七年级上册数学知识点总结:代数式
初中数学数与代数知识点总结

初中数学数与代数知识点总结初中数学数与代数知识点总结:数与代数知识点是初中学习数学时期的主要知识点之一,主要包括有理数、实数、代数式、整式、分式、一元一次方程、二元一次方程(组)、一元二次方程、一元一次不等式(组)、一次函数、反比例函数、二次函数、等,以下是各具体知识点总结的理解和分析。
初中数学有理数知识点总结:有理数是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
近几年主要考察一下几个方面:?相反数,绝对值,倒数等相关概念 ?负数的乘方,加减及混合运算。
突破方法:?牢固掌握有关有理数的概念:如相反数,倒数,绝对值等,特别是绝对值的意义,真正掌握数形结合的思想,多方面理解概念。
?熟练掌握有理数的各种运算法则,特别是负数参与的运算。
在混合运算中特别注意符号和运算顺序,这个要通过一定量的练习来掌握其中的运算技巧,达到一定的熟练程度。
初中数学代数式知识点总结:代数式:中考试题中的分值约为5-6分,主要以选择,填空题为主,也常出现探寻规律的题目。
难易度属于中档。
近几年考察的以下两个方面:?结合生产和生活实际列代数式,求代数式的值等。
?根据数表,图表,算式寻找规律建立代数式模型。
突破方法:掌握好列代数式的要求,技巧,学会观察,猜想验证,用熟悉语言正确表达等解题。
考前多做些寻找规律的题目,真正掌握规律探索的要点。
初中数学整式知识点总结:整式:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。
近几年主要考察?整式的概念和简单的运算,主要是同类项的概念和化简求值?完全平方公式,平方差公司的几何意义?利用提公因式发和公式法分解因式。
突破方法:?要准确理解和辨认单项式的次数,系数,同类项。
? 在运用公式或法则进行运算式,首先要判断式子的结构特征,确定解题思路,以便使解题更加方便,快捷。
初中数学分式知识点总结:分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。
初中数学代数知识点总结

初中数学代数知识点总结代数是研究数、数量、关系、结构与代数方程(组)属性的通用微积分及其性质的数学分支,初等代数一般初等在中学之时讲授。
下面是为大家整理的关于初中数学代数知识点总结,希望对您有所努力!初中数学代数知识点总结单项式与多项式仅含有一些数和字母的乘法(包括乘方)的式子叫做单项式单独的一个数或字母也是单项式单项式中的数字并集自变量叫做这个单项式(或字母因数)的数字系数,简称系数当一个无理数的系数是1或-1时,“1”通常省略不写一个单项式中,每种字母的指数指数的和叫做这个单项式的次数如果在几个单项式中所,不管它们的对数系数是不是相同,只要他们所含的字母相同,并且相同指数字母的指数为也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数常数甚至是同类项1、多项式有有限个单项式的代数和组成的式子,叫做多项式多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项单项式可以看作是多项式的特例把同类单项式的系数相加相比之下或相减,而单项式中的字母的乘方指数不变在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中最高次项的次数,就称为这个质数的次数2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的.式子3、多项式的恒等对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就夏敬观称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等4、一元多项式的根一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的市场指数作为积的一个因式3、多项式的乘法多项式与多项式正负,先用一个多项式等每一项乘以另一个多项式的先要各项,再把所得的积相加常用乘法公式公式I平方差公式(a+b)(a-b)=a^2-b^2两个数的和与这两个数的差的积等于这两个数的平方差公式II完全平方公式(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2两数(或两式)和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍单项式的除法两个单项式相除,就是它们的系数、同底数的可数分别相除,而里边对于那些只在被除式里出现的字母,连同它们纳指的指数一起作为商的因式,对于只在除式里出现的字母,连同它们的志趣相投指数的相反数一起作为商的因式单项式一个多项式罚一个单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
人教版七年级上册数学综合复习--有理数混合运算与代数式化简求值

