受迫振动与共振实验报告
音叉的受迫振动与共振实验(共享)

音叉的受迫振动与共振实验(共享)
音叉是一种能够发出声音的乐器,它的振动频率非常稳定。
在本次实验中,我们将使
用音叉来研究受迫振动和共振的现象。
本实验的目的是通过对音叉在不同频率下的受迫振
动和共振现象的观察,深入了解受迫振动和共振的规律和应用。
实验器材:
音叉、传声器、信号发生器、示波器等。
实验原理:
受迫振动是指物体振动受到外力的影响,强制振动。
外力的大小、方向和频率都会影
响振幅和频率的变化规律。
当外力频率与物体本身的振动频率相同时,就发生了共振现象。
共振能够引起振幅的急剧增加,结构破坏和噪音等问题,因此需要避免。
实验步骤:
第一步:将信号发生器连接到传声器,将传声器与示波器相连,设置示波器为X-Y模式。
第二步:将音叉竖直放置,用橡皮筋固定,用手拨动音叉,使其振动。
用示波器观察
到的波形确认音叉的振动频率。
第三步:将传声器放置在音叉旁,用信号发生器向音叉传递外力,改变外力的频率,
观察到音叉振动的效果,并记录下振幅和频率的变化规律。
第四步:通过调整信号发生器的频率,在相同的频率下观察到共振现象。
并记录下相
应的振幅和频率。
实验结果:
实验结果表明,当信号发生器输出的频率接近音叉自然频率时,音叉的振幅最大。
当
外力频率不等于音叉自然频率时,振动幅度逐渐减小。
这表明外力频率与音叉自然频率之
间存在着共振现象,声音会变得非常响亮。
然而,外力频率稍高或稍低于音叉自然频率时,振动幅度降至最低。
结论:。
利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮的自由振动、阻尼振动和受迫振动现象。
2、研究不同阻尼力矩对受迫振动的影响,并测定阻尼系数。
3、研究受迫振动的幅频特性和相频特性,观察共振现象,测定受迫振动的共振频率和共振振幅。
二、实验仪器波尔共振仪,包括振动系统、电磁阻尼系统、电机驱动系统、光电计数系统和智能控制仪等部分。
三、实验原理1、自由振动无阻尼的自由振动方程为:$m\frac{d^2\theta}{dt^2}=k\theta$,其中$m$为摆轮的转动惯量,$k$为扭转弹性系数,$\theta$为角位移。
其解为:$\theta = A\cos(\omega_0 t +\varphi)$,其中$\omega_0 =\sqrt{\frac{k}{m}}$为固有角频率,$A$和$\varphi$为初始条件决定的常数。
2、阻尼振动考虑阻尼时,振动方程为:$m\frac{d^2\theta}{dt^2} +b\frac{d\theta}{dt} + k\theta = 0$,其中$b$为阻尼系数。
根据阻尼的大小,可分为三种情况:小阻尼:$\omega =\sqrt{\omega_0^2 \frac{b^2}{4m^2}}$,振动逐渐衰减。
临界阻尼:振动较快地回到平衡位置。
大阻尼:不产生振动。
3、受迫振动在周期性外力矩$M = M_0\cos\omega t$作用下,振动方程为:$m\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + k\theta =M_0\cos\omega t$。
稳定时,振动的角位移为:$\theta = A\cos(\omega t +\varphi)$,其中振幅$A =\frac{M_0}{\sqrt{(k m\omega^2)^2 +(b\omega)^2}}$,相位差$\varphi =\arctan\frac{b\omega}{k m\omega^2}$。
受迫振动实验报告

一、实验目的1. 理解受迫振动的概念及其基本特性。
2. 掌握测量受迫振动幅频特性和相频特性的方法。
3. 观察共振现象,分析共振发生的原因。
4. 了解阻尼对受迫振动的影响。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动。
这种周期性的外力称为策动力。
当策动力频率与物体的固有频率相等时,系统产生共振,振幅达到最大。
2. 幅频特性:受迫振动的幅频特性是指振幅随策动力频率变化的关系。
当策动力频率接近物体的固有频率时,振幅增大。
3. 相频特性:受迫振动的相频特性是指物体位移与策动力之间的相位差随策动力频率变化的关系。
当策动力频率接近物体的固有频率时,相位差接近90°。
4. 阻尼:阻尼是指物体在振动过程中由于摩擦、空气阻力等因素消耗能量,使振幅逐渐减小的现象。
