第五章频率变换电路的特点及分析方法()PPT课件
高频电子线路 非线性电路基本分析方法

iC1
i0
1 ez
,
iC 2
i0
1 ez
如图所示为归一化电流iC1/ i0 、iC2/ i0与z值的
关系曲线。在 z 1 的范围内,可近似看成线
性关系,即:
iC1 gm0v1, iC2 gm0v1
其中
gm0
iC1 v1
iC 2 v1
称为放大器的跨导。
由电路的对称性可得差
分放大器的输出电压为:
的电导值随时间变化,所以该电路也称为时变 电导(时变电阻)电路。
由于v2(t)具有周期性,而根据S(t)的表达式, 可得它具有与v2(t)相同的周期性,S(t)与v2(t)的
周期皆为T0=2/2。
因此,可将S(t)展开成傅里叶级数:
S (t )
1 2
n1
4 (1)n1
(2n 1)
cos(2n
(2) 折线分析法
前面介绍的幂级数分析法一般要取至少三项 以上,会增加计算复杂度。为此引入折线分 析法以简化分析。
以晶体管的转移特性为 例,其工作曲线AOC 可用两条直线段AB和 BC来近似,即:
ic
ic 0 gc (vB VBZ
)
(vB VBZ ) (vB VBZ )
VBZ为特性曲线折线化后 的截止电压,gc为跨导。
即不满足迭加性原理,这也是非线性元件和 非线性电路的一个重要特点。
二、非线性电路分析方法 ➢ 用解析法来分析非线性电路时,需要知道非
线性曲线的数学表达式。在没有或无法获得 准确的数学表达式时,必须选取某些函数来 近似表示或替代这些非线性关系。下面介绍 几种常见的非线性电路分析方法:
(1) 幂级数分析法 对于非线性元件的特性函数i=f(v),如果f(v) 的各阶导数存在,可将非线性函数f(v)展开 成幂级数的形式:i a0 a1v a2v2 a3v3
变频器工作原理ppt课件(2024)

坐标变换
将三相定子电流通过坐标变换转 换为两相旋转坐标系下的直流分 量,从而简化控制算法。
闭环控制
采用速度环和电流环的双闭环控 制结构,提高系统的动态响应和 稳态精度。
2024/1/30
16
直接转矩控制技术(DTC)
直接转矩控制原理
32
THANKS
感谢观看
2024/1/30
33
新风换气系统控制
利用变频器对新风换气机进行调速和控制,实现楼宇内空 气质量的自动调节和换气过程。
楼宇照明系统控制
通过变频器对照明设备进行调光和控制,实现楼宇内照明 的自动调节和节能运行。
31
其他行业应用案例
2024/1/30
食品加工行业
变频器在食品加工机械如切割机、搅拌机等设备中广泛应用,实现精 确的速度控制和节能运行。
2024/1/30
12
03
变频器工作原理详解2024/1/3013交-直-交变换过程分析
整流过程
将交流电通过整流器转换为直流电,通常采用三相桥式不可控整 流电路。
滤波过程
对整流后的直流电进行滤波,以消除谐波和减小纹波系数。
2024/1/30
逆变过程
将滤波后的直流电通过逆变器转换为频率和电压可调的交流电, 通常采用三相桥式逆变电路。
适的变频器。
19
频率范围和输出波形质量指标
频率调节范围
根据应用需求,选择具有合适频率调节范围的变频器 。
输出波形失真度
分析变频器的输出波形失真度,确保其对电机和系统 的影响在可接受范围内。
谐波含量和电磁干扰
考虑变频器的谐波含量和电磁干扰水平,选择符合相 关标准的变频器。
高频第5章角度调制与解调

第八节:鉴频电路
相位检波器(鉴相器)(一)
由模拟相乘器加低通滤波器构成
根据模拟相乘器输入波形不同,相位检波器的线性(指输出电压大小和两个输入电压之间相位差的关系)范围也不同
设两个输入为:
则乘法器的输出为:
经低通滤波器滤出高频分量后:
故在 附近, 和 有近似线性 关系
采用间接调频时,受到非线性限制的不是相对频偏,也不是绝对频偏,而是最大相移,即调相系数
3
扩展线性频偏的方法:间接调频
频率解调的基本原理和方法
第七节:频率解调的基本原理和方法
调频-调幅变换法
调频-调相变换法
脉冲计数法
利用锁相环电路进行鉴频
本章介绍前三种方法,第四种方法将在下一章介绍
单失谐回路斜率鉴频器:原理(一)
单谐振回路的通用谐振曲线
定义鉴频灵敏度:
则推导可得:
单失谐回路斜率鉴频器:鉴频特性分析(一)
