苏科版苏科版八年级数学上 第三次月考测试题(Word版 含答案)

合集下载

2023年苏科版八上数学第2章轴对称图形测试题

2023年苏科版八上数学第2章轴对称图形测试题

2022-2023学年苏科版八年级数学上册《第2章轴对称图形》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列各图形均是由边长为1的小正方形组成,其中不是轴对称图形的是()A.B.C.D.2.已知一个等腰三角形的两边长分别为3cm、7cm,则该三角形的周长是()A.13cm B.13cm或17cm C.17cm D.16cm3.如图,在△ABC中,∠C=90°,∠A=15°,点D是AC上一点,连接BD,∠DBC=60°,BC=4,则AD长是()A.4B.6C.8D.104.如图,△ABC中,AB的垂直平分线交AC与点M.若AC=9cm,BC=5cm,则△MBC 的周长是()cm.A.23B.19C.14D.125.已知线段AB垂直平分线上有两点C、D,若∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.60°或100°D.40°或90°6.如图①是一个直角三角形纸片,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,如果C′为AB的中点,△BCD的面积为1,则△ABC的面积为()A.2B.3C.4D.57.如图,在△ABC中,点E、D分别在AB、AC的延长线上,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②CP平分∠BCD;③BP垂直平分CE,其中正确的结论有()A.0个B.1个C.2个D.3个8.如图,在△ABC中,BD平分∠ABC,点E在BC的垂直平分线上,若∠A=60°,∠ABD =24°,则∠ACE的度数为()A.48°B.50°C.55°D.60°二.填空题(共8小题,满分40分)9.如果一个等腰三角形的一角为80°,那么它的顶角是.10.如图,已知∠A=13°,AB=BC=CD,那么∠BCD=度.11.如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.若等腰三角形一腰上的中线将它的周长分成了15cm和18cm两部分,则它的腰长为cm.13.如图,在Rt△ABC中,∠C=90°,直线DE是边AB的垂直平分线,连接BE.(1)若∠A=35°,则∠CBE=°;(2)若AE=3,EC=1,则△ABC的面积为.14.如图,已知ABC为等边三角形,若沿图中虚线剪去∠A,则∠1+∠2=.15.如图,线段AC,AB的垂直平分线交于点O,连接OA、OB、OC,已知OC=2cm,则OB等于cm.16.如图,在△ABC中,∠ABC=50°,∠C=23°,∠ABC的角平分线交AC于点D,过点D作DF∥AB交BC于点F,点E是BA延长线上一点,且BE=FC,连接EF交AC 于点O,则∠EOC=.三.解答题(共6小题,满分40分)17.如图,△ABC中,已知AB=AC,BC平分∠ABD.(1)求证:AC∥BD;(2)若∠A=100°,求∠1的度数.18.如图,在△ABC中,AD为∠BAC的角平分线,FE垂直平分AD,垂足为E,EF交BC 的延长线于点F,若∠CAF=50°,求∠B的度数.19.在△ABC中,∠ABC=∠ACB,点D在BC边所在的直线上,点E在射线AC上,且始终保持∠ADE=∠AED.(1)如图1,若∠B=∠C=30°,∠BAD=80°,求∠CDE的度数;(2)如图2,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)如图3,当点D在BC边的延长线上时,猜想∠BAD与∠CDE的数量关系,并说明理由.20.如图,已知△ABC,AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若AB+AC=10,DE=3,求△ABC的面积.21.如图,在单位长度为1的正方形网格中,已知△ABC的三个顶点都在格点上.(1)画出△ABC关于直线DE的轴对称图形△A1B1C1;(2)求△A1B1C1的面积.22.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.请你用三种不同的方法分别在每个网格中再选一个白色小方格涂成黑色,使涂成黑色部分的图形成为轴对称图形.参考答案一.选择题(共8小题,满分40分)1.解:A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.2.解:当3cm是腰时,3+3<7,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17(cm).故它的周长为17cm.故选:C.3.解:∵∠C=90°,∠DBC=60°,∴∠BDC=90°﹣60°=30°,又∵∠A=15°,∴∠ABD=30°﹣15°=15°=∠A,∴AD=BD,在Rt△BDC中,BC=4,∠BDC=30°,∴BD=2BC=8=AD,故选:C.4.解:∵MD是AB的垂直平分线,∴AM=BM,∴△MBC的周长为BM+MC+BC=AM+CM+BC=AC+BC=14(cm).故选:C.5.解:如图,DE垂直平分AB,垂足为E,∴DA=DB,∴∠DAB=∠DBA=(180°﹣∠ADB)=×(180°﹣80°)=50°,当C点在线段DE上,∠CAD=10°时,则∠CAB=50°﹣10°=40°,∵CA=CB,∴∠CAB=∠CBA=40°,∴∠ACB=180°﹣40°﹣40°=100°;当C′点在ED的延长线上,∠C′AD=10°时,则∠C′AB=50°+10°=60°,∵CA=CB,∴∠C′AB=60°,综上所述,∠ACB的度数为60°或100°.故选:C.6.解:∵△ABC为直角三角形,∴∠C=∠BC′D=∠AC′D=90°,由折叠的性质得:△BCD≌△BC′D,∴S△BCD=S△BC′D=1,∵C′为AB的中点,∴AC′=BC′,∵∠BC′D=∠AC′D=90°,DC′=DC′,∴△ADC′≌△BDC′(SAS),∴S△ADC′=S△BCD=S△BC′D=1,∴△ABC的面积=S△ADC′+S△BDC′+S△BCD=3,故选:B.7.解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;②∵∠BAC与∠CBE的平分线相交于点P,∴点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,故②正确;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),故③正确;故选:D.8.解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠CBD=∠ABD=24°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,∵点E在BC的垂直平分线上,∴EB=EC,∴∠ECB=∠CBD=24°,∴∠ACE=∠ACB﹣∠ECB=72°﹣24°=48°,故选:A.二.填空题(共8小题,满分40分)9.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20°.10.解:∵AB=BC,∴∠BCA=∠A=13°,∴∠CBD=∠A+∠BCD=26°,又∵BC=CD,∴∠CBD=∠D=26°,∴∠BCD=180°﹣∠CBD﹣∠D=128°.故答案为:128.11.解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.12.解:根据题意画出图形,如图,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,若AB+AD的长为15,则2x+x=15,解得x=5,则x+y=18,解得y=13,所以2x=10;若AB+AD的长为18,则2x+x=18,解得x=6,则x+y=15,即6+y=15,解得y=9,所以2x=12,10、10、13和12、12、9均能构成三角形,所以等腰三角形的腰长为10或12.故答案为:10或12.13.解:(1)在Rt△ABC中,∠C=90°,∠A=35°,∴∠ABC=90°﹣∠A=90°﹣35°=55°,∵DE是边AB的垂直平分线,∴EA=EB∴∠ABE=∠A=35°,∴∠CBE=55°﹣35°=20°,故答案为:20;(2)∵AE=3,EC=1,∴AC=EC+EA=3+1=4,BE=AE=3,∴BC==2,∴S△ABC=×4×2=4,故答案为:4.14.解:∵△ABC为等边三角形,∴∠A=60°,∵∠1=∠A+∠ADE,∠2=∠A+∠AED,∴∠1+∠2=∠A+∠ADE+∠A+∠AED,∵∠A+∠AED+∠ADE=180°,∴∠1+∠2=60°+180°=240°,故答案为:240°.15.解:∵线段AC,AB的垂直平分线交于点O,∴OA=OC,OA=OB,∴OB=OC,∵OC=2cm,∴OB=2cm,故答案为:2.16.解:∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠FBD=25°,∵AB∥DF,∴∠DFC=∠ABC=50°,∠BDF=∠ABD=25°,∴∠BDF=∠FBD,∴BF=FD,∵BE=FC,∴△BEF≌△FCD(SAS),∴∠E=∠C=23°,∵AB∥DF,∴∠EFD=∠E=23°,∴∠OFC=∠EFD+∠DFC=73°,∴∠EOC=∠OFC+∠C=96°.故答案为:96°.三.解答题(共6小题,满分40分)17.(1)证明:∵AB=AC,∴∠ABC=∠C,∵BC平分∠ABD,∴∠ABC=∠1,∴∠C=∠1,∴AC∥BD;(2)解:∵AC∥BD,∠A=100°,∴∠ABD=180°﹣∠A=80°,∴∠1=40°.18.解:∵EF垂直平分AD,∴AF=DF,∴∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠B=∠CAF=50°,故∠B的度数是50°.19.解:(1)在△ABD中,∠B=∠C=30°,∠BAD=70°,∴∠ADB=180°﹣(∠B+∠BAD)=180°﹣100°=80°,∠BAC=180°﹣(∠B+∠C)=180°﹣60°=120°,∴∠DAE=∠BAC﹣∠BAD=120°﹣70°=50°,∵∠ADE=∠AED,∴∠ADE=×(180°﹣50°)=65°,∴∠EDC=65°﹣30°=35°;(2)∵∠ACB为△DCE的外角,∴∠ACB=∠AED+∠CDE,∵∠ABC=∠ACB=70°,∠CDE=15°,∴∠ADE=∠AED=55°,∴∠ADC=∠ADE﹣∠CDE=40°,∵∠ABC为△ABD的外角,∴∠ABC=∠ADC+∠BAD,∴∠BAD=30°;(3)∠CDE和∠BAD的数量关系是∠BAD=2∠CDE,理由如下:当点D在BC的延长线上时,设∠ABC=∠ACB=x,∠ADE=∠AED=y,∠CDE=α,∠BAD=β,则有∠ADC=x﹣α,根据题意得:,②﹣①得:2α﹣β=0,即2α=β,故∠BAD=2∠CDE.20.(1)证明:∵DE⊥AB,DF⊥AC,∴∠DEA=∠DF A=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠F AD,在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD是∠BAC的角平分线,∴AG⊥EF,EG=FG,∴AD垂直平分EF;(2)解:∵AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∵DE=3,∴DF=3,∵AB+AC=10,∴△ABC的面积===15.21.解:(1)如图,△A1B1C1即为所求.(2)=3×3﹣﹣﹣=.∴△A1B1C1的面积为.22.解:图形如图所示:。

