低碳钢、铸铁扭转实验

合集下载

低碳钢与铸铁的拉伸、压缩和扭转实验

低碳钢与铸铁的拉伸、压缩和扭转实验

低碳钢与铸铁的拉伸、压缩和扭转实验一、实验目的1、测定拉伸时低碳钢的下屈服强度s σ,抗拉强度b σ,断后伸长率δ和断面收缩率ψ,测定铸铁的抗拉强度b σ。

2、测定压缩时低碳钢压下屈服强度s σ,铸铁抗压强度b σ。

3、测定扭转时低碳钢的屈服强度、 抗扭强度;铸铁抗扭强度。

二、实验原理 (一)拉伸1.拉伸时低碳钢的下屈服极限s σ及抗拉强度b σ的测定。

书P19屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值F b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在F b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。

以试样的初始横截面面积A 除F b 得抗拉强度为0A P bb =σ2. 伸时低碳钢的断后伸长率δ和断面收缩率ψ的测定P20铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。

没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。

(二)压缩材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。

铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。

由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。

铸铁压缩实验的强度极限:b σ=Fb/A0(A0为试件变形前的横截面积)。

(三)扭转P32 三、实验设备万能材料试验机 扭转试验机 游标卡尺。

四、实验步骤 1.测量试样尺寸测定试样初始直径,并用粉笔在试样上画一长为50mm 的标记。

图22、试验机准备(1)检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;(2)启动试验机的动力电源及计算机的电源;(3)调出试验机的操作软件,按提示逐步进行操作;(4)安装试件。

(5)启进行调零,回到试验初始状态;(6)根据实验设定,点击开始实验,注意观察试验中的试件及计算机上的曲线变化;(7)实验完成,记录数据;(8)试件破坏后(非破坏性试验应先卸载),断开控制器并关闭,关闭动力系统及计算机系统,清理还原。

4.实验四 金属材料扭转实验

4.实验四 金属材料扭转实验

金属材料扭转实验一、 实验目的1. 测定低碳钢材料的剪切屈服极限s τ及剪切强度极限b τ。

2. 测定铸铁材料的剪切强度极限b τ。

3. 观察低碳钢和铸铁扭转变形过程中各种现象,比较两种材料试样断口破坏特性。

二、 实验仪器设备CTT500 微机控制扭转试验机、游标卡尺、低碳钢扭转试样和铸铁扭转试样 三、 实验原理将材料试样装夹在扭转试验机的夹头上,实验时,扭转试验机的一个夹头固定不转,另一个夹头绕轴转动,从而对材料试样施加扭转载荷,使试样发生扭转变形,同时绘制出试样承受的扭矩T 与发生的变形扭转角φ的关系曲线(T –φ曲线)。

1. 低碳钢扭转实验图 2-1-2 所示为低碳钢试样在扭转变形过程中的 T –φ关系曲线。

由该曲线可得到低碳钢材料在整个扭转过程中所表现出来的力学性能,其主要特征如下:在弹性变形的OA直线段。

试样截面上扭矩T与扭转角φ成正比例关系,材料服从切变虎克定律,在该阶段可测定材料的切变模量G,试样横截面上剪应力沿半径线性分布如图 2-1-3(a)所示。

拉伸时有明显屈服现象的金属材料在扭转时同样存在屈服现象,只是由于扭转时试样截面上的应力分布不均匀,当试样表面材料屈服时,内部材料并未出现屈服,因此载荷的下降不是突然发生,故无拉伸时的初始瞬时效应。

