2.3变量间的相关关系(教、学案)
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_2

§2.3变量间的相关关系1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。
2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系3.两个变量具有线性相关关系时,会在数点图中作出线性回归直线,会用线性回归进行预测。
请同学们阅读教材P 84—P 91内容1.如果散点图中的分布从整体上看我们就称这两个变量之间具有 __这条直线中2.求回归方程的关键是如何用数学的方法来刻画“ ”如何实现这一目标呢?3.小结求回归方程的一般步骤:第一步,计算平均数______________.第二步,求和____________________.第三步,计算____________________.第四步,写出回归方程 ______________.4.利用计算器或计算机,如何求回归方程?5.线性回归直线a x b y +=的几何意义是:x 每增加一个单位,y 就相应 或 个单位,而不是 倍。
二、新课导学※ 探索新知新知1:线性相关如果散点图中的点分布从整体上看大致在一条直线附近,则这两个变量之间具有线性相关关系。
新知2:回归直线两个变量具有线性相关关系时,它们的散点图在一条直线附近,则这条直线称为回归直线。
新知3:回归直线方程分析与求法:分析:一是所求的回归直线方程只是“大体上”上接近了回归方程而且方程不唯一,可信度不高:二是没有从几何直观和代数精确上对回归直线作刻画,不能作合理的可靠的数学解释。
求回归方程的一般步骤:第一步,计算平均数 第二步,求和;,y x ;,∑∑==n i i n i i i x y x 121第三步,计算第四步,写出回归方程※ 典型例题例1.下列两个变量之间的关系,哪个不是函数关系 ( )A .角度和它的余弦值B .正方形的边长和面积C .正n 边形的边数和内角度数之和D .人的年龄与身高例2.下列两个变量中具有相关关系的是( )A .正方形的体积与边长B .匀速行驶的车辆的行驶距离与时间C .人的身高与体重D .人的身高与视力例 3.由一组10个数据(x i ,y i )算得 则b = ,a = ,回归方程为_____________________.※ 动手试试练1.下列那些变量是相关关系( )A.出租车与行驶里程B.房屋面积与房屋造价C.身高与体重D.铁球的体积大小与其体重练2.工人月工资y 与劳动生产率x 变化的回归方程y=50+80x ,下列判断正确的是( ) ①劳动生产率为1千克每小时时,工资为130元.②劳动生产率提高1千克每小时时,工资提高80元.③劳动生产率提高1千克每小时时,工资提高130元.④劳动生产率为2千克每小时时,工资为210元.A .①②B .①②④C. ②④ D . ①②③④练3.下列说法中不正确的是( )A.两个变量具有线性相关关系时,求出的回归方程才有意义;)())((1221121x b y a x n x y x n y x x x y y x x b n i i n i i i n i ini i i -=--=---=∑∑∑∑====,.a bx y +=∧,10,5==y x ,292,583121==∑∑==ni i n i i i x y xB.散点图能直观的反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.回归直线y=ax+b 一定经过(i x ,i y )(i=1,2,…,n)中的某些点三、总结提升1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。
「精品」高中数学第二章统计2.3变量间的相关关系教学案新人教A版必修3

2.3 变量间的相关关系(1)函数关系与相关关系的区别与联系是什么?(2)如何判断两个变量之间是否具备相关关系?(3)什么是正相关、负相关?与散点图有什么关系?[新知初探]1.相关关系如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系叫做相关关系.2.散点图将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,利用散点图,可以判断两个变量是否相关,相关时是正相关还是负相关.3.正相关和负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域.(2)负相关:散点图中的点散布在从左上角到右下角的区域.[点睛] 对正相关和负相关的理解(1)正相关随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少变多.(2)负相关随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关关系,我们称为负相关.例如,汽车越重,每消耗1 L 汽油所行驶的平均路程就越短.4.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ). ②设所求回归方程为y ^=b ^x +a ^,其中a ^,b ^是待定参数. ③由最小二乘法得⎩⎪⎨⎪⎧b ^=∑i =1nx i-x y i-y ∑i =1nx i-x 2=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2a ^=y -b ^x其中:b ^是回归方程的斜率,a ^是截距.[小试身手]1.下列命题正确的是( ) ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究. A .①③④ B .②③④ C .③④⑤D .②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图图2.由这两个散点图可以判断()A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关.3.若施肥量x (kg)与水稻产量y (kg)的线性回归方程为y ^=5x +250,当施肥量为80 kg 时,预计水稻产量约为________kg.解析:把x =80代入回归方程可得其预测值y ^=5×80+250=650(kg). 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.. 解析:由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50). 设回归直线方程为y ^=6.5x +a ^, ∵回归直线过样本中心(x ,y ), ∴50=6.5×5+a ^,即a ^=17.5, ∴回归直线方程为y ^=6.5x +17.5 答案:y ^=6.5x +17.5[典例] (1)①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.(2)某个男孩的年龄与身高的统计数据如下表所示.年龄x(岁)12345 6身高y(cm)788798108115120①画出散点图;②判断y与x是否具有线性相关关系.[解析] (1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x,y不具有相关关系.答案:①④求回归方程[典例] (1)已知变量x与y正相关,且由观测数据算得样本平均数x=3,y=3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系;③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:③由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i .(4)计算x ,y ,∑i =1nx 2i ,∑i =1nx i y i .(5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1nx i y i -n x y ∑i =1nx 2i-n x2,a ^=y -b ^x .