七年级上册数学综合复习--有理数混合运算与代数式化简求值例1.1.,,,),(),(,,在0%20135|6|3222--------中正数的个数为( ) (A )2个 (B )3个 (C)4个 (D)5个 2、有理数22-,3)2(-,2--,)21(+-按从小到大的顺序排列是( ) (A )3)2(-<22-<2--<)21(+- (B ))21(+-<2--<22-< 3)2(- (C )2--<)21(+-<22-<3)2(- (D )22-<3)2(-<)21(+-<2-- 3.下列各对数中,数值相等的是( )A 、23+与22+B 、32-与3)2(-C 、23-与2)3(-D 、223⨯与2)23(⨯4. 在2223)3(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于 ( )A . -5B .5C .6D .8例2、计算:(1)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛--32775.2324523 (2)115292.011275208.06.0++--+--(3)4941911764131159431+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++ (4)()()[]2432315.011--⨯⨯---(5)()2475.131185428122008⨯⎪⎭⎫ ⎝⎛-+--+-÷⨯-(6)()()[]2285.0813********-----⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛---例3、计算:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯+⨯⨯÷8-619-9-613-7613-1-2011 ()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+÷⨯2-31-4.0-411-4-3242-2021例4、1、如图,若开始输入2-=x ,则最后输出的结果是 .2、右图是一个数值转换机的示意图若输入x 的值为3,y 的值为-2时,则输出的结果为: ______ .若输入x 的值为-3,y 的值为2时,则输出的结果为:______ .达标测评1(每道6分):⑴ 22334236293---⨯-÷-()⑵()()32003212475.281311---+-⨯⎪⎭⎫ ⎝⎛-+(3))]51()43541()2[(234-÷⨯-----(4)23)23(942-⨯÷--6÷(-2)×(-31) (5)2220102231)5.01(1-⨯⨯---(6)])1()92()32()3(2[2200332---⨯-⨯-+---重点内容二:化简求值(一)例1、1.下面是同类项的一组是( )(A) x 3与3x (B) ―mn 2与2m 2n (C) a 3与b 3 (D) 52与-22.下列合并同类项正确的有( )(A )2x+4x=8x 2 (B)3x+2y=5xy (C)7x 2-3x 2=4 (D)9a 2b -9ba 2=03.下列各式中,去括号正确的是( )(A )x 2-(2y-x+z)=x 2-2y 2-x+z (B )3a -[6a -(4a -1)]=3a -6a -4a+1 (C )2a +(-6x+4y-2)=2a -6x+4y-2 (D )-(2x 2-y)+(z-1)=-2x 2-y-z-14.观察下列式子,计算正确的是( )(A )a a 33=+ (B )y x y x 62)3(2+-=--(C )971622=-y y (D )1424)12(4÷+÷=+÷例2、化简求值:(1) 化简:(2a 2-1+3a)-(a+1-a 3) (2)()()b a b a 35223322---,其中1,3-=-=b a 。
七年级上册初一数学概念总结

七年级上册初一数学概念总结一、代数概念1、代数式:代数式是由常数、变量以及运算符号组成的数学表达式,表达某种关系。
2、变量:变量既可代表数字,也可代表某种物理量的变化,它是未知的或有待确定的量,可以用字母表示。
3、常数:常数是指同一个表达式中,所有的变量都确定下来后,不随变量变化而变化的数字,一般用数字表示。
4、等价式:等价式是指对等的两个代数式,当两个代数式都成立时,它们之间称为等价的。
5、恒等式:恒等式是指两边的两个代数式相等,它们的值总是相等的。
二、因式分解1、因式分解:因式分解是指将一个多项式拆分成一系列的因数的过程。
2、本原因式:本原因式是指不可继续分解的因式。
3、同类因式:同类因式是指相同的因式,它们可以相加或相减。
4、最简式:最简式是指将一个多项式简化成最简单的形式,即可以用最少的因式表达出来。
三、方程1、一元一次方程:一元一次方程是指一个未知数只出现一次,并且次数是一次的方程。
2、二元一次方程:二元一次方程是指有两个未知数,且只出现一次,并且次数是一次的方程。
3、二元二次方程:二元二次方程是指有两个未知数,且只出现二次,并且次数是二次的方程,也称根的方程。
4、无解方程:无解方程是指求解该方程没有解的方程。
5、负数解:负数解是指方程可以有负数的解的情况。