当扭矩保持恒定或在小范围内波动,而扭转角仍持续增加(曲线出现平台)时的扭矩称为屈服扭矩。

上屈服扭矩:屈服阶段中扭矩首次下降前的最大扭矩,称为上屈服扭T,如图 2-2-2 中所示。

矩,记为suT,如下屈服扭矩:屈服阶段中的最小扭矩称为下屈服扭矩,记为sL图 2-2-2中所示。

本次实验中测定下屈服扭矩作为低碳钢扭转时的屈服扭矩 Ts,根据τ。

实验中测得的屈服扭矩 Ts数值,即可计算出低碳钢的剪切屈服极限s低碳钢扭转试样横截面上剪应力线性分布如图 2-1-3 所示,随着 Tτ,而且塑性区逐的增大,横截面边缘处的剪应力首先达到剪切屈服极限s渐向圆心扩展,形成环形塑性区,如图 2-1-3(b)所示,直到整个截面几乎都是塑性区,如图 2-1-3(c)所示,在 T–φ曲线上出现屈服平台。

§3扭转试验

§3扭转试验

§3 扭 转 试 验1、概述工程中有许多承受扭转变形的构件,了解材料在扭转变形时的力学性能,对于构件的合理设计和选材是十分重要的。

扭转变形是构件的基本变形之一,因此扭转实验也是材料力学基本实验之一。

2、实验目的1、测定低碳钢的扭转屈服强度s τ及抗扭强度b τ。

2、测定铸铁的抗扭强度b τ。

3、观察、比较低碳钢和铸铁在扭转时的变形和破坏现象,分析其破坏原因。

3、实验原理对一确定形状试件两端施加一对大小为e M 的外力偶,试件便处于扭转受力状态,此时试件中的单元体处于如图3.1所示的纯剪应力状态。

图3.1纯剪应力状态对单元体进行平衡分析可知,在与试样轴线成045角的螺旋面上,分别承受主应力τσ=1,τσ-=3的作用,这样就出现了在同一个试件的不同截面上τσσ=-=压拉的情形。

这样对于判断材料各极限强度的关系提供了一个很好的条件。

图3.2为低碳钢Q235扭转实验扭矩T 和扭转角φ的关系曲线,图3.3为铸铁HT200图3.2低碳钢Q235扭转φ-T 曲线 图3. 3铸铁HT200扭转φ-T 曲线试件的扭转实验扭矩T 和扭转角φ的关系曲线。

图3.4为低碳钢和铸铁扭转破坏断口形式由图3.2低碳钢扭转φ-T 曲线可以看出,低碳钢Q235的扭转φ-T 曲线类似于拉伸的L F ∆-曲线,有明显的弹性阶段、流动屈服阶段及强化阶段。

在弹性阶段,根据扭矩平衡原理,由剪应力产生的合力矩需与外加扭矩相等,可得剪应力沿半径方向的分布ρτ为:PI T ρτρ*= 在弹性阶段剪应力的变化如图3.5所示在弹性阶段剪应力沿圆半径方向呈线性分布,据此可得PP W T I r T ==*max τ 当外缘剪应力增加到一定程度后,试件的边缘产生流动现象,试件承受的扭矩瞬间下降,应力重新分布至整个截面上的应力均匀一致,称之为屈服阶段,在屈服阶段剪应力的变化如图3.5 低碳钢扭转试件弹性阶段应力分布变化图3.4低碳钢和铸铁扭转破坏断口形式图3.6所示称达到均匀一致时的剪应力为剪切屈服强度(s τ),其对应的扭矩为屈服扭矩,习惯上将屈服段的最低点定义为屈服扭矩,同样根据扭矩平衡原理可得:Ps P s s W T I T 434*3==ρτ 应力均匀分布后,试件可承受更大的扭矩,试件整个截面上的应力均匀增加,直至试件剪切断裂,如图3.4所示,最大剪应力对应的扭矩为最大扭矩,定义最大剪应力为剪切强度。

材料扭转实验报告小结(3篇)

材料扭转实验报告小结(3篇)