(6)写出回归直线方程y ^=b ^x +a ^. [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.(2)x =1+2+3+44=52, y =1+3+4+54=134, ∑i =14x i y i =1+6+12+20=39.∑i =14x 2i =1+4+9+16=30, b ^=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求的回归直线方程.[典例] 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5, ∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑i =14x 2i =32+42+52+62=86, 所以b ^=∑i =14x i y i -4x y∑i =14x 2i -4x 2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35.所以所求的线性回归方程为y ^=0.7x +0.35.(3)当x =100时,y ^=0.7×100+0.35=70.35(吨标准煤),90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:it iy it 2it i y i1 2 3 4 5 1 2 3 4 5 5 6 7 8 10 1 4 9 16 25 5 12 21 32 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.∑i =1nt 2i -n t -2=55-5×32=10,i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( ) A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C. 2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A.y ^=1.5x +2 B.y ^=-1.5x +2 C.y ^=1.5x -2 D.y ^=-1.5x -2解析:选B 设回归方程为y ^=b ^x +a ^,由散点图可知变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,所以b ^<0,a ^>0,因此方程可能为y ^=-1.5x +2.3.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( )A .直线l 过点(x ,y )B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误.4.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0解析:选C 当b ^=0时,r =0,这时不具有线性相关关系,但b ^能大于0,也能小于0. 5.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出.(参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406) 解:依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98,又∵∑i =110x i y i =117.7,∑i =110x 2i =406, ∴b ^=∑i =110x i y i -10x y∑i =110x 2i -10x 2≈0.17,a ^=y -b ^x =0.81,∴y ^=0.17x +0.81.∴所求的回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81=2.34(万元).可估计年收入为9万元的家庭每年饮食支出约为2.34万元.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( )A .确定性关系B .相关关系C .函数关系D .无任何关系解析:选B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.2.农民工月工资y (元)依劳动生产率x (千元)变化的回归直线方程为y ^=50+80x ,下列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元解析:选B 由回归直线方程y ^=50+80x 知,x 每增加1,y 增加80,但要注意x 的单位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析:选C 计算得,x =174+176+176+176+1785=176,y =175+175+176+177+1775=176,根据回归直线经过样本中心(x ,y )检验知,C 符合.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.y ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.y ^<b ′,a ^<a ′解析:选C 由(1,0),(2,2)求b ′,a ′.b ′=2-02-1=2,a ′=0-2×1=-2.求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136,∑i =16x 2i =1+4+9+16+25+36=91, ∴b ^=58-6×3.5×13691-6×3.52=57, a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′.5.正常情况下,年龄在18岁到38岁的人,体重y (kg)对身高x (cm)的回归方程为y ^=0.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右.解析:用回归方程对身高为178 cm 的人的体重进行预测,当x =178时,y ^=0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a ,则a =________. 解析:x =4+5+6+7+8+96=132,y =92+82+80+80+78+686=80,由回归方程过样本中心点(x ,y ) 得80=-4×132+a ^.即a ^=80+4×132=106.答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y 具备线性相关关系,回归方程为y ^=10.47-1.3x ,估计该台机器最为划算的使用年限为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的人数5~32人,船员人数y 关于吨位x 的回归方程为y ^=9.5+0.006 2x ,(1)若两艘船的吨位相差1 000,求船员平均相差的人数; (2)估计吨位最大的船和最小的船的船员人数. 解:(1)设两艘船的吨位分别为x 1,x 2,则 y ^1-y ^2=9.5+0.006 2x 1-(9.5+0.006 2x 2)=0.006 2×1 000≈6, 即船员平均相差6人.(2)当x =192时,y ^=9.5+0.006 2×192≈11, 当x =3 246时,y ^=9.5+0.006 2×3 246≈30.即估计吨位最大和最小的船的船员数分别为30人和11人.9.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:(1)求x ,y ;(2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?(提示:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487)解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917≈79.86.