阻尼对受迫振动的影响表现为:阻尼越大,振幅越小,共振频率越低。
三、实验仪器1. 波尔共振仪2. 摆轮3. 频率计4. 数据采集器5. 计算机四、实验步骤1. 将摆轮安装在波尔共振仪上,调整摆轮的质量和角度,使其达到稳定状态。
2. 开启频率计和数据采集器,记录摆轮的固有频率。
3. 改变策动力的频率,观察摆轮的振动情况,记录不同频率下的振幅和相位差。
4. 分析不同阻尼力矩对受迫振动的影响,观察共振现象。
5. 利用计算机绘制幅频特性曲线和相频特性曲线。
五、实验结果与分析1. 通过实验,成功观察到受迫振动现象,测量了摆轮的固有频率。
2. 当策动力频率接近摆轮的固有频率时,观察到共振现象,振幅达到最大。
3. 分析不同阻尼力矩对受迫振动的影响,发现阻尼越大,振幅越小,共振频率越低。
4. 通过绘制幅频特性曲线和相频特性曲线,进一步验证了受迫振动的幅频特性和相频特性。
六、实验结论1. 受迫振动是指物体在周期外力的持续作用下发生的振动。
2. 策动力频率接近物体的固有频率时,系统产生共振,振幅达到最大。
3. 阻尼对受迫振动有显著影响,阻尼越大,振幅越小,共振频率越低。
利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告实验报告:利用波尔共振仪研究受迫振动一、实验目的与意义1.1 实验目的本次实验的主要目的是探究受迫振动现象。
在力学中,受迫振动是一个非常重要的概念。
它在我们生活中随处可见,比如秋千的摆动,甚至是建筑物在地震中的反应。
我们使用波尔共振仪进行实验,目的是观察和分析系统在不同频率下的振动特性。
1.2 实验意义理解受迫振动不仅仅是为了理论上的探索。
它还对实际应用有着深远的影响。
比如,工程师们需要设计抗震建筑,音乐家需要调音,甚至航天器的发射也需要考虑振动问题。
通过本次实验,我们可以加深对振动机制的理解,提升我们的实验技能和观察能力。
二、实验原理2.1 受迫振动受迫振动是指在外力作用下,物体的振动状态。
简单来说,就是你推一下秋千,它开始摆动。
频率的匹配至关重要。
当外力的频率与系统的固有频率相匹配时,振动幅度会显著增大,这就是共振现象。
2.2 波尔共振仪波尔共振仪是一个非常精密的设备。
它通过控制外部频率,测量物体的振动响应。
仪器的操作看似复杂,但其实就是不断调整频率,观察振动情况。
波尔共振仪帮助我们量化受迫振动的特征。
2.3 实验步骤实验开始前,我们首先组装好波尔共振仪。
然后,将待测物体固定在仪器上。
接着,缓慢增加外力的频率,观察并记录物体的振动幅度。
通过多次实验,我们能得到不同频率下的振动数据。
三、实验过程3.1 准备工作准备工作可谓是关键一步。
我们细心地检查仪器,确保每个部件都工作正常。
小心翼翼地调整仪器,像是给一个脆弱的孩子穿衣服。
紧张又期待。
接下来,我们把待测物体固定好,心中暗暗祈祷一切顺利。
3.2 数据记录频率逐渐升高,物体开始轻微摆动。
我们仔细观察,兴奋感油然而生。
随着频率增加,振动幅度渐渐增大,直到某个特定频率,振动幅度达到了最高点。
这一瞬间,仿佛时间都静止了。
我们迅速记录下这个数据,心里暗自高兴。
3.3 结果分析分析数据的过程充满挑战。
我们逐一查看记录,找出共振点。
受迫振动与共振实验

f (Hz)
…
Umax
…
(V)
将记录数据中速度共振对应点的坐标标记出来,并标明密集区取点 的起止范围.
Velocity Resonance Curve
1.6
Undamped
Damped 1.4
1.2
1
U(V)
0.8
0.6
0.4
0.2
f0
f0
0
261 261.2 261.4 261.6 261.8 262 262.2 262.4 262.6 262.8 263
Umax(V)
T2(s2)
数据处理
1、找出音叉在有、无阻尼情况下作受迫振动时的共振 频率 f0 及相应的Umax,并做比较分析。
2、在同一个坐标系中分别绘制有、无阻尼情况下的 Umax~f 关系曲线。在图中作出两曲线的半功率点,找出 其对应的f1和 f2,分别计算有、无阻尼情况下音叉速度 共振曲线的锐度(Q值),并对结果进行比较分析。
Ar 2m
F0
2 0
2
r 0
位移共振曲线
音叉的电磁激振与拾振
拾振/接收 线圈
激振/驱动 线圈
激振线圈在正弦交变电流作用下产生交变磁场激振音叉,使之 产生正弦振动。 拾振线圈靠近被磁化的音叉臂另一端放置,由于变化的磁场产生 感应电流输出到交流数字电压表中。
I dB dt
d B 决定于音叉振动速度v.