第1篇一、实验背景本次实验旨在通过金属材料的扭转实验,了解和掌握金属材料的扭转性能,包括强度性能指标、变形规律以及破坏特性。

实验选取了低碳钢和灰铸铁两种材料进行对比实验,通过实验结果分析两种材料的扭转性能差异。

二、实验目的1. 测定低碳钢和灰铸铁的扭转强度性能指标,包括剪切屈服极限和剪切强度极限。

2. 通过实验,绘制低碳钢和灰铸铁的扭转图,比较两种材料的扭转破坏形式。

3. 了解电子式扭转实验机的构造、原理和操作方法。

4. 通过实验,验证扭转变形公式,测定低碳钢的切变模量G。

5. 比较低碳钢和铸铁试样受扭时的变形规律及其破坏特性。

三、实验方法1. 实验材料:低碳钢、灰铸铁。

2. 实验设备:扭转实验机、游标卡尺。

3. 实验步骤:(1)测量试样直径。

(2)将试样安装到扭转实验机上,运行应用软件,预制实验条件、参数。

(3)开始实验,匀速缓慢加载,跟踪观察试样的屈服现象和实时曲线。

(4)待屈服过程之后,提高实验机的加载速度,直至试样被扭断为止。

(5)取下拉断的试样,进行实验数据和曲线及实验报告处理。

四、实验结果与分析1. 实验结果表明,低碳钢的剪切屈服极限为285MPa,剪切强度极限为440MPa;灰铸铁的剪切强度极限为280MPa。

2. 通过实验数据绘制出的低碳钢和灰铸铁的扭转图,发现低碳钢在扭转过程中表现出明显的屈服现象,而灰铸铁则表现出脆性断裂。

3. 实验过程中,低碳钢的切变模量G为78.6GPa,验证了扭转变形公式的正确性。

4. 在实验过程中,低碳钢和灰铸铁试样受扭时的变形规律存在明显差异。

低碳钢在扭转过程中,首先发生屈服变形,随后出现塑性变形,最终断裂;而灰铸铁在扭转过程中,未发生明显的屈服变形,直接出现脆性断裂。

五、实验结论1. 低碳钢和灰铸铁的扭转强度性能存在明显差异,低碳钢具有较高的剪切屈服极限和剪切强度极限,而灰铸铁的剪切强度极限较低。

2. 低碳钢在扭转过程中表现出明显的屈服现象,而灰铸铁则表现出脆性断裂。

金属材料的扭转试验

金属材料的扭转试验
ϕi (i = 0,1,2,"5) 。各级加载过程中的切变模量为:
1
取平均值:
Gi
=
(ϕi
∆TL0
) − ϕi−1
IP
G = ∑Gi n
(2-2)
或采用最小二乘法计算切变模量 G。由弹性扭转公式 ∆ϕ = ∆TL0 ,令 GIP
a = ∆ϕ = L0
(b)
∆T GI P
式中:L0 为试样的标距, IP 为截面对圆心的极惯性矩。
五、实验结果处理
1. 试样原始尺寸记录及处理参考表 2-2 进行。计算三处测量直径的平均值,取三处直径
平均值中的最小值计算试样的抗扭截面系数WP ,以三处直径平均值的均值计算试样的极惯性
矩 IP 。
2. 采用最小二乘法计算切变模量 G,试验数据记录与处理参考表 2-1 进行,按公式 (2-2) 计算切变模量 G。或根据试验数据记录,按公式(2-3) 计算切变模量 G(算术平均值)。
试样在断裂前所承受的最大扭矩 Tb 按弹性
扭转公式计算得抗扭强度τb 。从自动记录的T − ϕ 曲线源自读取试样断裂前的最大扭矩 Tb ,
(图 2-3),按下式计算抗扭强度:
(a)低碳钢试样断口形貌
τb
=
Tb WP
(2-8)
在试验过程中,试样直径不变,由于低碳钢
(b) 铸铁试样断口形貌
图 2-4 试样断口
抗剪切能力小于其抗拉能力,而横截面上切应力具有最大值,故断口为平断口(图 2-4a)。
说明:在扭转弹性阶段,试样圆截面上的应力沿半径线性分布。对试样缓慢加载,试样
横截面边缘处材料首先进入屈服,而整个截面的绝大部分区域内仍处于弹性状态(图 2-5a )。
此后,由于材料屈服而形成的塑性区不断向中心扩展,横截面上出现了一个环状的塑性区(图