(2)∵b ^=3 487-7×6×79.86280-7×62≈4.75, a ^=79.86-4.75×6=51.36,∴纯利与每天销售件数x 之间的回归直线方程为y ^=51.36+4.75x .(3)当y ^=200时,200=4.75x +51.36,所以x ≈31.29.因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n(y 1+y 2+…+y n )+⎝⎛⎭⎪⎫1+1+ (1)=2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n +2的平均数和方差分别是( )A.x 和s 2B .3x 和9s 2C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n 的方差为s 2,所以3x 1+2,3x 2+2,…,3x n +2的方差为9s 2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( )A .x =9B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分)13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.解析:由平均数为10,得(x +y +10+11+9)×15=10,则x +y =20;又方差为2,∴[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x 2+y 2=208,2xy =192,∴|x -y |=x -y2=x 2+y 2-2xy =4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44716.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x 人,依题意得5100=x40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57,∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:(1)由分组[10,15)的频数是10, 频率是0.25知, 10M=0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解:(1)由题意知n =10,x =1n ∑i =1nx i =8010=8,精品资料值得拥有21y=1n∑i=1ny i=2010=2,又∑i=110x2i-10x2=720-10×82=80,∑i=110x i y i-10x y=184-10×8×2=24,由此得b^=∑i=110x i y i-10x y∑i=110x2i-10x2=2480=0.3,a^=y-b^x=2-0.3×8=-0.4,故所求回归方程为y^=0.3x-0.4.(2)由于变量y的值随x的值增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7千元.。
变量间的相关关系教案

一、教案基本信息1. 教学科目:数学2. 教学年级:八年级3. 教学课时:2课时4. 教学目标:(1) 理解变量间的相关关系的概念(2) 学会判断变量间的正相关、负相关和无关关系(3) 能够运用相关关系解决问题二、教学重点与难点1. 教学重点:(1) 变量间的相关关系概念(2) 判断变量间的正相关、负相关和无关关系的方法2. 教学难点:(1) 相关系数的概念及其计算方法(2) 运用相关关系解决实际问题三、教学方法与手段1. 教学方法:(1) 讲授法:讲解变量间的相关关系概念及判断方法(2) 案例分析法:分析实际问题,引导学生运用相关关系解决问题(3) 小组讨论法:分组讨论,培养学生的合作与交流能力2. 教学手段:(1) 投影仪:展示相关关系图像和实际问题案例(2) 计算机软件:运用数学软件进行相关系数的计算和分析四、教学内容与步骤1. 第一课时(1) 导入新课:介绍变量间的相关关系概念(2) 讲解相关关系:阐述正相关、负相关和无关关系的定义及特点(3) 案例分析:分析实际问题,引导学生运用相关关系解决问题(4) 课堂练习:布置相关练习题,巩固所学内容2. 第二课时(1) 复习导入:回顾上节课的内容,引入新的知识点(2) 讲解相关系数:介绍相关系数的概念及其计算方法(3) 运用相关关系解决实际问题:通过案例分析,引导学生运用相关关系解决实际问题(4) 课堂练习:布置相关练习题,巩固所学内容五、课后作业与评价1. 课后作业:(1) 完成课后练习题,巩固所学知识(2) 选取一个实际问题,运用相关关系进行分析和解决2. 评价方法:(1) 课堂表现:观察学生在课堂上的参与程度、提问回答等情况(2) 课后作业:检查学生作业完成情况,评估其对知识的掌握程度(3) 小组讨论:评价学生在小组讨论中的表现,包括合作与交流能力六、教学拓展与延伸1. 介绍其他衡量变量间关系的方法,如散点图、回归直线等。
2. 探讨相关关系在实际生活中的应用,如经济学、生物学、社会学等领域。
人教版数学高一-统计2.3 变量相关关系 教学设计

(五)课后练习
高中教学质量监控讲义A数学必修3基础训练(21)
(六)板书设计
概念板书例题示范学生板演
教学
反思
(2)变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容,本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。
教辅资源
中学第二教材高中教学质量监控讲义A基础训练多媒体投影仪
教学
目标
分析
知识与技能
(1)了解变量间的相关及正,负相关的概念;
像能用直线方程 近似表示的相关关系叫做线性相关关系.
4.线性回归方程:
一般地,设有 个观察数据如下:
…
…
当 使 取得最小值时,就称 为拟合这 对数据的线性回归方程,该方程所表示的直线称为回归直线.
上述式子展开后,是一个关于 的二次多项式,应用配方法,可求出使 为最小值时的 的值.即
,(*) ,
其中a是回归方程的率,b是截
1、如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);
2、如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);
3、如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。
(二)新课教学
【探究新知】
3.线性相关关系:
使用年限
2
3
4
5
6
维修费用
2.2
3.8
5.5
6.5
7.0
设 对 程线性相关关系.试求:(1)线性回归方程 的回归系数 ;
高二数学 2.3 变量间的相关关系导学案 新人教A版必修3

《2.3变量间的相关关系》【知识链接】问题1:在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢? 请同学们如实填写下表(在空格中打“√” ):好 中 差 你的数学成绩 你的物理成绩问题2: 某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?【知识梳理】 1.相关关系(1)定义:如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的______性,那么这两个变量之间的关系,叫做相关关系.(2)两类特殊的相关关系:如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为正相关,如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为负相关. 2.线性相关(1)定义:如果两个变量散点图中点的分布从整体上看大致在一条______附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做__________.