勤学早2018-2019学年度八年级数学(上)月考(二)(word版含答案)

勤学早2018-2019学年度八年级数学(上)月考(二)(word版含答案)

八年级数学(上)月考(二)(测试范围:第11章三角形~第12章全等三角形 参考时间:120分钟,满分:120分)一.选择题(每小题3分,共30分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是( ) A .8 B .8 C .2 D .1 2.一个多边形的内角和是540°,这个多边形的边数是( ) A .3 B .4 C .5 D .63.如图,△ABC 平移得到△DEF ,若∠DEF =35°,∠ACB =50°,则∠A 的度数是( ) A .65° B .75° C .95° D .105°第3题图F第4题图第5题图4.如图,△ABE ≌△ACF ,若AB =6,AE =2,则EC 的长度是( )A .2B .5C .4D .35.如图,CD 平分含30°三角板的∠ACB (其中∠A =30°,∠ACB =90°),则∠1等于( ) A .90° B .100° C .105° D .110° 6.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( )A .AB =AC B .∠B =∠C C .BD =CD D .∠BDA =∠CDA第6题图B第8题图D7.如图,已知∠A =80°,∠1=20°,∠2=40°,则∠BOC 等于( )A .95°B .120°C .135°D .140°8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示图形,其中∠C =90°,∠B =45°,∠E =30°,则∠BFD 的度数是( )A .10°B .15°C .25°D .30°9.△ABC 是格点三角形(顶点在网格线的交点),则在图中能够作出与△ABC 全等且有一条公共边的格点三角形(不含△ABC )的个数有( )A .4个B .3个C .2个D .1个第9题图B10.如图,点A 的坐标为(4,0),点B 为y 轴的负半轴上的一个动点,分别以OB ,AB 为直角边在第三、第四象限作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交y 轴于P 点,当点B 在y 轴上移动时,PB 的长为( )A .2B .3C .4D .PB 的长度随点B 的运动而变化 二.填空题(每小题3分,共18分) 11.三角形的外角和等于 度.12.如图,△ABC ≌△DEC ,若∠ACB =40°,∠ACE =20°,则∠ACD 的度数是 度.第12题图第13题图第14题图B13.如图,五边形ABCDE 中,AB ∥CD ,∠1,∠2,∠3分别是∠BAE ,∠AED ,∠EDC 的外角,则∠1+∠2+∠3= 度.14.如图,∠AOB =90°,OA =OB ,直线l 经过点O ,分别过A ,B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D .已知AC =7,BD =4,则CD = .15.如图,在平面直角坐标系中,OB =BC ,∠B =90°,B 点的坐标为(2,1),则C 点的坐标为 .16.如图,△ABD 中,AB =AD ,AB ⊥AD ,过顶点B 作直线l ,过A 、D 作l 的垂线,垂足分别为点E 、G ,若BE =5,则AE +DG 的值为 . 三.解答题(共8题,共72分)17.(本题8分)已知等腰三角形的两边长为5cm 和2cm ,求它的周长. 18.(本题8分)如图,E 是BC 上一点,AB =EC ,AB ∥CD ,BC =CD .求证:AC=ED19.(本题8分)如图,五边形ABCDE 中,AE ∥BC ,EF 平分∠AED ,CF 平分∠BCD ,若∠EDC =80°,求∠EFC 的度数.20.(本题8分)如图,已知C 、D 在∠AOB 的平分线上,DM ⊥AC 于点M ,DN ⊥BC 于N ,DM =DN .求证:OA =OB .21.(本题8分)如图,BD 平分∠MBN ,A 、C 分别为BM 、BN 上的点,且BC >B A ,E 为BD 上的一点,AE =CE ,求证:∠BAE +∠BCE =180°.NC22.(本题10分)如图1,在四边形ABCD 中,∠A =∠C =90°. (1)求证:∠B +∠D =180°;(2)如图2,若BM 、DN 分别平分∠ABC 的外角、∠ADC 的外角.求证:BM ∥DN .图1FE23.(本题10分)已知点P 为∠EAF 平分线上一点,PB ⊥AE 于B ,PC ⊥A F 于C ,点M 、N 分别是射线AE 、AF 上的点,且PM =PN .(1)如图1,当点M 在线段AB 上,点N 在线段AC 的延长线上时,求证:BM =CN ; (2)在(1)的条件下,直接写出线段AM 、AN 与AC 之间的数量关系.(3)当点M 在线段AB 的延长线上,点N 在线段AC 上时(如图2),若CA :PC =2:1,PC =4,求四边形ANPM 的面积.图1E 图224.(本题12分)在平面直角坐标系中,点A (0,a ),B (b ,0)分别在y 轴,x 轴正半轴上,a 、b满足2(16)ab -=0.(1)填空:a =_______,b =_______,∠OAB 的度数是_______;(2)如图1,已知C (0,1),在第一象限内存在点D ,CD 交AB 于E ,使AE 为△ACD 的中线,且ACD S ∆=3,求点D 的坐标;(3)如图2,已知P (2,0),连接P A ,在AB 上一点F ,满足∠APB =∠FPO ,连接OF ,求PA PFFO-式子的值.1-5CCCCC 6-10CDBAA 11. 360 12. 60° 13. 180° 14 3 . 15.(1,3) . 16. 5 . 17.解:① 若腰长为5cm ,底边长为2cm ,则周长为12cm .②若腰长为2cm ,底边长为5cm ,∵2+2<5, ∴不合题意, ∴周长为12cm . 18.证明:∵AB ∥CD , ∴∠B =∠DCE .证△ABC ≌△ECD (SAS),AC =ED . 19.解:∵AE ∥BC , ∴∠A +∠B =180°,∵多边形ABCDE 是五边形,∠EDC =80°, ∴∠AED +∠BCD =540°-(∠A +∠B +∠EDC )=540°-(180°+80°)=280°, ∵EF 平分∠AED ,CF 平分∠BCD , ∴∠DEF +∠DCF =12 (∠AED +∠BCD )=12×280°=140°, ∴∠EFC =360°-(∠DEF +∠DCF +∠EDC )=360°-(140°+80°)=140°. 20.证:∵ DM ⊥AC 于点M ,DN ⊥BC 于N ,DM =DN , ∴∠ACD =∠BCD ,180°-∠ACD =180°-∠BCD , 即∠ACO=∠BCO ,∠AOC =∠BOC ,OC =OC , ∴△AOC ≌△BOC ,∴OA =OB . 21.证:过点E 分别作EF ⊥BM 于F ,EG ⊥BC 于G ,证△AEF ≌△CEG ,∠F AE =∠BCE , ∵∠BAE +∠F AE =180°,∴∠BAE +∠BCE =180°. 22.证:(1)∠A =∠C =90°,在四边形ABCD 中,∠B +∠D =360°-∠A -∠C =180°. (2)连接BD ,∵∠ABC +∠ADC =180°,∴∠FDC +∠EBC =180∠,∵ BM 、DN 分别平分∠ABC 的外角、∠ADC 的外角,∴∠NDC +∠CBM =90°, ∴∠NDC +∠CDB +∠BCD +∠MBC=180°,∴BM ∥DN .23.解:(1)证Rt △PBM ≌Rt △PCN (HL), ∴BM =CN ;(2)AM +AN =AM +CN +AC =AM +BM +AC =AB +AC =2AC ; (3)∵AC :PC =2:1,PC =4,∴AC =8, ∴AB =AC =8,PB =PC =4, ∴ANPM S 四边形=2ABP S =32.24.解(1)4,4,45°; (2)过E 作EF ⊥AC 于F , ∵ AE 是△ACD 的中线, ∴ACE S ∆=12ACD S ∆=12×3=32,又12ACE S AC EF ∆=∙, ∴EF =1,在Rt △AEF 中,∠F AE =45° ∴∠AEF =45°,∴AF =FE =1,∴CF =2,方法一:∵C (0,1),E (1,3),将线段CE 平移至线段ED ,得D (2,5), 方法二:过D 作DH ⊥EF 于H ,则Rt △DHE ≌Rt △CFE , ∴DH =CF =2,EH =EF =1,∴FH =2,∴D (2,5). (3)原式=1,证明:延长P F 至E ,使PE =P A ,连接EB , ∵P (2,0),B (4,0),∴PB =PO ,∴∠APB -∠APF =∠FPO -∠APF ,即∠APO =∠EPB , ∴△APO ≌△EPB ,∴EB =AO =BO ,∠EBP =∠AOP =90°,又∠ABO =45°, ∴∠OBF =∠EBF =45°,又BF 公共,∴△OBF ≌△EBF ,∴FO =EF ,即P A =PE =PF +EF =PF +OF , ∴PA PFFO-=1.。