dt
v dB I U dt
∴可用电压表的示数代替速度振幅。电压表量程为2V。
将拾振线圈产生的电信号输入交流数字电压表,可 研究音叉受迫振动系统在周期性外力作用下振幅与 驱动力频率的关系及其锐度,以及在增加音叉阻尼 力的情况下,振幅与驱动力频率的关系及其锐度。
受迫振动实验实验报告

一、实验目的1. 理解受迫振动的概念,掌握受迫振动的特性。
2. 通过实验观察受迫振动现象,验证受迫振动的幅频特性和相频特性。
3. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
4. 学习用频闪法测定运动物体的某些量,如相位差。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动。
此时,振幅保持恒定,振幅的大小与策动力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
2. 幅频特性:当策动力的频率与系统的固有频率相同时,系统产生共振,振幅最大。
3. 相频特性:在稳定状态时,物体的位移与策动力变化相位不同,存在一个相位差。
4. 频闪法:通过观察物体在特定频率下闪烁的次数,可以测量物体的运动周期,从而求得相位差。
三、实验仪器1. 波尔共振仪2. 频闪仪3. 秒表4. 直尺5. 数据采集器四、实验步骤1. 将波尔共振仪安装好,调整摆轮使其自由摆动。
2. 开启波尔共振仪,设置策动力频率,观察摆轮的振动情况。
3. 使用频闪仪拍摄摆轮振动图像,通过频闪法测定摆轮的运动周期。
4. 记录不同频率下的摆轮振幅,绘制幅频特性曲线。
5. 调整阻尼力矩,观察摆轮振动情况,记录不同阻尼力矩下的振幅。
6. 分析实验数据,验证受迫振动的幅频特性和相频特性。
五、实验结果与分析1. 实验结果显示,随着策动力频率的增加,摆轮振幅先增大后减小,并在某一频率下达到最大值,即共振现象。
2. 当阻尼力矩增加时,摆轮振幅逐渐减小,共振频率不变。
3. 通过频闪法测定摆轮的运动周期,可以得到相位差。
4. 实验结果与理论分析相符,验证了受迫振动的幅频特性和相频特性。
六、实验结论1. 受迫振动是物体在周期外力作用下发生的振动,其振幅与策动力频率、固有频率和阻尼系数有关。
2. 当策动力频率与固有频率相同时,系统产生共振,振幅最大。
振动趣味物理实验报告(3篇)

第1篇一、实验背景振动是自然界中最常见的运动形式之一,广泛存在于日常生活中。
为了更好地理解振动的规律和特点,我们设计并完成了一项趣味物理实验,通过观察和测量,揭示了振动的有趣现象。
二、实验目的1. 观察振动现象,了解振动的传播和叠加规律。
2. 通过实验,验证振动系统的固有频率与振幅、周期之间的关系。
3. 探究不同振动系统在共振条件下的特点。
三、实验原理振动是指物体在某个特定值附近作往复变化的现象。
振动系统在受到周期性外力作用时,会产生受迫振动;在没有外力作用时,振动系统会保持原有的振动状态,即自由振动。
共振现象是指振动系统在特定频率下,振动幅度突然增大的现象。
本实验采用简单的振动系统,如弹簧振子、音叉等,通过改变振幅、周期等参数,观察振动系统的变化,并验证振动规律。
四、实验仪器与材料1. 弹簧振子:弹簧、悬挂钩、质量块等。
2. 音叉:钢制音叉、金属棒等。
3. 量角器:用于测量振动角度。
4. 秒表:用于测量振动周期。
5. 砝码:用于改变质量块的质量。
五、实验步骤1. 弹簧振子实验(1)将弹簧振子悬挂在固定钩上,调节质量块的质量,使弹簧振子处于静止状态。
(2)用手推动质量块,使弹簧振子产生振动。
(3)观察并记录振动幅度、周期等数据。
(4)改变质量块的质量,重复实验,观察振动系统的变化。
2. 音叉实验(1)将音叉放置在金属棒上,使音叉产生振动。
(2)用金属棒轻轻敲击音叉,观察并记录振动幅度、周期等数据。
(3)改变音叉的振动频率,重复实验,观察振动系统的变化。
(4)探究音叉在共振条件下的特点。
六、实验结果与分析1. 弹簧振子实验(1)当质量块质量较轻时,振动幅度较小,周期较长。
(2)当质量块质量增加时,振动幅度增大,周期缩短。