(2)最小二乘法:求线性回归直线方程y ^ =b ^x +a ^时,使得样本数据的点到它的______________最小的方法叫做最小二乘法,其中a ^,b ^的值由以下公式给出: ⎩⎪⎨⎪⎧b ^=∑ni =1 xi -x yi -y ∑n i =1 xi -x 2=∑ni =1xiyi -n x y ∑n i =1x2i -n x 2,a ^= ,其中,b ^是回归方程的____________,a ^是回归方程在y 轴上的______.小结:线性回归分析涉及大量的计算,形成操作上的一个难点,可以利用计算机非常方便地作散点图、回归直线,并能求出回归直线方程.因此在学习过程中,要重视信息技术的应用. 自主小测1、下列图形中具有相关关系的两个变量是( )2、某单位为了解用电量y(千瓦时)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温/℃ 18 13 10 -1 用电量/千瓦时24343864由表中数据得线性回归方程y ^ =b ^x +a ^中b ^≈-2,则a ^≈__________.课 上 导 学 案 教师点拨1:两个变量间的关系分为三类:一类是确定性的函数关系,如正方形的边长与面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,这种关系就是相关关系,例如,某位同学的“物理成绩”与“数学成绩”之间的关系,我们称它们为相关关系;再一类是不相关,即两个变量间没有任何关系.教师点拨2:①相关关系与函数关系的异同 相同点:两者均是指两个变量的关系.不同点:函数关系是一种确定的关系.如匀速直线运动中时间t 与路程s 的关系;相关关系是一种非确定的关系.如一块农田的水稻产量与施肥量之间的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,可能是伴随关系. ②线性回归直线方程的性质(1)回归直线过样本数据的中心.所谓样本数据的中心,对于单变量样本数据而言,平均数是样本数据的中心;对于以(xn ,yn)为样本数据而言,(x ,y )为样本点的中心,根据最小二乘法原理,回归直线一定过样本点的中心.(2)回归直线的单调性与样本数据的相关性.如果样本数据对应的点具有线性相关关系,从回归直线方程来看,当系数b >0时,直线单调递增,此时这两个变量正相关;当b <0时,直线单调递减,此时这两个变量负相关. 【例题讲解】【例题1】 设对变量x ,y 有如下观察的数据:x 151 152 153 154156157158159 160 162 163 164 y40414141.5 4242.5 434445454645.5(1)画出散点图.(2)判断变量x ,y 是否具有相关关系?如果具有相关关系,那么是正相关还是负相关?【例题2】 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^ =b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【例题3】 下列变量之间的关系属于相关关系的是( ) A .圆的周长和它的半径之间的关系B .价格不变的条件下,商品销售额与销售量之间的关系C .家庭收入愈多,其消费支出也有增长的趋势D .正方形面积和它的边长之间的关系 【当堂检测】1.已知x ,y 的取值如下表:x 0 1 3 4 y2.24.34.86.7从散点图可以看出y 与x 线性相关,且回归方程为$y =0.95x +a ,则a =( )A .3.25B .2.6C .2.2D .0 2.某考察团对全国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y 与x 具有相关关系,回归方程为$y =0.66x +1.562.若某城市居民人均工资为9 000元,则其居民人均消费水平为__________千元.3.某商店统计了最近6个月某商品的进价x 与售价y(单位:元)的对应数据如下:x 3 5 2 8 9 12 y46391214则x =________,y =________,621ii x=∑=__________,61iii x y=∑=__________,回归直线方程为__________.4.假设关于某设备的使用年限x 和所支出的维修费用y(万元)有如下的统计资料:使用年限x 2 3 4 5 6 维修费用y2.23.85.56.57.0若由资料知y 对x 成线性相关关系.试求:(1)线性回归方程$y =$bx a $的回归系数b $与$a ;(2)估计使用年限为10年时,维修费用是多少?【问题与收获】基础知识答案:1.(1)随机 (2)左下 右上 左上 右下2.(1)直线 回归直线 (2)距离的平方和 y -b ^x 斜率 截距自主小测答案:1、 C A 项中显然任给一个x 都有唯一确定的y 和它对应,是一种函数关系;B 项也是一种函数关系;C 项中从散点图可以看出所有点看上去都在某条直线附近波动,具有相关关系,而且是一种线性相关关系;D 项中所有的点在散点图中没有显示任何关系,因此变量间是不相关的.2、60 x =18+13+10-14=10,y =24+34+38+644=40,则a ^=y -b ^x ≈40+2×10=60. 例题答案:【例题1】 解:(1)画出散点图.(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x 的值由小变大时,另一个变量y 的值也由小变大,所以它们具有正相关关系. 【例题2】 解:(1)散点图,如图所示.(2)由题意,得∑4i =1xiyi =3×2.5+4×3+5×4+6×4.5=66.5, x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑4i =1x2i =32+42+52+62=86, 则b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35, 故线性回归方程为y ^=0.7x +0.35.(3)根据线性回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35, 故消耗能源减少了90-70.35=19.65(吨).【例题3】 正解:因选项A ,B ,D 中的两个变量间都有唯一确定的关系,因而它们都是函数关系;而选项C 中家庭收入会对消费支出产生一定的影响,但高收入未必有高消费,因而选项C 中的关系才是相关关系.故选C .当堂检测答案:1.B 线性回归方程一定经过样本取值的平均数点(x ,y ),由取值表可计算x =01344+++=2,y =2.2 4.3 4.8 6.74+++=92,知回归方程为$y =0.95x +a ,又经过点(2,92),代入得a =2.6.2.7.502 当x =9千元时,y =0.66×9+1.562=7.502.3.6.5 8 327 396 $y =1.14x +0.59 根据公式代入即可求得,也可以利用计算器求得,x =6.5,y =8,621ii x=∑=327,61i ii x y=∑=396,回归直线方程为$y =1.14x +0.59.。
数学:2.3《变量间的相关关系》PPT课件

第十六页,编辑于星期日:十二点 二十分。
变量的相关关系的成语吗?
第七页,编辑于星期日:十二点 二十分。
第八页,编辑于星期日:十二点 二十分。
(一)复习回顾
1、散点图
2、正相关
3、负相关
根据下表,作出散点图
第九页,编辑于星期日:十二点 二十分。
(二)回归直线
1、变量间的线性相关 如果散点图中点的变量之间具有线性 相关关系。
• 教学重点 :作出散点图和根据给出的线性 回归方程系数公式建立线性回归方程。
• 教学难点 :对最小二乘法的理解。
第三页,编辑于星期日:十二点 二十分。
1、变量之间除了函数关系外,还有相关关系。 例:(1)商品销售收入与广告支出经费之间的关系
(2)粮食产量与施肥量之间的关系 (3)人体内脂肪含量与年龄之间的关系
问题归结为:a,b取什么值时Q最小,即总体和最小.下面 是计算回归方程的斜率和截距的一般公式.
根据最小二乘法和上述公式可以求回归方程.
第十三页,编辑于星期日:十二点 二十分。
练习:根据下表,求回归方程.