四、几何概念1、几何体:几何体是指由一组构件共用一个封闭空间组成的三维物体,如立方体、正方体、球体、圆柱体、圆锥体等。
2、平面图形:平面图形是指由一组构件共用一个平面空间组成的二维物体,如正方形、圆形、三角形、多边形等。
3、中心角:中心角是指多边形的一个角,它的两条边的中点分别指向多边形的中心点。
4、中线:中线是指多边形的一条直线,它由每个多边形的顶点构成,并且两个顶点都指向多边形的中心点。
5、面积:面积是指三维物体或者平面图形中内部空间的大小,它用来描述多边形或者几何体的大小。
人教版七年级上册数学知识点

人教版七年级上册数学知识1整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
七年级数学上册知识点概念

七年级数学上册知识点概念七年级数学上册是学生接触初中阶段数学教育的重要学期。
其中,数学知识点概念是学生必须掌握的核心内容。
本文将对七年级数学上册各知识点概念进行详细介绍。
一、代数式代数式是由数、字母和运算符号构成的式子,例如2x+3、y-5等。
代数式是数学中非常重要的基础概念,它是解方程、推导公式等高阶数学知识的基础。
二、方程式方程式是一个等式,其中包括未知数,例如x+3=7。
方程式可以通过代数式、图像、实际应用等形式表示。
学生在学习方程式时,需要掌握解方程的几种常见方法,例如加减消元、配方法等。
三、函数函数是数学中非常重要的概念,它表示一种变化的规律。
一个函数包含一个自变量和一个因变量,例如y=2x+3。
学生在了解函数概念的同时,需要掌握关系图像、定义域、值域等相关概念。
四、统计与概率统计与概率是数学中的一项重要内容,涵盖概率、频率、百分比等概念。
学生在学习统计与概率时,需要掌握常见的统计数据表示方法、概率公式等基础知识。
五、图形在七年级数学上册,学生需要掌握很多图形概念,例如点、线、面、角等。
同时,学生还需要了解常见图形的基本概念、性质,例如三角形、正方形等。
六、数与式数与式是七年级数学上册的基础内容。
学生需要了解数的基本概念和运算法则,例如整数、分数、小数等,以及掌握加减乘除的基本操作。
七、几何几何是数学中非常重要的分支,需要学生掌握点、线、面、体等基本概念,同时还需要学习相关几何公式以及几何论证方法。
总之,七年级数学上册的知识点概念是学生必须掌握的基础内容。
通过对各知识点概念的深入了解和应用,学生能够更加轻松地学习高阶数学知识。
吴兴区六月上旬七年级数学上册第2章代数式知识归纳新版湘教版

第二章代数式1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分包括:单项式与多项式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.消元——解二元一次方程组同步练习一、单选题1.方程组4112x yx y+=⎧⎪⎨-=-⎪⎩的解是()A.22xy=⎧⎨=⎩B.31xy=⎧⎨=⎩C.22xy=-⎧⎨=⎩D.31xy=⎧⎨=-⎩2.若关于x,y的二元一次方程组25125x y kx y k+=+⎧⎨-=-⎩的解满足7x y+=,则k的值是()A.1B.2C.3D.43.若方程组234531x yx y-=⎧⎨-=⎩的解是12xy=-⎧⎨=-⎩,则方程组2()3()45()3()1a b a ba b a b+--=⎧⎨+--=⎩的解是()A.3212ab⎧=-⎪⎪⎨⎪=-⎪⎩B.3212ab⎧=-⎪⎪⎨⎪=⎪⎩C.3212ab⎧=⎪⎪⎨⎪=-⎪⎩D.1232ab⎧=⎪⎪⎨⎪=-⎪⎩4.若2827x yx y+=⎧⎨+=⎩,则y x-的值是()A.-1 B.0 C.1 D.25.若方程组34526x y kx y k-=-⎧⎨+=⎩的解中2019x y+=,则k等于( )A.2018 B.2019 C.2020 D.20216.方程组241x yx y+=⎧⎨-=-⎩的解为()A.12xy=⎧⎨=⎩B.12xy=-⎧⎨=⎩C.12xy=-⎧⎨=-⎩D.12xy=⎧⎨=-⎩7.方程组2x y 53x 2y 8-=⎧⎨-=⎩,消去y 后得到的方程是( ) A .3x-4x-10=0 B .3x-4x+5=8 C .3x-2(5-2x )=8 D .3x-4x+10=88.若方程组23133530a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩则方程组()()()()223113325130x y x y ⎧+--=⎪⎨++-=⎪⎩的解是( )A .8.31.2x y =⎧⎨=⎩B .10.31.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩9.方程组:3x 7y 94x 7y 5+=⎧⎨-=⎩的解是( ) A .x 2y 1=-⎧⎨=⎩ B .x 23y 7=-⎧⎪⎨=⎪⎩ C .x 23y 7=⎧⎪⎨=-⎪⎩ D .x 23y 7=⎧⎪⎨=⎪⎩10.若43x y =⎧⎨=⎩是方程52ax by bx ay +=⎧⎨+=⎩的解,则+a b 等于( ) A .4B .3.5C .2D .1二、填空题 11.