全等三角形的性质(3个考点八大题型)(原卷版)-2024-2025学年八年级数学上册(苏科版)

全等三角形的性质(3个考点八大题型)(原卷版)-2024-2025学年八年级数学上册(苏科版)

全等三角形的性质(3个考点八大题型)【题型01:全等图形的概念】【题型02:全等三角形的对应元素的判断】【题型03:全等三角形的性质-求长度】【题型04:全等三角形的性质-求角度】【题型05:全等三角形的性质-判断结论】【题型06:全等三角形的性质-探究线段和角度之间的关系】【题型07:全等三角形的性质-动点问题】【题型08:全等三角形的性质-证明题】【题型01:全等图形的概念】1.下列各组图形中,是全等图形的是()A.B.C.D.2.下列各组图形中,属于全等图形的是()A.B.C.D.3.下列叙述中错误的是()A.能够完全重合的两个图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.平移、翻折、旋转前后的图形全等4.下列各选项中的两个图形属于全等图形的是()A.B.C.D.【题型02:全等三角形的对应元素的判断】5.(2022秋•荆州月考)如图,四边形ABCD≌四边形A′B′C′D′,若∠B=90°,∠C=60°,∠D′=105°,则∠A′= °.6.(2022春•南阳期末)如图,四边形ABCD≌四边形A'B′C'D',若∠A=110°,∠C=60°,∠D′=105°,则∠B= .7.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′= ,∠A= ,B′C′= ,AD= .8.如图,△ABC 中,点A(0,1),点C(4,3),如果要使△ABD 与△ABC 全等,那么符合条件的点 D 的坐标为 .【题型03:全等三角形的性质-求长度】9.如图,A,B,C三点共线,D,E,B三点共线,且△ABD≌△EBC,AB=5,BC=12,则DE长为()A.5B.6C.7D.810.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,若测得∠A=∠D=90°,AB=3,DG=1,AG=2,则梯形CFDG的面积是( )A.5B.6C.7D.811.如图,点B、C、D在同一直线上,若△ABC≌△CDE,DE=3,BD=10,则AB等于()A.5B.6C.7D.812.如图,△ABC≌△DEC,B、C、D在同一直线上,且CE=6,AC=8,则BD长()A.12B.14C.16D.1813.如图,△ABC≌△DEF,BC=7,则EF的长为()A.7B.5C.3D.214.如图,△ABC≌△DEC,点E在AB上,AC与DE相交于点F,BC=6,BE=3.则△EBC的周长为()A.15B.16C.17D.1215.如图所示,△ABC≌△DEF,AD=8,AE=2,则AB的长是()A.10B.8C.6D.416.如图,已知△AEC≌△ADB,若AB=5,AD=3,则BE的长为()A.5B.4C.3D.2【题型04:全等三角形的性质-求角度】17.已知下图中的两个三角形全等,则∠α等于()A.72°B.58°C.60°D.50°18.如图,△ABC≌△ADE,∠B=30°,∠E=115°,则∠BAC的度数是()A.35°B.30°C.45°D.25°19.如图,点D,E分别在线段AB,AC上,BE与CD相交于点N.若△ABE≌△ACD,且∠A=65°,∠C=25°,则∠AEB的度数为( )A.80°B.90°C.100°D.105°20.如图,△ABC≌△A′B′C,若∠B=25°,∠A=70°,∠A′CB=45°,则∠B′CB的度数为()A.25°B.30°C.35°D.40°21.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,若∠D=79°,∠CAB=41°,则∠DBC的度数为()A.19°B.20°C.41°D.60°22.如图,AB⊥CD,△ABC≌△ADE,∠C=53°,则∠D=()A.47°B.35°C.37°D.53°23.如下图,已知△ABC≌△DBE,点D恰好在AC的延长线上,∠DBE=20°,∠BDE=41°.则∠BCD的度数是()A.60°B.62°C.61°D.63°24.如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠BAE的度数为()A.34°B.56°C.62°D.68°25.如图,△ABC≌△DBE,∠ABC=80∘,∠E=35∘,则∠D的度数为()A.80∘B.35∘C.65∘D.115∘【题型05:全等三角形的性质-判断结论】26.如图,△ABD≌△EBC,AB=12,BC=5,A、B、C三点共线,则下列结论中:①CD⊥AE;②AD⊥CE;③ED=8;④∠EAD=∠ECD;正确的有( )A.1个B.2个C.3个D.4个27.如图,△ABC≌△CDA,AB与CD,BC与DA是对应边,则下列结论错误的是()A.∠BAC=∠DCA B.AB∥DCC.∠BCA=∠DCA D.BC∥DA28.如图,已知△ABC≌△AED,则下列边或角的关系正确的是()A.∠C=∠D B.∠CAB=∠AED C.AC=ED D.BC=AE29.如图,已知△OAB≌△OA1B1,AB与A1O交于点C,AB与A1B1交于点D,则下列说法错误的是( )A.∠A=∠A1B.AO=COC.OB=OB1D.∠AOC=∠A1DC30.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是().A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠ABD=∠CBD D.AD∥BC,且AD=CB31.如图,若△ABC≌△DCB,则下列结论错误的是()A.∠A=∠D=90°B.S△ABC=S△DCBC.CD∥AB D.AC=DB【题型06:全等三角形的性质-探究线段和角度之间的关系】32.如图所示,已知AD⊥BC于点D,△ABD≌△CFD.(1)若BC=10,AD=7,求BD的长.(2)试判断AB和CF的关系,并说明理由33.已知:如图所示,AC平分∠BAD,CE⊥AB于点E,CF⊥AD交AD的延长线于点F,在AB 上有一点M,且CM=CD.(1)若AF=12,DF=4,求AM的长.(2)试说明∠CDA与∠CMA的关系.34.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB,AC,AE之间的等量关系.35.△ABC在中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN 于点E.(1)当直线MN绕点C旋转到图1的位置时,猜想线段DE、AD与BE有怎样的数量关系?请写出这个关系,并加以证明;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD―BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系不必证明.36.阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=7,AC=3,求BC边上的中线AD的取值范围.(1)小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD到Q使得DQ=AD;②再连接BQ,把AB、AC、2AD集中在△ABQ中;③利用三角形的三边关系可得4<AQ<10,则AD的取值范围是___________.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)请写出图1中AC与BQ的位置关系并证明;(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°,试探究线段AD与EF的数量和位置关系,并加以证明.37.(1)如图1,△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2=__________;(2)如图2,在△ABC中,∠A=40°,剪去∠A后成为四边形,则∠1+∠2=__________;(3)如图2,根据(1)和(2)的求解过程,请归纳∠1+∠2与∠A的关系是______________;(4)若没有剪去∠A,而是将∠A折成如图3的形状,试探究∠1+∠2与∠A的关系,并说明理由.【题型07:全等三角形的性质-动点问题】38.如图,在△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上以a厘米/秒的速度由C点向A点运动.当△BPD与△CQP全等时,a的值为()A.3B.4C.4或6D.2或339.如图,∠A=∠B=90°,AB=60,E、F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为()A.18B.70C.88或62D.18或7040.如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.641.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,当P、Q两点同时出发t分钟后△CAP全等于△PBQ,则此时t的值是()A.4B.6C.8D.1042.《姑苏繁华图》是清代苏州籍宫廷画家徐扬的作品,全长1241cm,如图,AB=12cm,∠A=∠B=60°,AC=BD=9cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上以x(cm/s)的速度由点B向点D运动,它们运动的时间为t(s),当△ACP 与△BPQ全等时,x的值是()A.2B.1或1.5C.2或1.5D.2或343.如图,在Rt△ABC中,∠C=90°,点M,N分别在AC的垂线AX与线段AC上移动,MN=AB,AC=12cm,BC=6cm,若△ABC和以点M、N、A为顶点的三角形全等,则AN 的值为()A.12cm B.12cm或6cm C.11cm或7cm D.6cm【题型08:全等三角形的性质-证明题】44.如图,△ABD≌△CFD,且点B,D,C在一条直线上,点F在AD上,延长CF交AB于点E.(1)试说明:CE⊥AB.(2)若BD=3,AF=1,求BC的长.45.如图所示,△ABC≌△ADE,若∠BAD=100°,∠CAE=40°,求∠BAC的度数.46.如图,点D,A,E在同一条直线上,BD⊥DE于点D,CE⊥DE于点E,且△ABD≌△CAE,AD=2cm,BD=4cm.求:(1)DE的长;(2)∠BAC的度数.47.如图,A,E,C三点在同一直线上,且△ABC≌△DAE.(1)求证:DE=CE+BC;(2)猜想:当△ADE满足什么条件时DE∥BC?并证明你的猜想.48.如图所示,已知AD⊥BC于点D,△ABD≌△CFD.(1)若BC=10,AD=7,求BD的长;(2)求证:CE⊥AB.49.如图,已知△ABF≌△CDE.(1)若∠B=45°,∠DCF=25°,求∠EFC的度数;(2)若BD=10,EF=5,求BF的长.。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、a、b、c是△ABC的三边长,且关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.等腰直角三角形2、满足下列条件的△ABC,不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=12:13:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:53、如图,长方形 OABC 放在数轴上,OA=2,OC=1,以 A 为圆心,AC 长为半径画弧交数轴于 P 点,则 P 点表示的数为()A.2﹣B.﹣C.D.4、如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块,按图中的方式组成图案,则选取的三块纸片的不可能的是()A.1,2,3B.1,3,4C.2,3,5D.3,4,55、已知一个直角三角形的两边长分别3和4,则第三边长是( )A.5B.C.25D.5或6、△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的有()个①∠A:∠B:∠C=l:2:3;②三边长为a,b,c的值为1,2,;③三边长为a,b,c的值为,2,4;④.a2=(c+b)(c﹣b),A.0个B.1个C.2个D.3个7、如图,点E在正方形ABCD的边AD上(包括点A和点D)的一个动点,连结BE和CE设y=tan∠BEC,则()A.y=1B.y≥1C.1≤y≤D.1≤y≤8、若菱形的两条对角线长分别是6和8,则它的周长为()A.20B.24C.40D.489、如图,矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BD交AD于点E,已知AB=2,,则AE的长为()A.1.5B.2C.2.5D.10、已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=().A.30°B.45°C.60°D.90°11、⊙O 的直径 AB 长为 10,弦 MN⊥AB,将⊙O 沿 MN 翻折,翻折后点 B 的对应点为点 B′,若 AB′=2,MB′的长为()A.2B.2 或 2C.2D.2 或 212、矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6B.C.2(1+ )D.1+13、如图,正方形的边长为,,,连接,则线段的长为()A. B. C. D.14、△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13.其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个15、如上图,透明的圆柱形容器(容器厚度忽略不计)的高为12 ,底面周长为10 ,在容器内壁离容器底部3 的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13B.12C.15D.16二、填空题(共10题,共计30分)16、如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为________.17、在Rt△ABC中,∠C=90°,AB=17,BC=8,则sin B=________.18、如图,Rt△ABC中,∠C=90°,AB=5,AC=3,D是AB的中点,E是直线BC上一点,把△BDE沿直线ED翻折后,点B落在点F处,当FD⊥BC时,线段BE的长为________.19、如图,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.过点A 作直线AB的垂线交BD的延长线于点E,且AB= ,BD=2,则线段AE的长为________.20、如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=________21、在平面直角坐标系 xOy 中,点O 是坐标原点,点 B 的坐标是(3m, 4m- 4),则OB 的最小值是________.22、如图,矩形纸片ABCD,,,点P在BC边上,将沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且,则AF的值为________.23、已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为________ cm.24、如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:________三角形.25、如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。

