14、4 15、6.05。

算法案例-辗转相除法与更相减损术、秦九韶算法-优质获奖精品课件 (100)


第一章 算法初步
题型三 进位制
例3 (本题满分9分)完成下列进位制之 间的转化: (1)将十进制数30转化为二进制数; (2)将二进制数101111011(2)转化为十进制数.
栏目 导引
【解】 (1) 4分
第一章 算法初步
∴30(10)=11110(2). 5分 (2)101111011(2)=1×28+0×27+1×26+ 1×25+1×24+1×23+0×22+1×21+ 1×20=379. 9分
栏目 导引
第一章 算法初步
法二: 由更相减损术, 得 108-45=63, 63-45=18, 45-18=27, 27-18=9, 18-9=9, 故108与45的最大公约数是9.
栏目 导引
第一章 算法初步
题型二 秦九韶算法及其应用
例2 用秦九韶算法求多项式 f(x)=3x5+8x4-3x3+5x2+12x-6 当x=2时的值. 【解】 根据秦九韶算法, 把多项式改写 成如下形式: f(x)=((((3x+8)x-3)x+5)x+12)x-6, 按 照从内到外的顺序,
栏目 导引
第一章 算法初步
依次计算当x=2时一次多项式的值. v0=3, v1=v0×2+8=3×2+8=14, v2=v1×2-3=14×2-3=25, v3=v2×2+5=25×2+5=55, v4=v3×2+12=55×2+12=122, v5=v4×2-6=122×2-6=238. 所以当x=2时, 多项式的值为238.
栏目 导引
第一章 算法初步
(3)不同进位制数之间的转化 ①k进制数转化为十进制数 把k进制数转化为十进制数, 写成不同位上 数字与基数幂的乘积之和即可(简称幂积求 和), 即anan-1…a1a0(k)=an×kn+an-1×kn-1 +…+a1×k+a0.例如, 将二进制数11001(2) 化为十进制数: 11001(2)=1×24+1×23+ 0×22+0×21+1×20=16+8+1=25.

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第章算法初步
部门: xxx
时间: xxx

整理范文,仅供参考,可下载自行编辑
单元质量评估
第一章
<120分钟150分)

一、选择题<本大题共12小题,每小题5分,共60分,在每小题给出的四个
选项中,只有一项是符合题目要求的)b5E2RGbCAP
1.下列关于算法的说法中正确的个数有< )
①求解某一类问题的算法是唯一的
②算法必须在有限步操作之后停止
③算法的每一步操作必须是明确的,不能有歧义或模糊
④算法执行后一定产生确定的结果
2.下列给出的输入语句、输出语句和赋值语句:
<1)输出语句INPUTa,b,c
<2)输入语句INPUTx=3
<3)赋值语句3=A
<4)赋值语句A=B=C
则其中正确的个数是< )
3.条件语句的一般形式如下图所示,其中B表示的是< )
4.<2018·唐山高一检测)将两个数a=2,b=-6交换,使a=-6,b=2,下列语句
正确的是< )p1EanqFDPw

5.当A=1时,下列程序

输出的结果A是< )
6.图中程序运行后输出的结果为< )
7.给出以下一个算法的程序框图<如图所示),该程序框图的功能是< )

8.用秦九韶算法求多项式f中,做的乘法和加法次数分别为< )DXDiTa9E3d
9.下面的程序框图,能判断任意输入的数x的奇偶性,其中判断框内的条件
是< )

10.下面程序运行后的输出结果为< )
11.下面的程序框图输出的数值为< )
12.<易错题)读程序

对甲、乙两程序和输出结果判断正确的是< )
二、填空题<本大题共4小题,每小题5分,共20分,请把正确答案填在题中
的横线上)
13.把十进制数26转换为r进制数为32,则r=________.
14.已知如图程序,若输入8,则程序执行后输出的结果是_______.

15.<2018·鹤壁高一检测)定义某种运算的运算原理如图,则式
子=______.

