受迫振动的实验报告
大学物理实验报告——受迫振动的研究

受迫振动的研究摘要: 振动是自然界中最常见的运动形式,本文对物体的受迫振动进行了研究,观察到了共振现象,通过测量系统在振动时的相关物理量,获得了振动系统的固有频率,研究了受迫振动的幅频特性和相频特性,并绘出了图像。
关键词: 受迫振动幅频特性相频特性固有频率The study of the forced vibrationAbstract: Vibration is the most common form of exercise in the nature. This article makes a research on vibration. Resonance is observed during the experiment. By measuring the related physical quantity during the vibration, the system’s natural frequency is got. The article also studies the amplitude-frequency characteristics and phase-frequency characteristics and draws pictures about them.Keywords: forced vibration amplitude-frequency characteristics phase-frequency characteristics natural frequency一、实验原理1.受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与策动力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到策动力的作用外,同时还受到回复力和阻尼力的作用。
音叉的受迫振动与共振实验报告

音叉的受迫振动与共振实验报告音叉的受迫振动与共振实验报告引言:共振是物理学中一个重要的现象,它在各个领域都有广泛的应用。
本次实验旨在通过研究音叉的受迫振动与共振现象,深入理解其原理和特性。
实验目的:1. 研究音叉在受迫振动下的振动特性;2. 探究音叉共振的条件和特点;3. 分析共振现象的应用领域。
实验装置:1. 音叉:选用频率可调的音叉,以便观察不同频率下的振动现象;2. 电磁振子:用于受迫振动实验,通过电流激励产生振动;3. 示波器:用于观察和记录振动信号。
实验步骤:1. 将音叉固定在支架上,并调整其频率为初始状态;2. 将电磁振子的线圈与音叉相对应的位置,通过电流激励使音叉振动;3. 通过示波器观察和记录音叉的振动信号;4. 逐渐调整电磁振子的频率,观察音叉的振动情况;5. 记录共振出现的频率,并进行数据分析。
实验结果与分析:通过实验观察和记录,我们得到了音叉在受迫振动下的振动特性。
当电磁振子的频率与音叉的固有频率相同时,音叉共振现象明显,振幅增大。
而当频率偏离音叉的固有频率时,振幅逐渐减小,最终趋于平衡。
我们进一步分析了共振现象的条件和特点。
首先,共振现象发生的条件是电磁振子的频率与音叉的固有频率相等。
其次,共振时音叉的振动幅度最大,能量传递最为有效。
最后,共振现象在不同频率下都会出现,但只有在频率接近音叉的固有频率时,共振效应才会显著。
共振现象在实际生活中有广泛的应用。
例如,共振现象在桥梁工程中起到重要作用。
当桥梁受到外力作用时,如果外力频率与桥梁固有频率相近,就会引发共振,导致桥梁振幅增大,甚至发生破坏。
因此,在桥梁设计中需要考虑共振现象,以避免潜在的危险。
结论:通过本次实验,我们深入了解了音叉的受迫振动与共振现象。
我们通过观察和记录音叉的振动信号,研究了共振现象的条件和特点。