(典型题)苏科版八年级上册数学第三章 勾股定理含答案

(典型题)苏科版八年级上册数学第三章 勾股定理含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光( )A.3mB.4mC.5mD.7m2、三角形一边长为,另两边长是方程的两实根,则这是一个().A.直角三角形B.锐角三角形C.钝角三角形D.任意三角形3、如图①, 已知正方体的棱长为4, E, F, G分别是AB, AA, AD的中点,1截面EFG将这个正方体切去一个角后得到一个新的几何体, 如图②, 则图②中阴影部分(截面)的面积为()A. B. C.2 D.34、如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为().A. B. C. D.5、如图是由5个大小相等的正方形组成的图形,则tan∠BAC的值为()A.1B.C.D.6、如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C 的半径为()A.2.3B.2.4C.2.5D.2.67、如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为,在容器内壁离容器底部的点处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿的点处,若蚂蚁吃到蜂蜜需爬行的最短路径为,则该圆柱底面周长为()A. B. C. D.8、如图,分别以数轴的单位长度1和2为直角边长作Rt△OBC,然后以点B为圆心,线段BC的长为半径画弧,交数轴于点A,那么点A所表示的数为A. B.1+ C. +2 D.3.29、如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D旋转,分别交AC于点E,交BC于点F,则下列说法正确的有()①AE=CF;②EC+CF=4 ;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值.A.①②B.①③C.①②③D.①②③④10、如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A. B. C. D.11、以a、b、c为边,不能组成直角三角形的是()A.a=6,b=8,c=10B.a=1,b=,c=2C.a=24,b=7,c =25D.a=,b=,c=12、如图所示:数轴上点A所表示的数为a,则a的值是()A. +1B. ﹣1C.﹣+1D.﹣﹣113、如图,在中,AB=AC=8,∠BAC=60°,E是高AD上的一个动点,F是边AB的中点,则的最小值是()A.4B.4C.8D.814、如图所示,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上任意一点,则PK+QK的最小值为( )A.1B.C.2D. +115、如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系内,以点为圆心,5为半径作圆,则该圆与轴分别交于点,则三角形的面积为________.17、如图把一张3×4的方格纸放在平面直角坐标系内,每个方格的边长为1个单位,△ABC的顶点都在方格的格点位置,即点A的坐标是(1,0).若点D 也在格点位置(与点A不重合),且使△DBC与△ABC相似,则符合条件的点D 的坐标是________.18、如图,为的边上的中线,沿将折叠,点的对应点为,已知,则点与点之间的距离是________19、△ABC中,AC=15,AB=13,BC=14,则BC边上的高AD=________.20、如图,中,,将折叠,使点与的中点重合,折痕为则线段的长为________.21、如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是________.22、如图,为坐标原点,是等腰直角三角形,,点的坐标是,将该三角形沿轴向右平移得,此时,点的坐标为,则线段在平移过程中扫过部分的图形面积为________.23、若直角三角形两条直角边的边长分别为15cm和12cm,那么此直角三角形斜边上的中线是________ cm.24、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为________.25、如图,圆O的弦AB垂直平分半径OC,若圆O的半径为4,则弦AB的长等于________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,若CE=2,DF=1,∠EBF=60°,求平行四边形ABCD的面积.28、如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从A点出发沿AB以5cm/s的速度向点B移动,一直到达点B为止;同时,点Q从C点出发沿CD以3cm/s的速度向点D移动,经过多长时间P、Q两点之间的距离为10cm?29、如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF= AD,请你判断△EFC的形状并说明理由.30、在四边形ABCD中,∠B=∠C=90°,AB=3,BC=4,CD=1.以AD为腰作等腰△ADE,使∠ADE=90°,过点E作EF⊥DC交直线CD于点F.请画出图形,并直接写出AF的长.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、D5、A6、B7、D8、B10、C11、D12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

八年级数学上册第一章《全等三角形》测试卷-苏科版(含答案)

八年级数学上册第一章《全等三角形》测试卷-苏科版(含答案)