16.读下面程序,该程序所表示的函数是____________.
三、解答题<本大题共6小题,共70分,解答时应写出必要的文字说明、证明
过程或演算步骤)
17.<10分)<2018·福州高一检测)<1)用辗转相除法求840与1 764的最大
公约数。
<2)用更相减损术求440 与556的最大公约数.
18.<12分)已知二次函数y=ax2+bx+c断二次函数的图象与x轴交点的个数.RTCrpUDGiT
19.<12分)执行图中程序,回答下面问题:
<1)若输入:m=30,n=18,则输出的结果为_________;
<2)画出该程序的程序框图.
20.<12分)设计算法求S=12+22+32+…+992的值.要求画出程序框图,写出用
基本语句编写的程序.5PCzVD7HxA
21.<12分)2000年我国人口约为13亿,如果人口每年的自然增长率为7‰,
那么多少年后我国人口将达到15亿?设计一个算法的程序.jLBHrnAILg
22.<12分)<能力题)已知某算法的程序框图如图所示,若将输出的依次记为

<1)若程序运行中输出的一个数组是<9,t),求t的值;
<2)程序结束时,共输出<3)写出程序框图的程序语句.
答案解读
1.【解读】选C.根据算法的定义和性质可知①不正确,其他均是正确的,故选
C.
2.【解读】选A.<1)是输入语句,<2)应为INPUT x,<3)应为A=3,<4)不
能用连等号.
3.【解读】选C.根据条件语句的形式可知,THEN后是满足条件时执行的内容.
4.【解读】选B.将两个数交换,需要一个中间变量,同时要注意是谁给谁赋
值.
5.【解读】选D.运行A=A*2得A=1×2=2,
A=A*3得A=2×3=6,
运行A=A*4得A=6×4=24,
运行A=A*5得A=24×5=120,
即A=120,
故选D.
6.【解读】选A.∵x=-1,y=20,∴x=y+3=23,
∴x-y=23-20=3,y+x=20+23=43.
故选A.
【变式训练】<2018·江西高考)下图是某算法的程序框图,则程序运行后输
出的结果是_______.

【解读】第一次循环:s=<0+1)×1=1,n=2。第二次循环:s=<1+2)×2=6,
n=3。第三次循环:s=<6+3)×3=27,n=4,符合要求,终止循环,此时输出s的
值为27.LDAYtRyKfE
答案:27
7.【解读】选B.由所给的程序框图来看是输出三个数中的最小值.
8.【解读】选C.多项式变形得:
f所以有5次乘法和5次加法.
9.【解读】选A.一个数被2除得到的余数为0时为偶数.
10.【解读】选C.当i=9时,S=2×9+3=21,循环结束.
11.【解读】选B.根据所给程序框图可知S=21+22+23+24+25+26=126,故选B.
12.【解题指南】利用所给的甲、乙两个程序确定出算法,作出判断.
【解读】选B.两个程序虽然不同,但都是求S=1+2+3+…+1 000的值,故结果
相同.
13.【解读】根据十进制与r进制的转化得26=3×r1+2×r0,解得r=8.
答案:8
14.【解读】此时c=0.2+0.1×<8-3)=0.7.
答案:0.7
15.【解读】由程序框图可知


答案:14
16.【解读】由所给的程序可知该函数为分段函数,即

答案:
17.【解读】<1)1 764=840×2+84,
840=84×10+0,
所以840与1 764的最大公约数是84.
<2)因为556与440是偶数,用2约简得278与220,继续用2约简得139与
110,因为139不是偶数,故把139与110以大数减小数,并辗转相减,
Zzz6ZB2Ltk
139-110=29,
110-29=81,
81-29=52,
52-29=23,
29-23=6,
23-6=17,
17-6=11,
11-6=5,
6-5=1,
5-1=4,
4-1=3,
3-1=2,
2-1=1,
所以440与556的最大公约数为4.
18.【解题指南】判断二次函数y=ax2+bx+c就是判断一元二次方程ax2+bx+c=0有几个实根,即判断Δ=b2-4ac与0的大
小关系,因此这个算法用条件结构.dvzfvkwMI1
【解读】程序框图:
19.【解读】<1)由程序知题目为用辗转相除法求两个正整数的最大公约数,
所以30=1×18+12,
18=1×12+6,
12=2×6+0,
即最大公约数为6.
<2)程序框图:
20.【解题指南】这是一个累加求和问题,共99项相加,可设计一个计数变
量,一个累加变量,用循环结构实现这一算法.rqyn14ZNXI
【解读】程序框图如图所示:

程序如下:
21.【解读】程序如下:

22.【解读】<1)由程序框图知:当x=1时,y=0。当x=3时,y=-2。当x=9
时,y=-4,所以t=-4;EmxvxOtOco
<2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 011时,输出最后一
对,共输出<3)程序框图的程序语句如下:
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

相关文档
最新文档