解方程组10,2 4.x y x y +=⎧⎨-=⎩①②时,为了消去x ,可以将方程________变形为________. 12.已如21x y =⎧⎨=⎩是方程123ax by bx ay +=⎧⎨+=⎩的解,则(a +b )(a ﹣b )的值为____. 13.方程组20346x y x y +=⎧⎨+=⎩的解为______. 14.方程组x y 82x y 7+=⎧⎨-=⎩的解是______. 15.已知24280x x y -++-=,则()2019x y -=_____________.16.若关于x 、y 的二元一次方程组213211x y x y +=⎧⎨-=⎩,则x y -的算术平方根为_________.17.将方程5x+2y=11变形为用含x 的式子表示y ,________.三、解答题18.解方程组:23321x yx y+=⎧⎨+=⎩①②19.解方程组(1)1 28 x yx y=+⎧⎨+=⎩(2)11 23 3210 x yx y+⎧-=⎪⎨⎪+=⎩20.解方程(组)(1)311123 x x++-=(2)2321 m nm n-=⎧⎨+=-⎩参考答案1.A【解析】【分析】 运用加减法求出方程组4112x y x y +=⎧⎪⎨-=-⎪⎩的解即可. 【详解】 设4112x y x y +=⎧⎪⎨-=-⎪⎩①②, ①+②得332x =,解得2x =, 将2x =代入①中得2y =,∴方程组的解为22x y =⎧⎨=⎩. 故选:A.【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解. 失分的原因:对二元一次方程组的解法掌握不熟练.2.B【解析】【分析】利用加减法,先用含k 的代数式表示出x+y ,根据x+y=7,得到关于k 的一元一次方程,求解即可.【详解】解:2511252x y k x y k +=+⎧⎨-=-⎩()() (1)×2+(2),得3x+3y=12k-3,∴x+y=4k -1,∴4k-1=7,解得k=2.故选:B.【点睛】本题考查了二元一次方程组的解法,解决本题的关键是用含k的代数式表示出方程组中的x+y.3.B【解析】【分析】利用整体的思想可得:a+b=x,a﹣b=y,解方程组可得结论.【详解】由题意得:12 a ba b+=-⎧⎨-=-⎩,解得:3212ab⎧=-⎪⎪⎨⎪=⎪⎩,故选:B.【点睛】本题考查解二元一次方程组,解题时需注意运用整体的思想,令a+b=x,a﹣b=y. 4.C【解析】【分析】方程组中两方程相减可得出结果.【详解】解:2827x yx y+=⎧⎨+=⎩①②,①-②得,-x+y=1,即y-x=1.故选:C.【点睛】本题主要考查了加减消元法解二元一次方程组,掌握基本运算法则是解题的关键.5.C【解析】【分析】将方程组的两个方程相加,可得x+y=k−1,再根据x+y=2019,即可得到k−1=2019,进而求出k的值.【详解】解:34526x y kx y k-=-⎧⎨+=⎩①②,①+②得,5x+5y=5k−5,即:x+y=k−1,∵x+y=2019,∴k−1=2019,∴k=2020,故选:C.【点睛】本题考查二元一次方程组的解法,整体代入是求值的常用方法.6.A【解析】【分析】先用加减消元法求出y的值,再用代入消元法求出x的值即可.【详解】解:241 x yx y+=⎧⎨-=-⎩①②①+②得:3x=3解得x=1将x=1代入①可解得:y=2∴原方程组的解为:12 xy=⎧⎨=⎩故选:A.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.7.D【解析】【分析】先把①两边同时乘以2,使两方程中y的系数相等,再使两式相减便可消去y.【详解】解:2x y53x2y8-=⎧⎨-=⎩①②①×2得,4x-2y=10…③,②-③得,3x-4x=8-10,即3x-4x+10=8.故选:D.【点睛】此题比较简单,考查的是用加减消元法解二元一次方程,当方程两边需要同时乘以一个数或式子时不要漏乘常数项,以免误解.8.C【解析】【分析】根据二元一次方程组的解对比得到x+2、y−1的值,然后求解即可.【详解】方程组23133530a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,对比两个方程组可知,x+2=8.3,y−1=1.2,解得x=6.3,y=2.2.所以方程组的解是6.32.2 xy=⎧⎨=⎩.故选C.【点睛】本题考查了解二元一次方程组,根据两个方程组的系数特点对比求解更加简便.9.D【解析】【分析】运用加减法求出方程组3x 7y 94x 7y 5+=⎧⎨-=⎩的解即可. 【详解】 解: 3x 7y 94x 7y 5+=⎧⎨-=⎩①②, ①+②,得7x=14,解得x=2,将x=2代入②,得8-7y=5,解得y=37. 则原方程组的解是x 23y 7=⎧⎪⎨=⎪⎩. 【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.10.D【解析】【分析】根据二元一次方程组的解的定义,把方程组的解代入方程组,求解得到a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意435432a b b a +=⎧⎨+=⎩①②, ①+②,得777a b +=;∴1a b +=.