低碳钢铸铁的扭转坏实验报告

低碳钢铸铁的扭转坏实验报告

低碳钢铸铁的扭转坏实验报告
实验报告:低碳钢铸铁的扭转破坏
一、实验目的:了解低碳钢铸铁的扭转破坏特性,探索其在工程结构中的应用。

二、实验原理:
三、实验步骤:
1.材料准备:选取合适的低碳钢铸铁材料制备样品。

将样品切割成适
当的尺寸和形状。

2.实验装置准备:将实验平台调整到水平状态,安装扭转装置。

3.安装样品:将低碳钢铸铁样品安装在扭转装置上,确保样品位于中
心位置。

4.施加扭转力:通过扭转装置施加扭转力,记录施力时的初始值。

5.观察变形和破坏:随着施加扭转力的增加,观察样品的变形情况,
记录变形程度。

6.记录破坏力和破坏形态:当样品达到破坏强度时,记录破坏力,并
观察并描述破坏形态。

7.数据处理:根据实验数据,分析低碳钢铸铁的扭转破坏特性。

比如,绘制扭转力与扭转角度的曲线,计算破坏强度等。

四、实验结果:
根据实验数据,我们得出了低碳钢铸铁的扭转破坏特性。

扭转力与扭转角度的曲线表明,随着扭转力的增加,样品的扭转角度逐渐增大,直到达到破坏点。

然而,当扭转力达到一定值时,低碳钢铸铁样品发生了塑性变形,无法完全恢复到初始状态。

当扭转力持续增大时,样品最终发生破断。

破坏形态观察表明,低碳钢铸铁样品在扭转破坏时呈现出典型的韧性破坏特点:样品发生显著的扭转变形,但未出现突然的断裂,而是逐渐扩展至整个样品。

五、实验结论:
2.随着扭转力的增加,低碳钢铸铁样品呈现出显著的塑性变形。

3.低碳钢铸铁样品的扭转破坏呈现出典型的韧性破坏特征。

实验三 扭转实验指导书

实验三 扭转实验指导书

扭转实验指导书(试验三)实验三扭转实验在实际工程机械中,有很多传动是在扭转情况下工作。

设计扭转轴所用的许用剪应力,是根据材料在扭转破坏试验时,所测出的扭转剪切屈服极限τS或剪切强度极限τb 而求得的。

在扭转试验时,即使韧性极好的金属也能在扭转时发生断裂,由于扭转断裂后外形无明显变化,从而可以精确地计算应力和应变情况。

一、试验目的1、测定低碳钢材料的扭转时剪切屈服极限τs,剪切强度极限τb。

2、测定铸铁材料的扭转时剪切强度极限τb。

3、观察两种材料扭转时现象,断后断口情况,进行比较。

二、试验设备1、NJ—50B型扭转试验机2、游标卡尺三、扭转试样根据国家标准,扭转试样一般采用圆形截面试样,与拉伸试样相似。

不同的是两端加持部分被磨出两平行平面,以便装夹。

本次试验也用低碳钢与铸铁材料两种材料作为塑性材料和脆性材料的代表。

图3—1 扭转试样四、扭转试验机扭转试验机用于实施扭转试验以测定材料的抗扭力学性能。

本次扭转试验采用NJ-50B型扭转试验机。

见图3-2。

图2—3 NJ-50B型扭转试验机1、构造原理由加力装置和测力装置组成。

加力装置由机座及装于其导轨上的溜板和加力机构组成,溜板可沿导轨(即试样轴线方向)自由移动以保证试样只受扭矩而不受轴向力的作用,加力机构由直流电机经两级蜗杆传动减速后,驱动加力夹头转动从而对试样施加扭矩,加力夹头上安装有360°分度环以显示试样产生的扭角。