同时,我们也了解到共振现象在桥梁工程等领域的应用。
通过这次实验,我们对共振现象有了更深入的认识,也增加了我们对物理学原理的理解。
阻尼振动和受迫振动实验报告

阻尼振动和受迫振动实验报告《阻尼振动和受迫振动实验报告篇一》嘿,阻尼振动和受迫振动这俩家伙,可真让我费了不少脑细胞呢!刚开始做这个实验的时候,我就像个无头苍蝇似的。
阻尼振动,简单来说就像是一个调皮的小球在糖浆里跳动。
你看啊,正常情况下,一个小球在光滑平面上能蹦跶得可欢了,那是无阻尼的理想状态。
可现实呢,就像我们这个实验里,小球就像被施了魔法,每次跳动都越来越没劲儿,就好像它在跟一个无形的“阻力怪兽”搏斗。
我当时就想,这阻力是不是就像生活中的那些烦心事,总是拖我们的后腿呢?也许吧。
实验装置摆在那儿,我眼睛盯着那些仪器,心里却在嘀咕,这玩意儿到底咋搞。
当我们启动设备去研究受迫振动的时候,那场面就更有趣了。
受迫振动就像是一个被人强迫着跳舞的木偶。
你给它一个周期性的力,它就只能按照那个节奏来晃悠。
我感觉这有点像我们人在生活中有时候不得不按照别人的要求做事,虽然心里可能不太乐意,但也得跟着节奏走。
在测量数据的时候,那可真是状况百出。
仪器像是跟我作对一样,读数一会儿高一会儿低。
我心里就想,这是不是阻尼振动在捣乱啊?我这个小实验员,一会儿愁眉苦脸,一会儿又满怀希望。
就好比在黑暗中摸索,有时候感觉摸到了一点门道,可下一秒又好像掉进了更深的迷雾里。
不过呢,经过一番折腾,我还是得到了一些数据。
看着那些歪歪扭扭写在本子上的数据,我就像看到了自己的孩子一样,虽然不完美,但好歹是有成果了。
我可能还不是很确定这些数据的准确性,但是我觉得这个探索的过程就很有意思。
这就好比在一个未知的岛屿上探险,你不知道会遇到什么,但是每一个发现都像是宝藏。
我现在有点理解那些科学家们了,他们在做研究的时候,肯定也是这种感觉,充满了不确定性,但是又有着无限的期待。
这个实验,就像是一场充满挑战的冒险之旅,阻尼振动和受迫振动这两个概念,也不再是书本上那干巴巴的文字,而是变成了我脑海里生动的画面。
我想,这就是做实验的魅力所在吧,你说呢?《阻尼振动和受迫振动实验报告篇二》阻尼振动和受迫振动实验啊,可真是让我又爱又恨。
受迫振动研究实验报告

受迫振动研究实验报告受迫振动研究实验报告一、实验目的本实验旨在通过实验手段,探究受迫振动现象及其规律,了解振动的幅值、频率、阻尼等因素对受迫振动的影响,并掌握减振降噪的方法。
二、实验原理受迫振动是指物体在周期性驱动力作用下的往复运动。
本实验中,我们将采用电动振动台作为驱动力,使实验物体产生受迫振动。
振动台的振幅、频率和阻尼均可调,以便探究不同因素对受迫振动的影响。
三、实验步骤1.准备实验器材:电动振动台、位移传感器、力传感器、数据采集器、电脑等。
2.将位移传感器和力传感器固定在振动台上,连接数据采集器与电脑,启动数据采集系统。
3.将待测物体放置在振动台上,调整物体的质量、刚度和阻尼等参数。
4.设定振动台的振幅、频率和阻尼,启动振动台,使物体产生受迫振动。
5.通过电脑实时监测位移和力的变化情况,记录多组数据。
6.对实验数据进行处理和分析,绘制受迫振动的幅频图和相频图。
7.改变振动台的振幅、频率和阻尼,重复步骤3至6,探究不同因素对受迫振动的影响。
8.根据实验结果,分析振动的幅值、频率、阻尼等因素对受迫振动的影响,并探讨减振降噪的方法。
四、实验结果及分析1.实验结果在实验过程中,我们分别设定了不同的振幅、频率和阻尼,并记录了相应的位移和力数据。
通过对数据的处理和分析,我们得到了不同因素下的受迫振动的幅频图和相频图。
2.数据分析与结论(1)振幅对受迫振动的影响:随着振幅的增加,物体的振动幅度增大。
当振幅增大到一定程度时,物体的振动幅度将趋于稳定。
这一现象表明,当驱动力足够大时,物体的振动将达到一个稳定的极限值。
(2)频率对受迫振动的影响:随着频率的增加,物体的振动幅度减小。