故选D.【点睛】本题考查了二元一次方程组的解的定义,把方程组的解代入方程组求出a 、b 的值是解题的关键.11.② 24x y =+【解析】【分析】把方程②变形为x=4+2y ,即可解答本题.【详解】解:∵消去x ,∴把方程②变形为x=4+2y ,故答案为②;24x y =+.【点睛】此题考查了代入法解二元一次方程组.熟练掌握代入法解二元一次方程组方法是解本题的关键.12.45.【解析】【分析】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可求出值.【详解】把如21x y =⎧⎨=⎩代入方程123ax by bx ay +=⎧⎨+=⎩中,可得: 21223a b b a +=⎧⎨+=⎩①② ①﹣②得:a ﹣b =9,①+②得:a +b =5,则(a +b )(a ﹣b )=45.故答案为:45.【点睛】此题考查了解二元一次方程组,掌握用加减消元法解方程组是解答本题的关键.13.63x y =⎧⎨=-⎩【解析】【分析】利用加减消元法求出解即可.【详解】方程组20346x y x y +=⎧⎨+=⎩①②,①×3-②得646y y -=-,即3y =-③,将③代入①得,60x -=,∴6x =,∴方程组的解为63x y =⎧⎨=-⎩. 故答案为:63x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.x 5y 3=⎧⎨=⎩【解析】【分析】根据题意对方程组利用加减消元法求出解即可.【详解】解:x y 82x y 7+=⎧⎨-=⎩①②, ①+②得:3x=15,解得:x=5,把x=5代入①得:y=3,则方程组的解为x 5y 3=⎧⎨=⎩, 故答案为:x 5y 3=⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有代入消元法与加减消元法.15.1-【解析】【分析】先根据非负数的性质列出方程组,求出x 、y 的值,然后将它们的值代入(x-y )2019中求解即可.【详解】 由题意,得:240280x x y -+-⎧⎨⎩==,解得23x y ⎧⎨⎩==; 则(x-y )2019=(2-3)2019=-1.故答案为:-1.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.2【解析】【分析】首先利用消元法解二元一次方程组,然后即可得出x y -的算术平方根.【详解】213211x y x y ①②+=⎧⎨-=⎩ ①+②,得3x =代入①,得1y =-∴()314x y -=--=∴其算术平方根为2,故答案为2.【点睛】此题主要考查二元一次方程组以及算术平方根的求解,熟练掌握,即可解题.17.5211x y -= 【解析】【分析】要用含x 的代数式表示y ,或用含y 的代数式表示x ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【详解】解:移项得, 2y=11-5x ,系数化为1得,5211x y -=. 故答案是:5211x y -=. 【点睛】本题考查了二元一次方程的变形,用其中一个未知数表示另一个未知数,解题时可以参照一元一次方程的解法,把一个未知数当做已知数,利用等式的性质解题.18.12x y =-⎧⎨=⎩【解析】【分析】根据二元一次方程组的求解方法,采用加减消元法用②-①即可消去y 求出x ,进而代入求出y 即可.【详解】解:②-①得:22x =-∴1x =-把1x =-代入①得:123y -+=∴2y =∴12x y =-⎧⎨=⎩. 【点睛】本题主要考查了解二元一次方程组,熟练运用加减消元法或代入消元法是解决此类题目的关键.19.(1)32x y =⎧⎨=⎩;(2)312x y =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用代入消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.【详解】解:(1)128x y x y =+⎧⎨+=⎩①②, 把①式代入②中,得:()218y y ++=,解这个方程得:y=2,把y=2代入①中,得x=3,所以方程组的解为32x y =⎧⎨=⎩; (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩, 原方程组可变为:3283210x y x y -=⎧⎨+=⎩①②, ①+②得:6x=18,解这个方程得:x=3,把x=3代入①中,得:y=12,所以方程组的解为312xy=⎧⎪⎨=⎪⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.20.(1)x=57;(2)11mn=⎧⎨=-⎩【解析】【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.【详解】解:(1)去分母得:9x+3﹣6=2x+2,移项合并得:7x=5,解得:x=57;(2)2321m nm n-=⎧⎨+=-⎩①②,①×2+②得:5m=5,解得:m=1,把m=1代入②得:n=﹣1,则方程组的解为11 mn=⎧⎨=-⎩.