第十四页,编辑于星期日:十二点 二十分。
1、列表
2、代入公式计算 3、写出回归直线方程
第十五页,编辑于星期日:十二点 二十分。
新课标人教版课件系列
《高中数学》
必修3
第一页,编辑于星期日:十二点 二十分。
2.3 《变量间的相关关系》
第二页,编辑于星期日:十二点 二十分。
教学目标
• 1. 通过收集现实问题中两个有关联变量的 数据作出散点图,并利用散点图直观认识变 量间的相关关系;
• 2. 知道最小二乘法的思想,能根据给出的 线性回归方程系数公式建立线性回归方程。
变量间的相关关系教案
变量间的相关关系优秀教案第一章:引言1.1 教学目标让学生理解变量间的相关关系概念让学生掌握绘制散点图的方法让学生了解相关系数的概念1.2 教学内容变量间的相关关系定义散点图的绘制方法相关系数的概念及计算方法1.3 教学过程1.3.1 导入通过实际例子引入变量间的相关关系概念,如身高与体重的关系。
1.3.2 新课导入讲解变量间的相关关系定义,解释相关系数的概念。
演示如何绘制散点图,让学生跟随操作。
1.3.3 案例分析提供一些实际数据,让学生绘制散点图,并计算相关系数。
1.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的变量间相关关系。
1.4 教学评价通过课堂练习和讨论,评估学生对变量间的相关关系的理解和应用能力。
第二章:线性相关关系2.1 教学目标让学生理解线性相关关系的概念让学生掌握线性相关关系的判断方法让学生学会绘制线性回归直线2.2 教学内容线性相关关系的定义线性相关关系的判断方法线性回归直线的绘制方法2.3 教学过程2.3.1 导入通过实际例子引入线性相关关系概念,如房价与面积的关系。
2.3.2 新课导入讲解线性相关关系的定义,解释线性回归直线的概念。
演示如何判断线性相关关系,让学生跟随操作。
2.3.3 案例分析提供一些实际数据,让学生判断线性相关关系,并绘制线性回归直线。
2.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的线性相关关系。
2.4 教学评价第三章:非线性相关关系3.1 教学目标让学生理解非线性相关关系的概念让学生掌握非线性相关关系的判断方法让学生学会绘制非线性回归直线3.2 教学内容非线性相关关系的定义非线性相关关系的判断方法非线性回归直线的绘制方法3.3 教学过程3.3.1 导入通过实际例子引入非线性相关关系概念,如温度与冰点的关系。
3.3.2 新课导入讲解非线性相关关系的定义,解释非线性回归直线的概念。
演示如何判断非线性相关关系,让学生跟随操作。
2.3变量间的关系
伽师县第一中学2019-2021学年第一学期主备人电子教案师生一起总结归纳,老师负责引导学生,多让学生讨论响.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23273841454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加.我们可以作散点图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述关,回归方程的概念及计算系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强. 实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.)1(,)())((2121121x b y a x n xyx n yx x x y y x x b ni ini ii n i i ni i i其中,b 是回归方程的斜率,a 是截距. 推导公式①的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理.假设我们已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ), 且所求回归方程是^y =bx+a,其中a 、b 是待定参数.当变量x 取x i (i=1,2,…,n)时可以得到^y =bx i +a(i=1,2,…,n),它与实际收集到的y i 之间的偏差是y i -^y =y i -(bx i +a)(i=1,2,…,n). (7)利用计算机求回归直线的方程.根据最小二乘法的思想和公式①,利用计算器或计算机,可以方便地求出回归方程.以Excel 软件为例,用散点图来建立表示人体的脂肪含量与年龄的相关关系的线性回归方程,具体步骤如下:①在Excel 中选定表示人体的脂肪含量与年龄的相关关系的散点最后师生一起回顾这节课所学习的内容,并进行总结归图(如下图),在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的回归方程^y =0.577x-0.448.(8)利用计算器求回归直线的方程.用计算器求这个回归方程的过程如下:所以回归方程为^y=0.577x-0.448.四、课堂小结1.求线性回归方程的步骤:(1)计算平均数yx,;(2)计算x i与y i的积,求∑x i y i;(3)计算∑x i2,∑y i2,(4)将上述有关结果代入公式。
2.3变量间的相关关系
2.3变量间地相关关系一、教材分析本节知识内容不多,但分析本节内容,至少有下列特点:1)知识地联系面广,应用性强,概念地真正理解有难度,教学既要承前启后,完成统计必修基础知识地构建;也要知道知识地来龙去脉,提升学生运用统计知识解决实际问题地能力,更要抓住本质,正确理解统计推断地结论.2)通过典型案例进行教学,使知识形成地过程中具有可操作性,易于创设问题情境,引导学生参与,而学生借助解决问题,通过自主思维活动,会产生感悟、发现,能提出问题,思考交流,不仅能正确、全面地理解基础知识和基本方法,而且能促进、发展学生地统计意识、统计思想.二、教学目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系;2.知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.三、教学重点难点重点:作出散点图和根据给出地线性回归方程系数公式建立线性回归方程.难点:对最小二乘法地理解.四、学情分析本节是一种对样本数据地处理方法,但侧重地是由样本推断总体,其方法是学生初识地、知识地作用也是学生初见地.知识量并不大,但涉及地数学方法、数学思想较充分,同时,在教材中留有供发现地点,设有开放性问题,既具有体验数学方法、数学思想地功能,也具有培养学生从具体到抽象能力、锻炼创造性思维能力地作用.五、教学方法1.自主探究,互动学习2.学案导学:见后面地学案.3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生地学习准备:预习课本,初步把握必须地定义.2.教师地教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案.七、课时安排:1课时八、教学过程〖复习回顾〗标准差地公式为:______________________________________________________〖创设情境〗1、函数是研究两个变量之间地依存关系地一种数量形式.对于两个变量,如果当一个变量地取值一定时,另一个变量地取值被惟一确定,则这两个变量之间地关系就是一个函数关系2、在中学校园里,有这样一种说法:“如果你地数学成绩好,那么你地物理学习就不会有什么大问题.”按照这种说法,似乎学生地物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间地关系是函数关系吗?3、“名师出高徒”可以解释为教师地水平越高,学生地水平就越高,那么学生地学业成绩与教师地教学水平之间地关系是函数关系吗?