八年级数学上册第一章《全等三角形》测试卷-苏科版(含答案)一.选择题1.如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是()A.CD B.CA C.DA D.AB2.下列图形中与已知图形全等的是()A.B.C.D.3.如图,△ABC≌△DEF.若BC=5cm,BF=7cm,则EC=()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个5.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠D B.∠C=∠E C.∠D=∠E D.∠ABD=∠CBE 6.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS7.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cm B.7cm C.8cm D.9cm8.如图,在3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于()A.145°B.180°C.225°D.270°9.如图所示,AD平分∠BAC,AB=AC,连接BD、CD并延长分别交AC、AB于F、E点,则此图中全等三角形的对数为()A.2对B.3对C.4对D.5对10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是()A.①②B.③⑤C.①③④D.①④⑤二.填空题11.能够的两个图形叫做全等图形.12.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=度.13.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.14.由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).15.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为.16.如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=°.17.△ABC≌△DEF,且△ABC的周长为12,若AC=3,EF=4,AB=.18.如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC,则图中的全等三角形共有对.19.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是,理由是.20.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为.三.解答题21.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.22.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,AB=DE,BF=CE,AB ∥DE,求证:△ABC≌△DEF.23.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.24.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案一.选择题1.解:∵△ABC≌△CDA,∠BAC=∠DCA,∴∠BAC与∠DCA是对应角,∴BC与DA是对应边(对应角对的边是对应边).故选:C.2.解:A、圆里面的正方形与已知图形不能重合,错;B、与已知图形能完全重合,正确;C、中间是长方形,与已知图形不重合,错;D、中间是长方形,与已知图形不重合,错.故选:B.3.解:∵BC=5cm,BF=7cm,∴CF=BF﹣BC=2cm,∵△ABC≌△DEF,∴FE=BC=5cm,∴EC=EF﹣CF=5cm﹣2cm=3cm,故选:C.4.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.5.解:∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,又∠ABE﹣∠DBE=∠DBC﹣∠DBE,即∠ABD=∠CBE,∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE.综合各选项,D选项符合.故选:D.6.解:∵∠BAD=∠BCD=90°,AB=CB,DB=DB,∴△BAD≌△BCD(HL).故选:A.7.解:设△DEF的面积为s,边EF上的高为h,∵△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米∴两三角形的面积相等即s=18又S=•EF•h=18,∴h=6故选:A.8.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故选:C.9.解:图中全等三角形的对数有4对,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB﹣∠EDB=∠ADC﹣∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故选:C.10.解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:在直角△ABC与直角△ADC中,BC=DC,AC=AC ∴△ABC≌△ADC∴∠2=∠ACB在△ABC中∠ACB=180°﹣∠B﹣∠1=50°∴∠2=50°.13.解:在图中标上字母,如图所示.∵四边形ABCD为4×4的正方形,∴∠3=45°.∵四边形ANPE为1×1的正方形,∴AE=AN.∵四边形CDEF和四边形BCMN均为4×3的长方形,∴CE=CN.在△ACE和△ACN中,,∴△ACE≌△ACN(SSS),∴∠AEC=∠ANC,∴∠2+∠4+90°=180°,∴∠2与∠4互余.同理可得:∠1与∠5互余.∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.故答案为:225°.14.解:由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.故答案为:不是.15.解:当点P在AC上,点Q在CE上时,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=6﹣3t,∴t=1,当点P在AC上,点Q第一次从点C返回时,∵以P,C,M为顶点的三角形与△QCN 全等,∴PC=CQ,∴5﹣2t=3t﹣6,∴t=,当点P在CE上,点Q第一次从E点返回时,∵以P,C,M为顶点的三角形与△QCN 全等,∴PC=CQ,∴2t﹣5=18﹣3t,∴t=,综上所述:t的值为1或或.16.解:∵∠C=50°,∠A=90°,∴∠ABC=40°,∵DE⊥BC,∴∠A=∠BED=90°,在Rt△ABD和Rt△EBD中,,∴Rt△ABD≌Rt△EBD(HL),∴∠ABD=∠DBE,∴∠ABD=∠ABC=20°,故答案为:20.17.解:∵△ABC≌△DEF,∴BC=EF=4,由题意得,AB+BC+AC=12,∴AB=12﹣3﹣4=5,故答案为:5.18.解:①在△AEO与△ADO中∵CE⊥AB于点E,BD⊥AC于点D,AO平分∠BAC,∴∠AEO=∠ADO=90°,∠EAO=∠DAO∵AO=AO∴△AEO≌△ADO(AAS)∴AE=AD,OE=OD;②在△OBE与△OCD中∵∠OEB=∠0DC=90°,∠EOB=∠DOC,OE=OD∴△OBE≌△OCD(AAS)∴OB=OC,BE=DC,∠B=∠C;③在△ABO与△ACO中∵AE=AD∴AB=AC∵AB=AC,AO=AO,BO=CO∴△ABO≌△ACO(SSS)④在△AEC与△ADB中∵∠AEC=∠ADB=90°,AC=AB,AE=AD∴△AEC≌△ADB(HL)所以共有四对全等三角形.19.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故答案为:带③去,ASA.20.解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故答案为48.三.解答题21.证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).22.证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥DE,∴∠B=∠E.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).23.解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.24.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。

苏科版江苏省宿迁市钟吾初级中学、钟吾国际学校八年级上学期12月底月考期末复习模拟联考数学试题

苏科版江苏省宿迁市钟吾初级中学、钟吾国际学校八年级上学期12月底月考期末复习模拟联考数学试题一、选择题1.下列调查中适合采用普查的是()A.了解“中国达人秀第六季”节目的收视率B.调查某学校某班学生喜欢上数学课的情况C.调查我市市民知晓“礼让行人”交通新规的情况D.调查我国目前“垃圾分类”推广情况2.如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m3.下列四个图形中,不是轴对称图案的是()A.B.C.D.4.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.7,3,4 D.1,2,3 5.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直6.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)7.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 8.64的立方根是( ) A .4B .±4C .8D .±8 9.已知a >0,b <0,那么点P(a ,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA11.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量 12.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +1213.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3)B .(32,3)C .(125,3)D .(5,32) 14.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1215.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题16.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.17.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.18.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.19.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.20.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.21.在实数22,4π,227-,3.14,16中,无理数有______个. 22.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.23.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.24.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.25.若直角三角形斜边上的中线是6cm ,则它的斜边是 ___ cm .三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.在Rt △ABC 中,∠ACB =90°,AC =15,AB =25,点D 为斜边AB 上动点.(1)如图1,当CD ⊥AB 时,求CD 的长度;(2)如图2,当AD =AC 时,过点D 作DE ⊥AB 交BC 于点E ,求CE 的长度;(3)如图3,在点D 的运动过程中,连接CD ,当△ACD 为等腰三角形时,直接写出AD 的长度.28.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ;(2)解释点P (16,0)的实际意义;(3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米?29.在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数()210y kx k k =-+≠进行了探究学习,请根据他们的对话解答问题.(1)张明:当1k =-时,我能求出直线与x 轴的交点坐标为 ;李丽:当2k =时,我能求出直线与坐标轴围成的三角形的面积为 ;(2)王林:根据你们的探究,我发现无论k 取何值,直线总是经过一个固定的点,请求出这个定点的坐标.(3)赵老师:我来考考你们,如果点P 的坐标为()1,0一,该点到直线()210y kx k k =-+≠的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.30.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是52a b c +-的平方根.31.如图,四边形ABCD 中,CD ∥AB ,E 是AD 中点,CE 交BA 延长线于点F .(1)试说明:CD =AF ;(2)若BC =BF ,试说明:BE ⊥CF .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:,∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.4.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C)2+2≠42,可以构成直角三角形,故C选项错误.D.12+)22,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.A解析:A【解析】【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.6.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意; B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意; C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意,故选C . 【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.7.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.8.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.9.D解析:D【解析】试题分析:根据a >0,b <0和第四象限内的坐标符号特点可确定p 在第四象限. ∵a >0,b <0,∴点P (a ,b )在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.B解析:B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.11.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.12.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.13.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP=BP,设OP=BP=x,则PC=6﹣x,再用勾股定理建立方程9+(6﹣x)2=x2,求出x即可.【详解】∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=154,∴PC=6﹣154=94,∴P(94,3),故选:A.【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 14.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.15.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题16.【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.解析:【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=1×10=5.2考点:1.勾股定理;2. 直角三角形斜边上的中线性质.17.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.18.6+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD 即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2解析:+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以==因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o B BAD 30∠=∠=所以所以ABC ∆周长=AC+BC+AB=故答案为:【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键. 19.200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x 50=-, 解得:x=200.检验:当x=200时,x (x ﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.20.x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解析:x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>a x−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解:从图象得到,当x>−2时,y=3x+b的图象在y=ax−2的图象上方,∴不等式3x+b>ax−2的解集为:x>−2.故答案为x>−2.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.21.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义2,4属于无理数,所以无理数有2个.故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键.【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC解析:16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键. 23.3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.24.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.25.12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,∴则它的斜边是:cm;故答案为:12.【点睛】本题考查了直解析:12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,∴则它的斜边是:2612⨯=cm;故答案为:12.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.三、解答题26.(1) 32m =,213AB =;(2) (0,2)Q . 【解析】【分析】 (1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大. 27.(1)12CD =;(2)152CE =;(3)当△ACD 为等腰三角形时,AD 的长度为:15或18或252. 【解析】【分析】 (1)由勾股定理求出BC 的长度,再由面积法求出CD 的长度即可;(2)连接AE ,可证明△ACE ≌△ADE ,得到CE=DE ,设CE=DE=x ,则BE=20x -,由BD=10,则利用勾股定理,求出x ,即可得到CE 的长度;(3)当△ACD 为等腰三角形时,可分为三种情况进行分析:①AD=AC ;②AC=CD ;③AD=CD ;对三种情况进行计算,即可得到AD 的长度.【详解】解:(1)如图,在Rt △ABC 中,∠ACB=90°,AC=15,AB=25,∴BC=2222251520AB AC -=-=,∴1122ABC S AB CD BC AC ∆=•=•, ∴1125201522CD ⨯•=⨯⨯, 解得:12CD =;(2)如图,连接AE ,∵DE ⊥AB ,∴∠ADE=∠C=90°,在Rt △ADE 和Rt △ACE 中,AD AC AE AE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ACE , ∴DE=CE ;设DE=CE=x ,则BE=20x -,又BD=251510-=,在Rt △BDE 中,由勾股定理,得22210(20)x x +=-,解得:152x =, ∴152CE =; (3)在Rt △ABC 中,有AB=25,AC=15,BC=20,点C 到AB 的距离为12;当△ACD 为等腰三角形时,可分为三种情况:①当AD=AC 时,AD=15;②当AC=CD 时,如图,作CE ⊥AB 于点E ,则2AD AE =,∵CE=12,由勾股定理,得2215129AE =-=,∴218AD AE ==;③当AD=CD 时,如图,在Rt △ABC 中,∠ACB=90°,当点D 是AB 中点时,有AD=BD=CD ,∴112525222AD AB ==⨯=; 综合上述,当△ACD 为等腰三角形时,AD 的长度为:15或18或252. 【点睛】本题考查了等腰三角形的定义,全等三角形的判定和性质,直角三角形的性质,勾股定理,解题的关键是熟练掌握所学性质进行求解,注意等腰三角形时要进行分类讨论.28.(1)甲步行的速度为60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲);(3)乙步行的速度为80 m/min ;乙走完全程用的时间为30min ;(4)乙到达终点时,甲离终点距离是360米.【解析】【分析】(1)根据甲先出发4 min ,结合图象可知4 min 他们的距离为240,即可求甲的速度; (2)结合函数图象可知,当t=16分钟时,y 为0,据此可答;(3)根据t=16分钟时,甲乙所走的路程相等求得乙步行的速度,再用总路程÷乙步行的速度即可得解;(4)甲的速度×(乙走完全程的时间+4)=乙到达终点时甲的路程.再用总路程-甲的路程即可.【详解】(1)甲步行的速度为:240÷4=60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲); (3)乙步行的速度为:16×60÷12=80 m/min ;乙走完全程用的时间为:2400÷80=30min ;(4)乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.29.(1) (3,0),94; (2) (2,1);; 【解析】【分析】(1) 张明:将k 值代入求出解析式即可得到答案;李丽: 将k 值代入求出解析式,得到直线与x 轴和y 轴的交点,即可得到答案;(2) 将()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数,即可求出;(3) 由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB ,发现直角三角形ABP 中PA 是最大值,所以当PA 与()210y kx k k =-+≠垂直时最大,求出即可.【详解】解:(1)张明: 将1k =-代入()210y kx k k =-+≠得到y=-x-2×(-1)+1y=-x+3令y=0 得-x+3=0,得x=3所以直线与x 轴的交点坐标为(3,0)李丽:将2k = 代入()210y kx k k =-+≠得到 y=2x-3直线与x 轴的交点为(32,0) 直线与y 轴的交点为(0,-3)所以直线与坐标轴围成的三角形的面积=1393=224⨯⨯ (2) ∵()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数∴(y-1)=k (x-2)必过(0,0)∴此时x=2,y=1通过图像平移得到()210y kx k k =-+≠必过(2,1)(3)由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB由图中可以得到直角三角形ABP 中AP 大于直角边PB所以P 到()210y kx k k =-+≠最大距离为PA 与直线垂直,即为PA∵ P (-1,0)A (2,1)得到10答:点P 到()210y kx k k =-+≠10.【点睛】此题主要考查了一次函数的性质及一次函数的实际应用-几何问题,正确理解点到直线的距离是解题的关键.30.5【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵25=20,又4205<<,∴25的整数部分为4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:5±.【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.31.(1)证明见解析;(2)证明见解析【解析】【分析】(1)由CD ∥AB ,可得∠CDE =∠FAE ,而E 是AD 中点,因此有DE =AE ,再有∠AEF =∠DEC ,所以利用ASA 可证△CDE ≌△FAE ,再利用全等三角形的性质,可得CD =AF ; (2)先利用(1)中的三角形的全等,可得CE =FE ,再根据BC =BF ,利用等腰三角形三线合一的性质,可证BE ⊥CF .【详解】证明:(1)∵CD ∥AB ,∴∠CDE =∠FAE ,又∵E 是AD 中点,∴DE =AE ,又∵∠AEF =∠DEC ,∴△CDE ≌△FAE ,∴CD =AF ;(2)∵BC =BF ,∴△BCF 是等腰三角形,又∵△CDE ≌△FAE ,∴CE =FE ,∴BE ⊥CF (等腰三角形底边上的中线与底边上的高相互重合).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明△CDE ≌△FAE 是正确解答本题的关键.。