单失谐回路斜率鉴频器:鉴频特性分析(二) 第八节:鉴频电路 故鉴频灵敏度: 随输入调频波的幅度增大而增大 随器件工作点的提高而有所增大 随工作频率的升高而降低 正比于右式中各分子项 将 对 求导数,可得 时,有最大鉴频灵敏度: 因此,如果将调频信号的中心频率选在 处,则在频偏不大时,可以得到较为对称的调频-调幅变换
双失谐回路斜率鉴频器:原理(一)
第八节:鉴频电路 双失谐回路斜率鉴频器由两个单失谐回路斜率鉴频器连接而成 设上下两组谐振回路分别调谐于 并对称处于调频波的载频两边,且:
双失谐回路斜率鉴频器:原理(二)
鉴频电路 注意:只有从A,B两点间取出鉴频电压才是失真较小的对称波形。单独任一点对地的波形都是失真比较大的不对称波形
:调频波的调频系数,其物理意义是调频波的最大附加相移
控制工程基础课件第六章 频率特性分析

G
j
arctan
1
n 2
n2
当=0时,G j 1,G j 0;
当=n时,G j 2,G j 90; 当=时,G j ,G j 180。
二阶微分环节的极坐标图也于阻尼比有关,对应不同的 ξ值,形成一簇坐标曲线,不论ξ值如何,当ω=0时,极 坐标曲线从(1,0)点开始,在ω=∞时指向无穷远处。
第6章 频率特性分析
本章介绍线性系统的频域分析方法。该方法是通 过控制系统对正弦函数的稳态响应来分析系统性能的。
频率特性不仅能反映系统的稳态性能,也可用来 研究系统的稳定性和动态性能。
6.2 频率响应与频率特性
一、频率特性的概念
1、频率响应:是系统对正弦输入的稳态响应。
2、频率特性:给线性系统输入某一频率的正弦波,
1 1 jT
G j 1 U jV
1 jT
1
1 T 22
j T 1 T 22
A e j
实频特性为U 虚频特性为V
1; 1+T 2 2
T。 1+T 2 2
幅频特性为A 1 ;
1 T 22
相频特性为 G j arctanT
特殊点:
当=0时,G j 1,G j 0; 当=1/T时,G j 1 ,G j 45;
取拉氏变换为: Xi s
A
s2
2
电路的输出为: X0 s G s Xi s 上式取拉氏反变换并整理得
1A Ts 1 s2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T
1 T2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T
《高频电路教案》课件

《高频电路教案》课件一、教学目标1. 让学生了解高频电路的基本概念和特点。
2. 使学生掌握高频电路的分析和设计方法。
3. 培养学生对高频电路实验的操作能力和故障排除技巧。
4. 提高学生对高频电路在实际应用中的认识和理解。
二、教学内容1. 高频电路的基本概念和特点高频电路的定义高频电路的频率范围高频电路的特点2. 高频电路的分析和设计方法高频电路的分析方法高频电路的设计原则高频电路的仿真与实验3. 高频电路实验操作和故障排除高频电路实验设备及工具高频电路实验操作步骤高频电路故障排除方法4. 高频电路在实际应用中的案例分析高频电路在无线通信中的应用高频电路在雷达系统中的应用高频电路在其他领域的应用5. 高频电路发展趋势和展望高频电路技术的发展历程高频电路技术的现状高频电路技术的发展趋势三、教学方法1. 采用多媒体课件进行教学,结合图文并茂的方式讲解高频电路的相关概念和原理。
2. 通过实际案例分析,使学生了解高频电路在实际应用中的作用和价值。
3. 组织学生进行高频电路实验,培养学生的动手能力和实际操作技能。
4. 设置课堂讨论和课后作业,巩固学生对高频电路知识的理解和掌握。
四、教学评价1. 课堂互动:学生参与课堂讨论、提问和回答问题的积极性。
2. 实验报告:评估学生在高频电路实验中的操作规范性和结果准确性。
3. 课后作业:检查学生对高频电路知识的掌握程度和应用能力。
4. 期末考试:全面测试学生对高频电路知识的掌握和运用能力。
五、教学资源1. 多媒体课件:用于讲解高频电路的相关概念、原理和案例。
2. 高频电路实验设备:为学生提供实际操作高频电路的机会。
3. 参考书籍和论文:为学生提供深入研究高频电路的资料。