〖新知探究〗思考:考察下列问题中两个变量之间地关系: (1)商品销售收入与广告支出经费; (2)粮食产量与施肥量;(3)人体内地脂肪含量与年龄.这些问题中两个变量之间地关系是函数关系吗?一、相关关系:自变量取值一定时,因变量地取值带有一定随机性地两个变量之间地关系,叫做相关关系. 【说明】函数关系是一种非常确定地关系,而相关关系是一种非确定性关系. 思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”地警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起地,所以可以吸烟”地说法对吗?2、某地区地环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣地现象,如果村庄附近栖息地天鹅多,那么这个村庄地婴儿出生率也高,天鹅少地地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子.你认为这样地结论可靠吗?如何证明这个问题地可靠性?分析:(1)吸烟只是影响健康地一个因素,对健康地影响还有其他地一些因素,两者之间非函数关系即非因果关系;(2)不对,这也是相关关系而不是函数关系.上面提到了很多相关关系,那它们之间地相关关系强还是弱?我们下面来研究一下. 二、散点图探究:在一次对人体脂肪含量和年龄关系地研究中,研究人员获得了一组样本数据:其中各年龄对应地脂肪数据是这个年龄人群脂肪含量地样本平均数. 思考探究:1、对某一个人来说,他地体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定地规律性.观察上表中地数据,大体上看,随着年龄地增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间地更明确地关系,我们需要对数据进行分析,通过作图可以对两个变量之间地关系有一个直观地印象.以x 轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应地图形吗?表示具有相关关系地两个变量地一组数据图 形称为散点图.3、观察人地年龄地与人体脂肪含量散点图地大致趋势,有什么样地特点?阅读课本85~86P ,这种相关关系我们称为什么?还有没有其他地相关关系?它又有怎样地特点?三、线性相关、回归直线方程和最小二乘法 在各种各样地散点图中,有些散点图中地点是杂乱分布地,有些散点图中地点地分布有一定地规律性,年龄和人体脂肪含量地样本数据地散点图中地点地分布有什么特点? 如果散点图中地点地分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.我们所画地回归直线应该使散点图中地各点在整体上尽可能地与其接近.我们怎么来实现这一目地呢?说一说你地想法.设所求地直线方程为yˆ=bx +a ,其中a 、b 是待定系数. 则yˆi =bx i +a (i=1,2,…,n).于是得到各个偏差 y i -yˆi=y i-(bx i +a)(i=1,2,…,n ) 显见,偏差y i -yˆi地符号有正有负,若将它们相加会造成相互抵消,所以它们地和不能代表几个点与相应直线在整体上地接近程度,故采用n 个偏差地平方和Q =(y 1-b x1-a)2+(y 2-bx 2-a )2+…+(y n-b xn-a )2 表示n 个点与相应直线在整体上地接近程度. 记Q =∑=--ni i ia bx y12)(这样,问题就归结为:当a 、b取什么值时Q最小,a 、b地值由下面地公式给出:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.,)())((1221121x b y a x n x yx n yx x x y y x x b ni i ni iini i ni i i其中x =n1∑=ni i x 1,y =n1∑=ni iy1,a 为回归方程地斜率,b 为截距.求回归直线,使得样本数据地点到它地距离地平方和最小地方法叫最小二乘法. 【例题精析】有一个同学家开了一个小卖部,他为了研究气温对热饮销售地影响,经过统计,得到一个卖出地饮料杯数与当天气温地对比表:(1)画出散点图;(2)从散点图中发现气温与热饮杯数之间关系地一般规律; (3)求回归方程;(4)如果某天地气温是2℃,预测这天卖出地热饮杯数. 解:(4)当x=2时,y=143.063(四)反思总结,当堂检测.1、求样本数据地线性回归方程,可按下列步骤进行: (1)计算平均数x ,y ; (2)求a ,b ;(3)写出回归直线方程.2、回归方程被样本数据惟一确定,对同一个总体,不同地样本数据对应不同地回归直线,所以回归直线也具有随机性..3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具线性相关关系,即不存在回归直线,那么所得地“回归方程”是没有实际意义地.因此,对一组样本数据,应先作散点图,在具有线性相关关系地前提下再求回归方程教师组织学生反思总结本节课地主要内容,并进行当堂检测.设计意图:引导学生构建知识网络并对所学内容进行简单地反馈纠正.(课堂实录) (五)发导学案、布置预习.完成本节地课后练习及课后延伸拓展作业.设计意图:布置下节课地预习作业,并对本节课巩固提高.教师课后及时批阅本节地延伸拓展训练.九、板书设计十、教学反思本课地设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑地地方.课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率地目地.本节课学习了变量间地相互关系和两个变量地线性相关,以及最小二乘法和回归直线地定义,体会了用最小二乘法解决两个变量线性相关地方法,在解决问题中要熟练掌握求回归系数b、a地公式,精确计算.同时,要注意培养学生地观察分析两变量地关系和抽象概括地能力在后面地教学过程中会继续研究本节课,争取设计地更科学,更有利于学生地学习,也希望大家提出宝贵意见,共同完善,共同进步!2.3变量间相关关系课前预习学案一、预习目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系;2.知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.二、预习内容1.举例说明函数关系为什么是确定关系?2.一个人地身高与体重是函数关系吗?3.相关关系地概念:4.什么叫做散点图?5.回归分析,(1)求回归直线方程地思想方法;(2)回归直线方程地求法三、提出疑惑同学们,通过你地自主学习,你还有哪些疑惑,请把它填在下面地表格中课内探究学案一、学习目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系.2.经历用不同估算方法描述两个变量线性相关地过程,知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.二、学习重难点:重点:作出散点图和根据给出地线性回归方程系数公式建立线性回归方程难点:对最小二乘法地理解.三、学习过程思考:考察下列问题中两个变量之间地关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内地脂肪含量与年龄.这些问题中两个变量之间地关系是函数关系吗?(一)、相关关系:自变量取值一定时,因变量地取值带有一定随机性地两个变量之间地关系,叫做相关关系.【说明】函数关系是一种非常确定地关系,而相关关系是一种非确定性关系.