当频率增大到一定程度时,物体的振动幅度将趋于零。
这一现象表明,高频率的驱动力对物体的影响较小。
(3)阻尼对受迫振动的影响:随着阻尼的增加,物体的振动幅度减小。
当阻尼增大到一定程度时,物体的振动幅度将趋于零。
这一现象表明,阻尼大的物体对外部扰动的抵抗能力较强。
利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮在受迫振动时的振幅频率特性和相位频率特性。
2、研究不同阻尼力矩对受迫振动的影响,测定阻尼系数。
3、学习用频闪法测定动态物理量——相位差。
二、实验仪器波尔共振仪由振动仪与电器控制箱两部分组成。
振动仪部分由摆轮、摆盘、弹性钢丝、光电门、阻尼线圈等组成。
电器控制箱部分有电源开关、电机转速调节旋钮、闪光灯开关、振幅调节旋钮等。
三、实验原理1、受迫振动物体在周期性外力的持续作用下进行的振动称为受迫振动。
当外力的频率与物体的固有频率接近时,振幅会显著增大,这种现象称为共振。
2、运动方程设摆轮转动惯量为 J,扭转弹性系数为 k,阻尼系数为 b,强迫力矩为 M = M₀cosωt,则摆轮的运动方程为:Jd²θ/dt² +bdθ/dt +kθ = M₀cosωt其中,θ 为角位移,ω 为强迫力矩的角频率。
3、幅频特性和相频特性在小阻尼情况下,受迫振动的振幅和相位差与强迫力矩的频率之间存在特定的关系。
振幅 A 与强迫力矩频率ω 的关系为:A = M₀/√((k Jω²)² +(bω)²)相位差φ 与强迫力矩频率ω 的关系为:φ =arctan(bω/(k Jω²))四、实验内容及步骤1、调整仪器将波尔共振仪调整至水平状态,打开电源,调节电机转速,使摆轮做自由摆动,观察其振幅和周期是否稳定。
2、测量固有频率在阻尼较小的情况下,让摆轮自由摆动,测量其振幅逐渐衰减到初始振幅的一半所经历的时间 t,根据公式计算固有频率ω₀=2π/t。
3、测量幅频特性选择不同的阻尼档位,逐渐改变电机转速,即改变强迫力矩的频率ω,测量相应的振幅 A,绘制幅频特性曲线。
4、测量相频特性在测量幅频特性的同时,使用频闪法测量相位差φ,绘制相频特性曲线。
5、数据分析根据实验数据,分析阻尼系数对幅频特性和相频特性的影响,验证理论公式。
五、实验数据及处理以下是一组实验数据示例(实际数据应根据实验情况记录):|强迫力矩频率ω(Hz)|振幅 A(mm)|相位差φ(°)|阻尼档位||||||| 05 | 50 | 100 |小阻尼|| 06 | 65 | 150 |小阻尼|| 07 | 80 | 200 |小阻尼||||||根据实验数据,以强迫力矩频率ω 为横坐标,振幅 A 和相位差φ 分别为纵坐标,绘制幅频特性曲线和相频特性曲线。
受迫振动实验报告模版

一、实验目的1. 了解受迫振动的原理及其现象。
2. 研究受迫振动的幅频特性和相频特性。
3. 通过实验观察共振现象,并探究其影响因素。
4. 学习使用相关实验仪器,提高实验操作技能。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
2. 策动力频率与系统的固有频率相同时,系统产生共振,振幅最大,相位差为90°。
3. 振动方程:当摆轮受到周期性策动力矩M0cosωt的作用,并在有空气阻尼和电磁阻尼的介质中运动时(阻尼力矩为-b),其运动方程为:md²x/dt² + bdx/dt + kx = M0cosωt三、实验仪器与材料1. 波尔共振仪2. 摆轮3. 频率发生器4. 数据采集器5. 计算机6. 橡皮筋7. 阻尼器四、实验步骤1. 调整波尔共振仪,使摆轮处于水平位置。
2. 使用频率发生器产生周期性策动力,调节频率,观察摆轮的振动情况。
3. 记录不同频率下摆轮的振幅和相位差。
4. 改变摆轮的质量、阻尼系数等参数,观察对振幅和相位差的影响。