【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握一元一次方程和二元一次方程组的解答步骤是解答本题的关键.专题07 有理数的加减法【专题说明】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【知识点总结】一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【精典例题】一、有理数的加法运算1、计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11); (4)(-3.4)+(+ 4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.2、计算:(1)21358⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭ (2)13(6)(2)34+++(3)21.12535⎛⎫+-⎪⎝⎭(4)20(5)3+-(5)13( 3.5)2-++【思路点拨】(1)(2)属于同一类型,用的是加法法则的第一条:;(3)(5)属于同一类,用的是加法法则的第二条;(4)用的是法则的第三条.【答案与解析】(1)2121213(3)3585840⎛⎫⎛⎫-+-=-+=-⎪ ⎪⎝⎭⎝⎭;(2)1313131 (6)(2)(62)8934341212 +++=++=+=(3)21.1253 1.125( 3.4)(3.4 1.125)2.2755⎛⎫+-=+-=--=-⎪⎝⎭(4)22 0(5)533 +-=-(5)13( 3.5) 3.5 3.502-++=-+=【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.二、有理数的减法运算1、计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.2、(1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+-⎪⎝⎭.【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】本题可直接利用有理数的减法法则进行计算.(1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)2 733721 +-=--=-【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.三、有理数的加减混合运算1、计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ;(2)(+7)+(-21)+(-7)+(+21)(3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111 -1+1++7+-2+-8 32432(4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+⎪ ⎪⎝⎭⎝⎭(5)132.2532 1.87584+-+(6)1355 354624618 -++-【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法=(26+5)+[(-18)+(-16)] →符号相同的数先加= 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加=0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111 -1+1++7+-2+-8 32432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224→同分母的数先加()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34 (4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭→统一成加法 11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→整数、小数、分数分别加 312128544⎛⎫=++-= ⎪⎝⎭ (5)132.2532 1.87584+-+ (2.25 2.75)(3.125 1.875)=-++→统一同一形式(小数或分数),把可凑整的放一起0.55 4.5=-+= (6)1355354624618-++- 1355354624618=--++++-- 1355(3546)()24618=-++-+-++-→整数,分数分别加 182********-++-=+ 2936= 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换.2、计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362--+--+ (4)51133.4643.872 1.54 3.376344+---+++ (5)1355354624618-++-; (6)132.2532 1.87584+-+【答案与解析】(1)观察各个加数,可以发现-4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便.