4. 网络资源:为学生提供了解高频电路最新发展的渠道。
六、教学安排1. 第1-2周:讲解高频电路的基本概念和特点,使学生了解高频电路的定义、频率范围以及特点。
2. 第3-4周:介绍高频电路的分析和设计方法,包括分析方法、设计原则以及仿真与实验。
第5章 非线性电路的一般的分析方法

三次谐波及组合频率: 1 22 , 1 22 ,21 2 ,21 2
b 的振幅均只与 b3 有关,而与 b0 、 2无关。 b b 直流成分均只与 b0 、 2有关,而与 b1、 3 无关。
二次谐波以及组合频率1 2 , 1 2 的振幅均只与 b2 有关, 而与 b1 、b3无关。
2 3
该幂级数各系数分别由下式确定,即:
b0 b 1 b2 b n f (U Q ) I 0 di u U Q g du 1 d 2i u U Q 2 du 2 1 d ni n! du n
i
Io
Q
0
UQ
u
u U Q
b0 I 0为静态工作点电流,b1 g是静态工作点处的电导, 即动态电阻r的倒数。
ex 1 x 若 则
i Is[
1 U Q U s cosst n ] n!U T
频率分析:
输入信号频率分量:直 流、s 输出信号频率分量: s,n=0,2, n 1,
2、幂级数分析法
将非线性电阻电路的输出输入特性用一个N阶幂级数近 似表示,借助幂级数的性质,实现对电路的解析分析。
四)、非线性元件的特征
1、特点(与线性电路比较) 非线性,不满足叠加定理,具有频率变换功能。 2、几个概念 A、伏安特性曲线 B、直流电阻 C、动态电阻或交流电阻
3、非线性元件的频率变换作用
非线性器件的频率变换作用
i k 2
1 2 V1m sin1 t V2m sin 2 t
n 1
可求得:ic I 00 I 0 n cosn1t [ g 0 g n cos n1t ]U m 2 cos2t
【学习】第五章信号调理电路
一般采用音频交流电压(5~10kHZ)作为电桥电源。 这时,电桥输出将为调制波,外界工频干扰不易从线路 中引入,并且后接交流放大电路简单无零漂。
采用交流电桥时,必须注意影响测量误差的一些因素。
如:电桥中元件之间的互感影响;无感电阻的残余阻抗; 邻近交流电路对电桥的感应作用;泄漏电阻以及元件之间、 元件与地之间的分布电容等。
整理课件
33
整理课件
34
§2 调频与解调
(1)调频
调频(频率调制)是利用信号电 压的幅值控制一个振荡器,振荡 器输出的是等幅波,但其振荡频 率偏移量和信号电压成正比。
当信号电压为零时,调频波的频率等于中心频率(载波频 率);信号电压为正值时频率提高,负值时则降低。所以调 频波是随信号而变化的疏密不等的等幅波。
-fm
fm
-f0
f0
时域分析
频域分析
由脉冲函数的卷积性质知:一个函数与单位脉冲函数卷积的结
果,就是将其以坐标原点为中心的频谱平移到该脉冲函数处。
即调制后的结果就相当于把原信号的频谱图形由原点平移至
载波频率 f 0 处,幅值减半。
整理课件
24
从调幅原理看,载波频率 f 0 必须高于原 信号中的最高频率 f m 才能使已调波仍 保持原信号的频谱图形,不致重叠。
整理课件
27
g(t)1 2x(t)1 2x(t)co4sf0t
据傅里叶变换性质可得:
G (f) 1 2X (f) 1 4X (f 2 f0 ) 1 4X (f 2 f0 )
若用一个低通滤波器滤去中心
频率为 2 f 0 的高频成分,那
么将可以复现原信号的频谱 (幅值减小为一半),若用放 大处理来补偿幅值减小,可得 到原调制信号。
电力系统调度自动化--ppt课件全文编辑修改
与调度通信 MODEM
打
印 键盘/显 屏幕显
机
示器
示器
RAM ROM 接口
接口 接口
接口
CPU
总线
接口
接口
接口
接口
接口
接口
A/D 模拟量
输入
状态量 输入
数字量 脉冲量 数字量
输入
输入
输出
D/A 模拟量
输出
模拟量 信号
状态量 信号
数字量 脉冲量
信号
信号
遥控 输出
ppt课件
单CPU结构RTU基本框图
遥调 输出
第五章 电力系统调度自动化
ppt课件
1
第五章 电力系统调度自动化
学习目的:
通过本章学习,掌握电力系统调度自动化的结构,掌 握调度自动化各部分的功能以及实现方法;了解电力系 统远动通信的原理及其实现。