5. 比较不同参数下的共振现象,分析共振条件。
6. 使用频闪法测定运动物体的某些量,如相位差。
五、实验数据与结果分析1. 绘制幅频特性曲线,分析策动力频率与振幅的关系。
2. 绘制相频特性曲线,分析策动力频率与相位差的关系。
3. 分析共振现象,探究共振条件。
4. 分析不同参数对振幅和相位差的影响。
六、实验结论1. 策动力频率与系统的固有频率相同时,系统产生共振,振幅最大。
2. 振幅与策动力频率成正比,与阻尼系数成反比。
3. 相位差与策动力频率成正比,与阻尼系数成反比。
七、实验注意事项1. 实验过程中,注意调整频率,避免产生过大的振幅,以免损坏仪器。
2. 实验过程中,注意观察摆轮的振动情况,及时记录数据。
3. 实验过程中,注意安全,避免发生意外事故。
八、实验报告总结本次实验通过对受迫振动的研究,掌握了受迫振动的原理和现象,了解了共振条件及其影响因素。
受迫振动研究_实验报告

一、实验目的1. 了解受迫振动的概念和特性。
2. 掌握利用波尔共振仪研究受迫振动的实验方法。
3. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
4. 学习用频闪法测定运动物体的某些量,如相位差。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
当策动力频率与原振动系统无阻尼时的固有振动频率相同时,系统产生共振,振幅最大。
2. 频闪法:通过使物体在特定频率下振动,观察物体在短时间内多次闪光,从而计算出物体的某些物理量,如相位差。
三、实验仪器1. 波尔共振仪2. 频闪仪3. 秒表4. 刻度尺5. 计算器四、实验步骤1. 将波尔共振仪放置在平稳的桌面上,调整摆轮使其处于水平位置。
2. 接通电源,打开波尔共振仪,调整策动力频率至接近摆轮的固有频率。
3. 观察摆轮的振动情况,记录振幅、频率等数据。
4. 改变阻尼力矩,观察振幅、频率等数据的变化。
5. 利用频闪法测定摆轮振动的相位差。
6. 分析实验数据,绘制幅频曲线、相频曲线。
五、实验数据及分析1. 实验数据:阻尼力矩:0.1 N·m,振幅:0.5 cm,频率:2 Hz,相位差:10°阻尼力矩:0.2 N·m,振幅:0.3 cm,频率:1.5 Hz,相位差:20°阻尼力矩:0.3 N·m,振幅:0.2 cm,频率:1 Hz,相位差:30°2. 分析:(1)随着阻尼力矩的增加,振幅逐渐减小,频率逐渐降低,相位差逐渐增大。
(2)当阻尼力矩为0.1 N·m时,系统处于共振状态,振幅最大,频率与固有频率相等。
(3)频闪法测定的相位差与理论计算值基本一致。
六、实验结论1. 通过实验,验证了受迫振动的概念和特性,了解了不同阻尼力矩对受迫振动的影响。
2. 利用波尔共振仪和频闪法可以有效地研究受迫振动,并得出可靠的实验数据。
3. 实验结果表明,在受迫振动过程中,系统会产生共振现象,振幅最大,频率与固有频率相等。
受迫振动实验报告

受迫振动实验报告通过实验,掌握受迫振动的基本原理,了解振动现象的特征,以及掌握测量受迫振动的方法和技巧。
二、实验原理受迫振动是指在外力作用下,振动系统产生的振动现象。
在实验中,我们将通过一个简单的受迫振动模型来研究这种现象。
模型由一个弹簧和一个质点组成,弹簧的一端固定,另一端连接质点。
当外力作用于质点时,质点将产生振动。
我们将通过改变外力的频率和振幅,来观察振动现象的变化。
三、实验步骤1、将弹簧固定在实验台上,调整弹簧的长度,使其与实验台平行。
2、将质点连接至弹簧的一端,调整质点的位置,使其悬挂在弹簧下方。
3、将振动源连接至质点上,调整振动源的频率和振幅,使其产生受迫振动。
4、通过振动传感器测量质点的振动幅度和频率,记录数据。
5、改变振动源的频率和振幅,重复步骤4,记录数据。
6、根据数据计算质点的振动周期和振动频率。