思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”地警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起地,所以可以吸烟”地说法对吗?2、某地区地环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣地现象,如果村庄附近栖息地天鹅多,那么这个村庄地婴儿出生率也高,天鹅少地地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子.你认为这样地结论可靠吗?如何证明这个问题地可靠性?(二)、散点图探究:在一次对人体脂肪含量和年龄关系地研究中,研究人员获得了一组样本数据:其中各年龄对应地脂肪数据是这个年龄人群脂肪含量地样本平均数. 思考探究:1、对某一个人来说,他地体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定地规律性.观察上表中地数据,大体上看,随着年龄地增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间地更明确地关系,我们需要对数据进行分析,通过作图可以对两个变量之间地关系有一个直观地印象.以x轴表示年龄,y 轴表示脂肪含量,你能在直角坐标系中描出样本数据对应地图形吗?3、观察人地年龄地与人体脂肪含量散点图地大致趋势,有什么样地特点?阅读课本85~86P ,这种相关关系我们称为什么?还有没有其他地相关关系?它又有怎样地特点?(三)、线性相关、回归直线方程和最小二乘法在各种各样地散点图中,有些散点图中地点是杂乱分布地,有些散点图中地点地分布有一定地规律性,年龄和人体脂肪含量地样本数据地散点图中地点地分布有什么特点? 如果散点图中地点地分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.我们所画地回归直线应该使散点图中地各点在整体上尽可能地与其接近.我们怎么来实现这一目地呢?说一说你地想法.这样,问题就归结为:当a 、b 取什么值时Q 最小,a 、b 地值由下面地公式给出:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.,)())((1221121x b y a x n x yx n yx x x y y x x b ni i ni iini i ni i i其中x =n1∑=ni i x 1,y =n1∑=ni iy1,a 为回归方程地斜率,b 为截距.求回归直线,使得样本数据地点到它地距离地平方和最小地方法叫最小二乘法. 【例题精析】(1)将上表中地数据制成散点图.(2)你能从散点图中发现温度与饮料杯数近似成什么关系吗?(3)如果近似成线性关系地话,请求出回归直线方程来近似地表示这种线性关系. (4)如果某天地气温是-5℃时,预测这天小卖部卖出热茶地杯数.(四)反思总结1、求样本数据地线性回归方程,可按下列步骤进行: (1)计算平均数x ,y ; (2)求a,b ;(3)写出回归直线方程.2、回归方程被样本数据惟一确定,对同一个总体,不同地样本数据对应不同地回归直线,所以回归直线也具有随机性..3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得地“回归方程”是没有实际意义地.因此,对一组样本数据,应先作散点图,在具有线性相关关系地前提下再求回归方程.(五)当堂检测1.有关线性回归地说法,不正确地是 A.相关关系地两个变量不是因果关系 B .散点图能直观地反映数据地相关程度C.回归直线最能代表线性相关地两个变量之间地关系 D.任一组数据都有回归方程 2.下面哪些变量是相关关系A.出租车费与行驶地里程 B.房屋面积与房屋价格 C.身高与体重 D.铁地大小与质量3.回归方程yˆ=1.5x -15,则 A.y =1.5x -15 B.15是回归系数a C.1.5是回归系数a D.x =10时,y =04.r是相关系数,则结论正确地个数为①r∈[-1,-0.75]时,两变量负相关很强②r∈[0.75,1]时,两变量正相关很强③r∈(-0.75,-0.3]或[0.3,0.75)时,两变量相关性一般④r=0.1时,两变量相关很弱A.1B.2C.3 D.45.线性回归方程yˆ=bx+a过定点________.(1)画出散点图;(2)求回归方程.参考答案:1.答案:D解析:只有线性相关地数据才有回归直线.2.答案:C解析:A、B、D都是函数关系,其中A一般是分段函数,只有C是相关关系.3.答案:A解析:D中x=10时yˆ=0,而非y=0,系数a、b地意义要分清.4.答案:D解析:相关系数r地性质.5.答案:(x,y)解析:yˆ=bx+a,yˆ=bx+y-b x,(yˆ-y)=b(x-x)课后练习与提高1.下列两个变量之间地关系不具有线性关系地是( ) A.小麦产量与施肥值 B .球地体积与表面积C.蛋鸭产蛋个数与饲养天数D.甘蔗地含糖量与生长期地日照天数2.下列变量之间是函数关系地是( ) A.已知二次函数2y ax bx c =++,其中a ,c 是已知常数,取b 为自变量,因变量是这个函数地判别式:24b ac ∆=-B.光照时间和果树亩产量C.降雪量和交通事故发生率D .每亩施用肥料量和粮食亩产量3.下面现象间地关系属于线性相关关系地是( ) A .圆地周长和它地半径之间地关系B.价格不变条件下,商品销售额与销售量之间地关系 C .家庭收入愈多,其消费支出也有增长地趋势 D.正方形面积和它地边长之间地关系4.下列关系中是函数关系地是( ) A .球地半径长度和体积地关系 B.农作物收获和施肥量地关系 C .商品销售额和利润地关系D.产品产量与单位成品成本地关系5.设有一个回归方程为ˆ2 1.5yx =-,则变量x 增加一个单位时( )A.y 平均增加1.5单位 B.y 平均增加2单位 C .y 平均减少1.5单位 D.y 平均减少2单位6.工人月工资(x 元)与劳动生产率(x 千元)变化地回归直线方程为ˆ5080yx =+,下列判断不正确地是( ) A .劳动生产率为1000元时,工资约为130元B.劳动生产率提高1000元时,则工资平均提高80元C.劳动生产率提高1000元时,则工资平均提高130元 D.当月工资为210元时,劳动生产率约为2000元7.某城市近10年居民地年收入x 与支出y 之间地关系大致符合0.80.1y x =+(单位:亿元),预计今年该城市居民年收入为15亿元,则年支出估计是.8、在某种产品表面进行腐蚀线试验,得到腐蚀深度y与腐蚀时间x 之间对应地一组数据:(1)画出散点图;(2)试求腐蚀深度y对时间t 地回归直线方程.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includessome parts, includingtext,pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profitpurposes, but at the same time, they shall abide by the provisions of copyright law and other releva nt laws, and shall not infringe upon thelegit imaterights of this website and its relevant ob ligees. In addition, when any content or service of this article is used for other purposes, written p ermission and remuneration shallbe obtained from the person concernedand the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content ofthis article must be reasonable and good-faith citation for the useof newsorinformative publicfree information. It shallnot misinterp ret or modify the original intention of the content of this article, and shall bear legal liabilitysuch as copyright.。