重点:
电力系统调度自动化的结构及各部分功能的实现; 电力系统远动通信的原理及实现。
难点:电力系统调度自动化各部分的功能及其实现。
ppt课件
2
第五章 电力系统调度自动化
回顾:
1、电力系统调度的任务
控制整个电力系统的运行方式。
(1)保证供电的 质量优良 (2) 保证系统运行的经济性 (3) 保证较高的安全水平——选用具有足够的承受事故冲击能
力的运行方式。 (4)保证提供强有力的事故处理措施 2、电力系统调度自动化的任务
综合利用电子计算机、远动和远程通信技术,实现电力系 统调度管理自动化,有效的帮助电力系统调度员完成调度任务。
(3)电网调度自动化系统的快速发展阶段(20世纪80年代)
随着计算机技术、通信技术和网络技术的飞速发展,SCADA/EMS技
高频电路原理与分析PPT课件
第1章 绪论
1.3 本课程的特点
高频电子线路是在科学技术和生产实践中发展起 来的, 也只有通过实践才能得到深入的了解。 因此, 在 学习本课程时必须要高度重视实验环节, 坚持理论联系 实际, 在实践中积累丰富的经验。 随着计算机技术和电 子设计自动化(EDA技术)的发展, 越来越多的高频电 子线路可以采用EDA软件进行设计、 仿真分析和电路 板制作, 甚至可以做电磁兼容的分析和实际环境下的仿 真。因此, 掌握先进的高频电路EDA技术, 也是学习高 频电子线路的一个重要内容。
由上面的例子可以总结出无线通信系统的基本组成, 从中也可看出高频电路的基本内容应该包括:
(1)高频振荡器 (2)放大器 (3)混频或变频 (4)调制与解调
•3
第1章 绪论
1.1.2 无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下 一些类型: (1) 按照工作频段或传输手段分类, 有中波通信、 短波通信、 超短波通信、 微波通信和卫星通信等。 所 谓工作频率, 主要指发射与接收的射频(RF)频率。 射频实际上就是“高频”的广义语, 它是指适合无线电 发射和传播的频率。 无线通信的一个发展方向就是开 辟更高的频段。
•13
第1章 绪论
射线
(a) 电离层
(b) 对流层
(c)
(d)
图1— 5
(a) 直射传播; (b) 地波传播; (c) 天波传播; (d) 散射传播
•14
第1章 绪论
5. 调制特性 无线电传播一般都要采用高频(射频)的另一个原 因就是高频适于天线辐射和无线传播。 只有当天线的尺 寸到可以与信号波长相比拟时, 天线的辐射效率才会较高, 从而以较小的信号功率传播较远的距离, 接收天线也才能 有效地接收信号。
《高频电子电路》课件
调谐放大器广泛应用于通信、雷达、电视、广播等领域,用于提取和 放大所需的高频信号。
振荡器
振荡器概述
振荡器是一种能够产生一定 频率和波形输出的电子电路 ,广泛应用于信号源、频率 合成、调制解调等领域。
工作原理
振荡器通过正反馈和选频网 络,在某一特定频率上产生 自激振荡,输出具有一定幅 度和相位的波形。
电路组成
振荡器主要由放大器、正反 馈网络和选频网络三部分组 成。
应用场景
振荡器在通信、雷达、电子 测量、自动控制等领域有广 泛应用,用于产生各种波形 和频率的信号。
频率变换电路
频率变换电路概述 工作原理 电路组成 应用场景
频率变换电路是一种实现信号频率变换的电子电路,通过将输 入信号的频率进行变换,得到所需的输出信号。
高频电子电路的基本组成
信号源
产生高频信号,是高频 电子电路的核心部分。
放大器
对信号进行放大,提高 信号的幅度和功率。
滤波器
对信号进行滤波,提取 所需频率的信号,抑制
无用频率的信号。
振荡器
产生高频振荡信号,用 于信号的调制和解调。
02
高频电子电路基础知识
信号与系统
信号的分类
信号可以分为连续信号和离散 信号,也可以分为模拟信号和
是能够方便地处理复杂信号和系统。
04
高频电子电路元件
电感器
电感器定义
电感器是利用电磁感应原理制成的元 件,其特性是能够存储磁场能量。
电感器种类
空心电感器、铁氧体磁芯电感器、铜 芯电感器等。
电感器作用
滤波、振荡、延迟、陷波等。
电感器参数
电感量、品质因数、分布电容等。
电容器
电容器定义