苏科版八年级上册数学第三章 勾股定理含答案(研优卷)

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、以下列哪组数为边,可以得到直角三角形的是()A.9,16,25B.8,15,17C.6,8,14D.10,12,132、如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是A. B. C. D.53、图中字母所代表的正方形的面积为144的选项为()A. B. C. D.4、下列不能组成直角三角形三边长的是()A.5,12,13B.6,8,10C.9,16,21D.8,15,175、如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间6、已知Rt△ABC中,∠C=90°,若a+b=10cm,c=8cm,则Rt△ABC的面积为( )A.9cm 2B.18cm 2C.24cm²D.36cm 27、下列几组数据能作为直角三角形的三边长的是( )A.2,3,4B.5,3,4C.4,6,9D.5,11,138、下列四组线段中,不能组成直角三角形的是()A. ,,B. ,,C.D. ,,9、如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE= ,CE=1.则的长是()A. B. C. D.10、如图,二次函数y=ax2+bx+c的图象与x轴相交于A,B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为()A.2B.C.3D.11、如图,牧童家在B处,A、B两处相距河岸的距离AC、BD分别为500m和300m,且C、D两处的距离为600m,天黑牧童从A处将牛牵到河边去饮水,在赶回家,那么牧童最少要走()A.800mB.1000mC.1200mD.1500m12、如图所示,直线y=x+4与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB,y轴上的动点,则△CDE周长的最小值是()A.3B.3C.2D.213、勾股定理是人类最伟大的科学发现之一,在我国古算书周髀算经中早有记载,如图,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内,若知道图中阴影部分的面积,则一定能求出A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和14、如图,在边长为4的菱形中,,M是边的中点,连接,将菱形翻折,使点A落在线段上的点E处,折痕交于N,则线段的长为()A. B.4 C.5 D.15、如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=5,则图中阴影部分的面积为()A.6B.C.D.25二、填空题(共10题,共计30分)16、菱形ABCD的边长为4cm,∠A=120°,则菱形ABCD的面积为________.17、如图,在中,,,是所在平面内一点,以,,,为顶点的四边形是平行四边形,则的长为________.18、如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是________.19、如图,正方形 ABCD 的边长为2,△ABE是等边三角形,点 E在正方形ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为________.20、如图,将矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上点P处,已知,PM=3,PN=4,,那么矩形纸片ABCD的面积为________.21、如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为________22、如图,在中,,点D, E分别在上,且,将沿DE折叠,点C恰好落在AB边上的点F处,如果,,那么CD的长为________.23、等边三角形的边长为2,则它的高是________,面积是________.24、如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(片在结合部分不重叠无缝隙),则图2中阴影部分面积为________。

苏科版数学八年级上册《期中测试题》带答案

C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°
15.下列命题中,假命题的是( )
A.在△ABC中,若∠B+∠C=∠A,则△ABC是直角三角形
B.在△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形
C.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形
苏 科 版 数 学 八年级上学期
期中测 试 卷
学校________班级________姓名________成绩________
考试时间90分钟 满分100分
一、填空(每题2分,共24分)
1.角是轴对称图形,___________是它的对称轴.
2.已知△ABC≌△DEF(A、B分别对应D、E),若BC=10cm,AB=5cm,则EF为cm.
11.如图, ,点P是边 上一个动点(不与点O重合),当 的度数为_____时, 为直角三角形.
【答案】 或
【解析】
【分析】
利用三角形内角和为 ,分两种情况即可计算 的大小.
【详解】因为 为直角三角形,可知 .
当 时,
,
,
综上
【点睛】本题考查了三角形内角和定理,抓住三角和为 是解题 关键.
12.如图,∠C=90°,AC=3,BC=4,∠ABC和∠BAC的角平分线的交点是点D,则△ABD的面积为_____.
1.角是轴对称图形,___________是它的对称轴.
【答案】角平分线所在的直线.
【解析】
【分析】
根据角的对称性解答.
【详解】角的对称轴是“角平分线所在的直线”,
故答案为角平分线所在的直线.
【点睛】此题考查轴对称图形,解题关键在于掌握其性质.