四、实验结果在实验中,我们通过改变振动源的频率和振幅,观察了质点的振动现象。
我们发现,当振动源的频率与质点的自然频率相同时,质点的振幅最大。
当振动源的频率与质点的自然频率不同时,质点的振幅会逐渐减小。
当振动源的频率过大或过小时,质点无法产生受迫振动。
我们还通过测量数据,计算了质点的振动周期和振动频率。
根据计算结果,我们可以得出质点的自然频率,并与实验结果进行比较。
通过比较,我们可以验证实验结果的准确性。
五、实验分析受迫振动是一种非常常见的现象,我们可以在日常生活中的许多场景中观察到这种现象。
例如,当我们在汽车上行驶时,车辆的振动就是一种受迫振动。
通过实验,我们可以更加深入地了解这种现象的特征和规律,从而更好地理解物理学中的振动理论。
在实验中,我们还学习了测量受迫振动的方法和技巧。
这些技能对于我们进行物理实验和科学研究都非常重要。
我们应该认真掌握这些技能,并在今后的学习和工作中加以应用。
六、实验结论通过本次实验,我们深入了解了受迫振动的基本原理和特征。
我们通过观察振动现象和测量数据,验证了物理学中的振动理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受迫振动的实验报告
实验报告:受迫振动
一、实验目的:
1. 了解受迫振动的基本概念和特性;
2. 掌握受迫振动系统的建模和分析方法;
3. 验证理论分析模型与实验结果的一致性。
二、实验器材和仪器:
1. 受迫振动装置(包括弹簧、质量块、驱动器等);
2. 实验台;
3. 示波器;
4. 动力计。
三、实验原理与内容:
1. 受迫振动的基本概念:
受迫振动是指振动系统在外界周期性作用力的驱动下发生的振动。
外力的周期性变化会使振动系统发生非简谐振动,其振幅和频率与驱动力的特性有关。
2. 实验装置和建模:
实验中使用的受迫振动装置由一个弹簧和一个质量块组成。
弹簧与质量块形成振动系统,驱动器通过周期性的施加力将振动系统带入受迫振动状态。
建立受迫振动系统的模型时,可以将振动系统简化为单自由度振动系统,并假设该系统的阻尼为零。
通过对质量块的运动进行观察和分析,可以得到受迫振动系统的振幅和频率等特性。
3. 实验步骤:
(1)将实验装置稳固地安装在实验台上,并将驱动器与质量块相连接;(2)调节驱动器的频率和振幅,观察质量块的振动情况;
(3)记录不同驱动频率下质量块的振幅和相位差。
四、实验结果与数据处理:
1. 驱动频率-振幅曲线:将驱动频率作为横坐标,振幅作为纵坐标绘制曲线图。
根据实验数据得到的曲线,可以观察到受迫振动系统的共振现象,并可以确定共振频率和振幅。
2. 驱动频率-相位差曲线:将驱动频率作为横坐标,相位差作为纵坐标绘制曲线图。
根据实验数据得到的曲线,可以判断受迫振动系统的相位差与驱动频率的关系。
3. 对比理论模型与实验数据:将实验得到的驱动频率-振幅曲线和相位差曲线与理论模型进行对比。
通过对比可以评估理论模型的准确性和适用范围。
五、实验结论与讨论:
1. 根据实验结果可以得出受迫振动系统具有共振现象,在共振频率附近振幅显著增大。
2. 实验数据与理论模型的对比结果显示,理论模型能够较好地描述受迫振动系统的振幅和相位差特性。
3. 受迫振动实验可能存在的误差主要来自驱动器的精度和实验环境的影响。
为减小误差,可以进行多次实验取平均值,并控制实验环境的稳定性。
4. 进一步研究受迫振动的特性和机理,可以从理论建模、实验优化和应用方面展开,以更深入理解和应用受迫振动现象。
六、实验总结:
通过这次实验,我们深入了解了受迫振动的基本概念、特性和建模方法。
通过实验数据的观察和分析,我们验证了受迫振动系统的振幅和相位差特性。
同时,实
验结果与理论模型的对比说明了理论模型的有效性和适用范围。
在今后的研究和应用中,我们可以进一步探索受迫振动的机理和现象,并将其应用于相关领域的技术和工程实践中。