(3)当质量块质量达到一定值时,振动幅度突然增大,周期达到最小值,此时为共振现象。
2. 音叉实验(1)当音叉振动频率较低时,振动幅度较小,周期较长。
(2)当音叉振动频率较高时,振动幅度增大,周期缩短。
受迫振动实验报告总结

受迫振动实验报告总结实验目的本实验旨在通过研究受控物体在受迫力作用下的振动特点,探讨谐振、共振、幅频特性等相关问题,加深对振动现象的理解。
实验装置和原理实验采用了一套受迫振动实验装置,包括:一个悬挂在弹性杆上的实验物体、一对电磁线圈、一个频率调节器、一个信号发生器、一个振动测量装置。
其中实验物体连接电磁线圈,当电磁线圈通过交流电流时,对实验物体施加周期性的受迫力。
实验步骤1. 将实验物体悬挂在弹性杆上,并调整实验物体的位置,使其处于自由落体平衡状态。
2. 调节频率调节器,采用不同的频率进行实验,观察实验物体的振动情况,并记录测得的数据。
3. 利用信号发生器调节电磁线圈的交流电流频率,将频率调至实验物体的谐振频率附近,观察实验物体的共振现象。
4. 将实验物体的频率与电流大小、振幅等参数进行测量,得出实验物体的幅频特性曲线。
实验结果与分析经过实验观察及测量,得到了一系列实验数据,并绘制了相应的图表。
实验结果显示,实验物体在受迫力作用下产生了振动,且振幅与频率存在一定的关联性。
谐振现象通过调节频率调节器,我们观察到实验物体在达到一特定频率时出现了谐振现象。
在该频率下,实验物体的振幅较大,且对外界干扰较为敏感。
这一现象说明,当受迫力的频率与实验物体的固有频率相近时,能量传递效率较高,振动幅度达到最大。
幅频特性曲线根据实验数据绘制的幅频特性曲线显示,实验物体的振幅随着频率的变化呈现出一定的规律性。
在低频范围内,振幅逐渐增加;而在谐振频率附近,振幅达到最大值;随后在高频范围内,振幅逐渐减小。
实验讨论与改进在实验过程中,我们发现了一些问题,并对实验结果进行了讨论和分析。
首先,由于实验条件的限制,我们无法精确测量实验物体的振动频率和振幅,可能存在一定的误差。
其次,实验过程中可能会受到外界干扰因素,如空气阻力、弹簧老化等,这些因素可能会对振动现象产生一定影响。
为提高实验的准确性和可靠性,我们可以进行以下改进措施:增加测量仪器的精度、减小外界干扰因素、多次重复实验取平均值等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受迫振动与共振实验报告
本次实验旨在通过对受迫振动与共振的研究,加深对这一物理现象的理解,探
索其在不同条件下的特性和规律。
实验过程中,我们通过搭建实验装置,进行数据采集和分析,得出了一些有价值的结论和发现。
首先,我们搭建了一个简单的受迫振动实验装置,利用一根弹簧和一个质量块
构成简谐振动系统。
在外力的作用下,质量块受到周期性的驱动力,产生受迫振动。
我们通过改变外力的频率和振幅,观察了振动系统的响应,并记录了相应的数据。
接着,我们进行了共振实验。
我们发现,在一定的条件下,外力的频率与振动
系统的固有频率匹配时,振动系统将会出现共振现象。
这时,振动系统的振幅会急剧增大,甚至引起系统的破坏。
我们通过实验数据和图表清晰地展现了共振现象的特点和规律。
在分析实验数据的过程中,我们发现了一些有趣的现象。
例如,在受迫振动实
验中,当外力的频率接近振动系统的固有频率时,振幅会明显增大,但并不会像共振那样急剧增大。
这为我们进一步研究振动系统的特性提供了新的思路。
通过本次实验,我们深刻认识到了受迫振动与共振的重要性和应用价值。
在实
际生活和工程中,这些物理现象都有着广泛的应用,如建筑结构的抗震设计、电子设备的振动控制等领域。
因此,对于这些现象的深入理解和研究,不仅有助于丰富我们的物理知识,还能为工程技术的发展提供有力支持。
综上所述,通过本次实验,我们对受迫振动与共振有了更深入的了解,对实验
数据的分析和结论也有了更加清晰的认识。
我们相信,这些实验结果和发现将为我们今后的学习和科研工作提供宝贵的参考和指导。
同时,我们也意识到,物理实验不仅是理论知识的延伸,更是对我们动手能力和实践能力的锻炼,我们将继续努力,深入探索物理世界的奥秘。