解:-3.72-1.23+4.18-2.93-1.25+3.72=(-3.72+3.72)+(4.18-2.93-1.25)-1.23=0+0-1.23=-1.23(2)把正数和负数分别分为一组.解:11-12+13-15+16-18+17=(11+13+16+17)+(-12-15-18)=57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组. 解:1113.7639568 4.7621362--+--+ 111(3.76 4.76)(521)(3968)362=-+-++-+1(6)2922=-+-+= --0.5,把它们分为一组;546与13- 易于通分,把它们分为一组;124-与34同分母,把它们分为一组. 解:51133.464 3.872 1.54 3.376344+---+++ 5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++-++-+-+ 115(0.5)4(1) 4.537.522=+-++-=+= (5)先把整数分离后再分组.解: 1355354624618-++- 1355354624618=--++++-- 1355(3546)()24618=-++-+-++- 182********-++-=+ 2936=注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如113322-=--.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+-+(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=【总结升华】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.四、有理数的加减混合运算在实际中的应用1、小虫从点O出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm)(3)小虫最后是否回到出发地O?为什么?(4)小虫离开O点最远时是多少?(5)在爬行过程中,如果每爬行1 cm奖励1粒芝麻,则小虫一共可以得到多少粒芝麻?【思路点拨】题目中给出的各数由两部分组成:一是性质符号,表示的爬行的方向,二是绝对值部分,表示爬行的路程大小.所以若直接将它们相加得到的和也包括两层含义:方向和路程大小;若只把它们的绝对值相加,则最后结果只表示路程的大小.【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=(5+10+12)+(-3-8-6-10)=27-27=00表示最后小虫又回到了出发点O答:小虫最后回到了出发地O.(2) (+5)+(-3)=+2;(+5)+(-3)+(+10)=+12;(+5)+(-3)+(+10)+(-8)=+4;(+5)+(-3)+(+10)+(-8)+(-6)=-2;(+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10;(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O点最远时是向右12cm;++-+++-+-+++-=(cm), 所以小虫爬行的总路程是54 cm,(3) 531086121054⨯=(粒)由15454答:小虫一共可以得到54粒芝麻.【总结升华】利用有理数的加减混合运算可以解决很多现实生活中的实际问题,这就需要我们认真观察、大胆分析和设想.2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工时共耗油多少升?【答案与解析】(1)求收工时距A地多远,应求出已知10个有理数的和,若和为正数,则在A地前面,若和为负数,则在A地后面;距A地的路程均为和的绝对值.解:(1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=[+2+(-2)]+[(-8)+(+8)]+(+10+4+13+12+5)+(-3)=0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2升即可.(|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)×0.2=67×0.2=13.4(升).答:收工时在A地前面41千米,从A地出发到收工时共耗油13.4升.【总结升华】利用有理数的加减混合运算可以解决很多现实生活中的实际问题,这就需要我们认真观察、大胆分析和设想.。
七年级数学列代数式

列代数式的重要性和意义