测力装置为游砣重力平衡式,来自加力夹头的扭矩T通过试样传给测力夹头,加头受力后经过传感器反映到测力表盘的指针上。

当需要变换测力量程时,转动量程选择旋钮。

2、扭转试验机操作规程1)试验前检查设备情况,加油润滑。

2)估算所测材料断裂时的最大扭矩,选择量程。

3)根据试样大小决定夹块的大小。

4)装夹试样:将试样一端夹入被动夹头,另一端夹入主动夹头。

5)主动针定在零点,将被动指针转至与主动指针重合。

6)选定主动夹头的转速,根据需要选好旋转方向。

材料力学扭转实验报告

材料力学扭转实验报告

学号:11309018
实验三 低碳钢、铸铁扭转试验
一、实验目的 1、验证扭转变形公式,测定低碳钢的切变模量 G。 ;测定低碳钢和铸铁的剪切强度极限 b 握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能; 2、绘制扭矩一扭角图; 3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异; 4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。 二:实验仪器与设备: ① 游标卡尺 ② CTT502 微机控制电液伺服扭转试验机 ③ 低碳钢,铸铁 三、实验原理 1.测定低碳钢扭转时的强度性能指标 试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶矩的增加,当 达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力 偶矩 M es ,低碳钢的扭转屈服应力为 0-150mm 最小刻度 0.02mm 1件 1台 各一根
最大扭矩 500N·m,最大功率 0.4kw 标准
s
3 M es 4 Wp
式中: Wp d 3 / 16 为试样在标距内的抗扭截面系数。 在测出屈服扭矩 Ts 后,改用电动快速加载,直到试样被扭断为止。这时测矩盘上的从动指 针所指示的外力偶矩数值即为最大力偶矩 M eb ,低碳钢的抗扭强度为
s
M ep Wp
经过 A 点后,横截面上出现了一个环状的塑性区,如图 1-1b 所示。若材料的塑性很好, 且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的 切应力分布可简化成图 1-1c 所示的情况,对应的扭矩 Ts 为
Me A M ep O M es M eb B C
院系:工学院 姓名:刘广
d/2
学号:11309018
d/2 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低碳钢、铸铁扭转实验
本次实验是针对低碳钢和铸铁进行扭转实验。

低碳钢是一种低碳含量的钢材,它的硬
度比较低,可加工性和塑性良好,广泛应用于机械制造和结构工程中。

而铸铁是一种含碳
量较高的铁材料,它的硬度和脆性较高,一般应用于制造耐磨件和机床床身等。

实验中,我们采用了扭转试验,这是用于测试材料扭转强度和塑性的一种实验。

在实
验中,我们用扭力传感器将一根样品夹紧在两个旋转的夹具上。

随着样品的旋转,扭矩也
随之产生。

通过这种方式,我们可以测量样品在旋转时所承受的扭矩大小,进而推算出样
品的扭转强度和塑性。

在实验前,我们首先进行了样品的准备工作。

我们分别选取了一段低碳钢和一段铸铁
作为样品,并用金属切割机将它们切割成相同长度的长方形棒材。

接着,我们将两根样品
分别夹紧在扭转试验机上,并启动试验机进行实验。

实验结果显示,低碳钢的扭转强度比铸铁高出了近两倍,达到了67.8 N·m,而铸铁
的扭转强度只有36.3 N·m。

这说明低碳钢具有更好的强度和耐用性,适用于需要承受强
力的机械制造和结构工程中。

而铸铁的脆性与强度相对较低,适用于制造一些不需要承受
强力的耐磨件和机床床身等。

此外,在实验中,我们还观察到了样品的塑性变化。

低碳钢具有较好的延展性和韧性,在样品发生变形时,可以扭曲成一些奇怪的形状,而铸铁则显得比较脆弱,发生断裂后,
就难以弯曲和扭曲。

相关文档
最新文档