苏科版八年级数学上册第一章 全等三角形单元测试卷( 含答案)-doc

苏科版八年级数学上册第一章全等三角形单元测试卷第1章全等三角形(时间:100分钟总分:120分)一、选择题(每题3分,共24分)1.下列图形中与如图所示的图形全等的是()A.B.C.D.2.如图,已知AD BD ⊥,BC AC ⊥,AC BD =.则CAB DBA △△≌的理由是()A.HL B.SAS C.AAS D.ASA3.如图,ΔΔ35ABD EBC AB BC ≅==,,,则为DE 的长为()A.8B.5C.3D.24.如图所示,ΔΔ,3095,ABC ADE B C EAD ∠=︒∠=︒∠≌,的度数是()A.44°B.55°C.66°D.77°5.根据下列条件,能画出唯一△ABC 的是()A.AB =3,BC =4,CA =7B.AC =4,BC =3.5,∠A =60°C.∠A =45°,∠B =60°,∠C =75°D.AB =5,BC =4,∠C =90°6.如图,已知OF 平分AOB ∠,PD OA ⊥于D 点,PE OB ⊥于E 点,F 是OF 上的另一点,连接DF 、EF .判断图中有几对全等三角形()A.1B.2C.3D.47.如图,在ABC 中,5AB =,9AC =,AD 是BC 边上的中线,则AD 的取值范围是()A.414AD <<B.014AD <<C.27AD <<D.59AD <<8.如果△ABC 的三边长分别为3、5、7,△DEF 的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x 的值为()A.73B.4C.3D.5二、填空题(每题3分,共24分)9.已知图中的两个三角形全等,则∠α的大小为______.10.如图,E 是ABC 的边AC 的中点,过点C 作CF AB ∥,过点E 作直线DF 交AB 于D ,交CF 于F ,若9 6.5AB CF ,==,则BD 的长为__________.11.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是______.13.如图是由4个相同的小正方形组成的网格图,则12∠+∠=______.14.如图,小虎用10块高度都是4cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC=,∠=︒),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之ACB90间的距离为______.15.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中ABC是格点三角形,请你找出方格中所有与ABC全等,且以A为顶点的格点三角形.这样的三角形共有_____个(ABC除外).16.如图.已知ABC 中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A 运动.若点Q 的运动速度为a 厘米/秒,则当BPD △与CQP V 全等时,a 的值为______.三、解答题(每题8分,共72分)17.如图所示,点O 为AC 和BD 的中点,求证:ABO CDO ∆≅∆.18.如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.19.已知:如图,B ,C ,E 三点在同一条直线上,AC DE ∥,AC CE =,BD ∠=∠.求证:ABC CDE ∆≅∆.20.问题发现:如图1,已知C 为线段AB 上一点,分别以线段AC ,BC 为直角边作等腰直角三角形,90ACD ∠=︒,CA CD =,CB CE =,连接AE ,BD ,线段AE ,BD 之间的数量关系为______;位置关系为_______.拓展探究:如图2,把Rt ACD △绕点C 逆时针旋转,线段AE ,BD 交于点F ,则AE 与BD 之间的关系是否仍然成立?请说明理由.21.如图,90,ABC FA AB ∠=⊥ 于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.22.如图,在AOB 和COD △中,OA OB =,OC OD =,50AOB COD ∠=∠=︒.(1)试说明:AC BD =;(2)AC 与BD 相交于点P ,求APB ∠的度数.23.如图,在△ABC 中,∠B=∠C ,点D 是边BC 上一点,CD=AB ,点E 在边AC 上.(1)若∠ADE=∠B ,求证:①∠BAD=∠CDE ;②BD=CE ;(2)若BD=CE,∠BAC=70°,求∠ADE 的度数.24.(1)阅读理解:如图①,在ABC 中,AB AC =,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,且AE EC =,AD 与CE 交于点F ,图中与ABD △全等的三角形是______,与AEF 全等的三角形是______;(2)问题探究:如图②,在ABC 中,90A ∠=︒,AB AC =,BD 平分ABC ∠,DE BC ⊥,垂足为E ,探究线段BC ,AB ,AD 之间的关系,并证明;(3)问题解决:如图③,在ABC 中,90A ∠=︒,AB AC =,CE 平分ACB ∠,BD CE ⊥交CE 的延长线于点D ,求证:2CE BD =.25.问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.参考答案:1.解:观察四个选项可知,只有选项B 符合题意,故选:B.2.证明:∵AD ⊥BD ,BC ⊥AC ,∴∠C =∠D =90°,在Rt △CAB 和Rt △DBA 中,AB BA AC BD=⎧⎨=⎩,∴Rt △CAB ≌Rt △DBA (HL ).故选:A.3.解:∵△ABD ≌△EBC ,AB =3,BC =5,∴BE =AB =3,BD =BC =5,∴DE =BD -BE =2,故选D.4.在ABC 中,3095,B C ∠=︒∠=︒,∴∠CAB =180°-30°-95°=55°,∵ΔΔABC ADE ≌,∴∠EAD =∠CAB =55°,故选B.5.解:A、不满足三边关系,本选项不符合题意.B、边边角三角形不能唯一确定.本选项不符合题意.C、没有边的条件,三角形不能唯一确定.本选项不符合题意.D、斜边直角边三角形唯一确定.本选项符合题意.故选:D.6.解: OF 平分AOB ∠,PD OA ⊥,PE OB ⊥,DOP EOP ∴∠=∠,PDO PEO ∠=∠.,,,PDO PEO OP OP DOP EOP ∠=∠⎧⎪=⎨⎪∠=∠⎩DOP EOP ∴≌△△.PD PE ∴=,DPO EPO ∠=∠.180180DPF DPO EPO EPF ∴∠=︒-∠=︒-∠=∠.,,,PF PF DPF EPF PD PE =⎧⎪∠=∠⎨⎪=⎩FDP FEP ∴≌△△.DFO EFO ∴∠=∠.,,,DOP EOP OF OF DFO EFO ∠=∠⎧⎪=⎨⎪∠=∠⎩FDO FEO ∴≌△△.∴共有3对全等三角形.故选:C.7.解:如图,延长AD 至点E ,使得DE =AD,∵AD 是BC 边上的中线,∴BD CD =,在△ABD 和△CDE 中,AD DE ADB CDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CDE (SAS),∴AB =CE=5,AD =DE ,∵△ACE 中,AC -CE <AE <AC +CE ,∴4<AE <14,∴2<AD <7.故选:C.8.解:此题需要分类讨论.①若325x -=,则73x =,所以112173x -=≠所以此种情况不符合题意;②若327x -=,则3x =,所以215x -=.所以此种情况符合题意.综上所述:3x =故选C.9.解:∵图中的两个三角形全等,∴边a 所对的角为72°,边c 所对的角是58°,∴边b 所对的角是180°-72°-58°=50°,∴∠α=50°.故答案为:50°.10.证明:∵CF //AB ,∴∠ADE =∠F ,∠FCE =∠A ,∵点E 为AC 的中点,∴AE =EC ,在△ADE 和∆CFE 中,ADE F A FCE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌∆CFE (AAS ),∴AD =CF =6.5,∵AB =9,∴BD =AB -AD =9-6.5=2.5,故答案为:2.5.11.解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.12.解:∵∠EAF +∠BAG =90°,∠EAF +∠AEF =90°,∴∠BAG =∠AEF ,∵在△AEF 和△BAG 中,90F AGB AEF BAG AE AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BAG (AAS),同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=12(EF +DH )•FH =80,S △AEF =S △ABG =12AF •AE =9,S △BCG =S △CDH =12CH •DH =6,∴图中实线所围成的图形的面积S =80-2×9-2×6=50,故答案为:50.13.解:由题意得:AB ED =,BC DC =,90D B ∠=∠=︒,所以△ABC ≌△EDC(SAS),1BAC ∴∠=∠,所以12180∠+∠=︒.故答案为:180°.14.解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△CEB (AAS);由题意得:AD =EC =12cm,DC =BE =28cm,∴DE =DC +CE =40(cm),答:两堵木墙之间的距离为40cm,故答案为:40cm.15.解:如图,根据平移,对称,可得与△ABC 全等的三角形有5个,包括△ADE ,△ANF ,△ANG ,△ACG ,△AEF .故答案为:5.16.解:当BD =PC 时,△BPD 与△CQP 全等,∵点D 为AB 的中点,∴BD =12AB =6cm,∵BD =PC ,∴BP =8-6=2(cm),∵点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,∴运动时间时1s ,∵△DBP ≌△PCQ ,∴BP =CQ =2cm,∴a =2÷1=2;当BD =CQ 时,△BDP ≌△CQP ,∵BD =6cm,PB =PC ,∴QC =6cm,∵BC =8cm,∴BP =4cm,∴运动时间为4÷2=2(s ),∴a =6÷2=3(m /s ),故答案为:2或3.17.解:点O 为AC 和BD 的中点,∴AO =CO ,BO =DO ,在△ABO 和△CDO 中,AO CO AOB COD BO DO =⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△CDO (SAS).18.(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,DBE DCF BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CDF (ASA);(2)解:∵AE =13,AF =7,∴EF =AE -AF =13-7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.19.证明:AC DE ∥ ,ACB E ∴∠=∠.在ABC ∆和CDE ∆中,∵ACB E B D AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC CDE AAS ∴∆≅∆.20.解:问题发现:延长BD ,交AE 于点F ,如图所示:∵90ACD ︒=∠,∴90ACE DCB ︒∠=∠=,又∵,CA CD CB CE ==,∴ACE DCB ∆≅∆(SAS ),,AE ED CAE CDB ∴=∠=∠,∵90CDB CBD ︒∠+∠=,∴90CAE CBD ︒∠+∠=,∴90AFD ︒∠=,∴AF FB ⊥,AE BD ∴⊥,故答案为:AE BD =,AE BD ⊥;拓展探究:成立.理由如下:设CE 与BD 相交于点G ,如图1所示:∵90ACD BCE ︒∠=∠=,∴ACE BCD ∠=∠,又∵CB CE =,AC CD =,∴ACE DCB ∆≅∆(SAS ),∴AE BD =,AEC DBC ∠=∠,∵90CBD CGB ︒∠+∠=,∴90AEC EGF ︒∠+∠=,∴90AFB ︒∠=,∴BD AE ⊥,即AE BD =,AE BD ⊥依然成立.21.(1)解:∵90,ABC FA AB ∠=⊥ ,∴90ABC DAF ∠∠== ,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥ ,∴90DBC DAF ∠∠== ,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .22.(1)证明:∵∠AOB =∠COD ,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,∵OA =OB ,OC =OD ,∴△AOC≌△BOD(SAS),∴AC=BD;(2)解:如图,设AC与BO交于点M,则∠AMO=∠BMP,∵△AOC≌△BOD,∴∠OAC=∠OBD,∴180°-∠OAC-∠AMO=180°-∠OBD-∠BMP,即∠MPB=∠AOM=50°,∴∠APB=50°.23.(1)①∵在△ABC中,∠BAD+∠B+∠ADB=180°∴∠BAD=180°-∠B-∠ADB,又∵∠CDE=180°-∠ADE-∠ADB且∠ADE=∠B∴∠BAD=∠CDE②由①得∠BAD=∠CDE在△ABD与△DCE中,B CAB DC BAD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD≌△DCE(ASA)∴BD=CE(2)∵在△ABD与△DCE中,AB DCB CBD CE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△DCE(SAS)∴∠BAD=∠CDE又∵∠ADE=180°-∠CDE-∠ADB∴∠ADE=180°-∠BAD-∠ADB=∠B在△ABC中,∠BAC=70°,∠B=∠C∴∠B=∠C=12(180°-∠BAC)=12⨯110°=55°∴∠ADE=55°24.解:(1)AD BC⊥,90ADB ADC ∠∠∴==︒,AB AC = ,AD AD =,Rt ABD ∴ ≌()HL Rt ACD ,CE AB ⊥ ,90AEC BEC ADB ∠∠∠∴===︒,90BAD B B BCE ∠∠∠∠+=︒=+ ,BAD BCE ∠∠∴=,又AE EC = ,AEF ∴ ≌()ASA CEB ,故答案为:ACD △,CEB △;(2)BC AB AD =+,理由如下:90A ∠=︒ ,AB AC =,45ABC C ∠∠∴==︒,DE BC ⊥ ,45CDE C ∠∠∴==︒,CE DE ∴=,BD Q 平分ABC ∠,ABD CBD ∠∠∴=,又A DEB ∠∠= ,BD BD =,ABD ∴ ≌()AAS EBD ,AB BE ∴=,AD DE EC ==,BC BE EC AB AD ∴=+=+;(3)如图,延长BD ,CA 交于点H ,CE 平分ACB ∠,ACE BCE ∠∠∴=,又CD CD = ,90CDB CDH ∠∠==︒,CBD ∴ ≌()ASA CHD ,BD DH ∴=,90CDH BAH ∠∠==︒ ,90H HBA H ACE ∠∠∠∠∴+=︒=+,ACE HBA ∠∠∴=,又AB AC = ,90CAE BAH ∠∠==︒,ACE ∴ ≌()ASA ABH ,CE BH ∴=,2CE BD ∴=.25.