列代数式是数学学习的基础,是解决实际问题的重要工具 列代数式可以帮助我们理解和掌握数学概念和规律 列代数式可以提高我们的逻辑思维能力和抽象思维能力 列代数式可以帮助我们更好地理解和掌握数学知识,提高数学素养
列代数式的步骤和注意事项的回顾
确定未知数: 找出题目中 的未知数, 用字母表示
化简代数式
去括号:将括号内的项按照 乘法分配律展开
化简系数:将系数化为最简 形式
化简字母:将字母化为最简 形式
合并同类项:将含有相同字 母的项合并
ቤተ መጻሕፍቲ ባይዱ
整理代数式:将化简后的代 数式整理成最简形式
04
列代数式的注意事 项
符号问题
代数式符号:注意区分字母、数字、运算符号等 括号问题:正确使用括号,避免遗漏或重复 运算顺序:遵循先乘除后加减的运算顺序 代数式简化:注意简化代数式,避免繁琐计算
七年级数学列代数 式
单击此处添加副标题
汇报人:
目录
添加目录项标题 列代数式的步骤 列代数式的应用 总结与回顾
列代数式的概念 列代数式的注意事项 列代数式的练习
01
添加章节标题
02
列代数式的概念
代数式的定义
代数式可以表示一个具体的 数值,也可以表示一个抽象 的数学概念
代数式是由字母和数字组成 的式子
代数式可以包括加、减、乘、 除、乘方、开方等运算
代数式可以表示一个函数, 也可以表示一个方程
代数式的形式
代数式由字母和数字组成,可以表示为a+bx+c的形式 代数式可以表示为x^2+y^2的形式,其中x和y是变量 代数式可以表示为a/b的形式,其中a和b是变量 代数式可以表示为log(a)的形式,其中a是变量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学知识点总结:代数式
一、代数式的定义:用运算符号把数或表示数的字母连
结而成的式子,叫做代数式。单独的一个数或字母也是代数
式。
注意:(1)单个数字与字母也是代数式;(2)代数式与
公式、等式的区别是代数式中不含等号,而公式和等式中都
含有等号;(3)代数式可按运算关系和运算结果两种情况理
解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项
式,单项式中的数字因数叫做单项式的系数;单项式中所有
字母的指数的和叫做单项式的次数。特别地,单独一个数或
者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,
每个单项式叫做多项式的项,其中不含字母的项叫做常数项;
在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指
数从小到大(或从大到小)的顺序排列起来,叫做把多项式按
这个字母升(降)幂排列。
五、代数式书写要求:
1.代数式中出现的乘号通常用“·”表示或者省略
不写;数与字母相乘时,数应写在字母前面;数与数相乘时,
仍用“×”号;
2.数字与字母相乘、单项式与多项式相乘时,一般按
照先写数字,再写单项式,最后写多项式的书写顺序.如式
子(a+b)·2·a 应写成2a(a+b);
3.带分数与字母相乘时,应先把带分数化成假分数后
再与字母相乘;
4.在代数式中出现除法运算时,按分数的写法来写;
5.在一些实际问题中,有时表示数量的代数式有单位
名称,如果代数式是积或商的形式,则单位直接写在式子后
面;如果代数式是和或差的形式,则必须先把代数式用括号
括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数
单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的
系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是1”或-1“时,1通常省略不写,
但“-”号不能省略。
2.单项式的次数:单项式中所有字母的指数和叫做单
项式的次数。
注意:(1)单项式的次数是它含有的所有字母的指数
和,只与字母的指数有关,与其系数无关;
(2)单项式中字母的指数为1时,1通常省略不写,在
确定单项式的次数时,一定不要忘记被省略的1。
3.多项式的次数:多项式中次数最高的项的次数就是
多项式的次数.
4.多项式的项数:在多项式中,每个单项式都叫做多
项式的项,其中不含字母的项称为常数项。一个多项式有几
项,就叫几项式,它的项数就是几。多项式的项数实质是
“和” 中单项式的个数。
八、列代数式:用含有数、字母和运算符号的式子把
问题中的数量表示出来就是列代数式。
正确列出代数式,要掌握以下几点:(1)列代数式的
关键是理解和找出问题中的数量关系;(2)要掌握一些常见
的数量关系如行程问题、工程问题、浓度问题、数字问题
等;(3)要善于抓住问题中的关键词语,如和、差、积、商、
大、小、几倍、平方、多、少等。
九、代数式求值:一般地,用数值代替代数式中的字
母,按照代数式中指明的运算计算的结果叫做代数式求值。
代数式求值的三种:1.直接代入求值;2.化简代入求
值;3.整体代入求值。
以上就是为大家整理的七年级上册数学知识点总结:
代数式,怎么样,大家还满意吗?希望对大家的学习有所帮
助,同时也祝大家学习进步,考试顺利!
相关标签搜索:七年级期中复习