(1)解:EF =BE +FD .延长FD 到点G .使DG =BE .连接AG ,∵∠ABE =∠ADG =∠ADC =90°,AB =AD ,∴△ABE ≌△ADG (SAS).∴AE =AG ,∠BAE =∠DAG .∴∠BAE +∠DAF =∠DAG +∠DAF =∠EAF =60°.∴∠GAF =∠EAF =60°.又∵AF =AF ,∴△AGF ≌△AEF (SAS).∴FG =EF .∵FG =DF +DG .∴EF =BE +FD .故答案为:EF =BE +FD ;(2)解:(1)中的结论EF =BE +FD 仍然成立.证明:如图②中,延长CB 至M ,使BM =DF ,连接AM.∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,1AB AD D BM DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ADF (SAS).∴AF =AM ,∠2=∠3.∵∠EAF =12∠BAD ,∴∠2+∠4=12∠BAD =∠EAF .∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,AM AF MAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AME ≌△AFE (SAS).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD .证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG.∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△ADF (SAS).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD .∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS),∴EG =EF ,∵EG =BE -BG ,∴EF=BE-FD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版苏科版八年级数学上 第三次月考测试题(Word 版 含答案)一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.下列实数中,无理数是( )A .227B .3πC .4-D .3273.某种鲸的体重约为,关于这个近似数,下列说法正确的是( ) A .精确到百分位 B .精确到0.01 C .精确到千分位 D .精确到千位4.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .5.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m < 6.用科学记数法表示0.000031,结果是( )A .53.110-⨯B .63.110-⨯C .60.3110-⨯D .73110-⨯ 7.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x8.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...的是A .AM =BMB .AE =BEC .EF ⊥ABD .AB =2CM9.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处10.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .33C .6D .311.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA12.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =-- 13.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .2C .2.4D .3.514.以下问题,不适合用普查的是( )A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命 15.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38二、填空题16.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.17.如图,在数轴上,点A 、B 表示的数分别为0、2,BC ⊥AB 于点B ,且BC=1,连接AC ,在AC 上截取CD=BC ,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点E 表示的实数是_____.18.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.19.如果点P (m+1,m+3)在y 轴上,则m=_____.20.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.21.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.22.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.23.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.24.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________25.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.三、解答题26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m =___________,n =_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?27.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱. (1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?28.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.29.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t =______时,两点停止运动;(2)当t 为何值时,BPQ ∆是等腰三角形?30.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?31.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x =2﹣3.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P (a ,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C .【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 A.227是有理数,不符合题意; B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.3.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg =136000kg 的最后一位的6表示6千,即精确到千位.故选D .【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.4.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.5.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.6.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键. 7.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误;6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C .【点睛】因式分解的意义.8.D解析:D【解析】【分析】由作图可知EF是AB的垂直平分线,据此对各项进行分析可得答案.【详解】解:由作图可知EF是AB的垂直平分线,所以AM=BM,AE=BE,EF⊥AB,即选项A,B,C均正确,CM是AB边上的中线,AB=2CM错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.9.D解析:D【解析】【分析】根据线段垂直平分线的性质判断即可.【详解】作AC,BC两边的垂直平分线,它们的交点为P,由线段垂直平分线的性质,P A=PB=PC,故选:D.【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.10.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.11.B解析:B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.12.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k的值不变,只有b发生变化.13.B解析:B【解析】【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,GH===故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.14.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题16..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.17.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE= -1,∴点E表示的实数是 -1.【解析】∵∠ABC=90°,AB=2,BC=1,∴,∵CD=CB=1,∴ -1,∴,∴点E18.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.19.﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.20.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数. 21.200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x 50=-, 解得:x=200.检验:当x=200时,x (x ﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器. 22.22【解析】【分析】等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 23.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴5,CD===∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.24.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.25.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40︒【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.三、解答题26.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.27.(1)3245y =-+;(2)应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元【解析】【分析】(1)根据A 水果总价+B 水果总价=1200列出关于x 、y 的二元一次方程,对方程进行整理变形即可得出结论;(2)设利润为W 元,找出利润W 关于x 的函数关系式,由购进A 水果的数量不得少于B 水果的数量找出关于x 的一元一次不等式,解不等式得出x 的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)∵30501200x y∴y 关于x 的函数表达式为:3245y =-+. (2)设获得的利润为w 元,根据题意得510w x y , ∴240w x =-+∵A 水果的数量不得少于B 水果的数量,∴x y ≥,解得15x ≥.∵10-<,∴w 随x 的增大而减小,∴当15x =时,w 最大225=,此时120315155y -⨯==. 即应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键.28.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A 所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.29.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ ∆是等腰三角形,则PQ=BQ,此时作PE ⊥DC,∵四边形ABCD 为矩形,∴∠C=∠ABC=90°,∴四边形BCEP 为矩形,∴EC=PB=6-t ,EP=BC ,∵PQ=BQ ,∴Rt △EPQ ≌Rt △CBQ (HL ),∴EQ=QC ,即6282t t -=-,解得225t =, ③当P 点在线段BC 上,Q 点在线段CD 上时,此时6<t≤7如下图,BP=t-6,QC=2t-8,∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP ,BPQ ∆不可能是等腰三角形,综上所述,当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【点睛】本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.30.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元. 假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.31.﹣21(2)x -,﹣112【解析】【分析】直接括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】原式= [221(2)(2)x x x x x +----]•4x x - =2(2)(2)(1)(2)4x x x x x x x x +---⋅-- =24(2)4x x x x x-⋅--=﹣21(2)x -,当x =2﹣时, 原式=﹣112. 【点睛】 此题主要考查分式的化简求值,熟练掌握,即可解题.。

相关文档
最新文档