高中数学 2.3 变量的相关性学案 新人教B版必修3
2.3.1 变量间的相关关系2.3.2 两个变量的线性相关1.理解两个变量的相关关系的概念.(难点)2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.(重点)3.会求回归直线方程.(重点)4.相关关系与函数关系.(易混点)[基础·初探]教材整理1 变量间的相关关系阅读教材P73,完成下列问题.1.两个变量的关系分类函数关系相关关系特征两变量关系确定两变量关系带有随机性将样本中n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形.3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.图231所示的两个变量不具有相关关系的有________.图231【解析】 ①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.【答案】 ①④教材整理2 两个变量的线性相关 阅读教材P 74~P 76,完成下列问题. 1.最小二乘法设x 、Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx .当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q=∑i =1n(y i -a-bx i )2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.2.回归直线方程的系数计算公式回归直线方程回归系数系数a ^的 计算公式方程或 公式y ^=a +bxb ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2a ^=y --b ^x上方加记号“^ ” 的意义区分y 的估计值y ^ 与实际值ya 、b 上方加“^ ”表示由观察值按最小二乘法求得 的估计值1.判断(正确的打“√”,错误的打“×”)(1)回归方程中,由x 的值得出的y 值是准确值.( ) (2)回归方程一定过样本点的中心.( ) (3)回归方程一定过样本中的某一个点.( )(4)选取一组数据中的部分点得到的回归方程与由整组数据得到的回归方程是同一个方程.( )【答案】 (1)× (2)√ (3)× (4) ×2.过(3,10),(7,20),(11,24)三点的回归直线方程是( ) A.y ^=1.75+5.75x B.y ^=-1.75+5.75x C.y ^=5.75+1.75xD.y ^=5.75-1.75x【解析】 求过三点的回归直线方程,目的在于训练求解回归系数的方法,这样既可以训练计算,又可以体会解题思路,关键是能套用公式.代入系数公式得b ^=1.75,a ^=5.75.代入直线方程,求得y ^=5.75+1.75x .故选C.【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________ 解惑:_________________________________________________________ 疑问2:_________________________________________________________ 解惑:_________________________________________________________ 疑问3:_________________________________________________________ 解惑:_________________________________________________________[小组合作型]相关关系的判断(1)下列两个变量之间的关系,哪个不是函数关系( )A.正方体的棱长和体积B.圆半径和圆的面积C.正n边形的边数和内角度数之和D.人的年龄和身高(2)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图②.由这两个散点图可以判断( )图232A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关【精彩点拨】结合相关关系,函数关系的定义及正负相关的定义分别对四个选项作出判断.【尝试解答】(1)A、B、C都是函数关系,对于A,V=a3;对于B,S=πr2;对于C,g(n)=(n-2)π.而对于年龄确定的不同的人可以有不同的身高,∴选D.(2)由图象知,变量x与y呈负相关关系;u与v呈正相关关系.【答案】(1)D (2)C判断两个变量x和y间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[再练一题]1.某公司2009~2014年的年利润x (单位:百万元)与年广告支出y (单位:百万元)的统计资料如下表所示: 年份 2009 2010 2011 2012 2013 2014 利润x 12.2 14.6 16 18 20.4 22.3 支出y0.620.740.810.8911.11A.利润中位数是16,x 与y 有正线性相关关系B.利润中位数是18,x 与y 有负线性相关关系C.利润中位数是17,x 与y 有正线性相关关系D.利润中位数是17,x 与y 有负线性相关关系【解析】 由表知,利润中位数是12(16+18)=17,且y 随x 的增大而增大,故选C.【答案】 C求回归直线方程一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间y (分)626875818995102108115122(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程. 【精彩点拨】 画散点图→确定相关关系→求回归直线系数 →写回归直线方程【尝试解答】 (1)画散点图如下:由上图可知y 与x 具有线性相关关系. (2)列表、计算:i 1 2 34 5 6 7 8 910 x i 10 20 30 40 50 60 70 80 90 100 y i 626875818995102108115122x i yi620 1 360 2 250 3 240 4 450 5 700 7 140 8 640 10 350 12 200x =55,y =91.7,∑i =110=x 2i =38 500,∑i =110y 2i =87 777,∑i =110x i y i =55 950b ^=∑i =110x i y i -10x y∑i =110x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668, a ^=y -b ^x =91.7-0.668×55=54.96.即所求的回归直线方程为:y ^=0.668x +54.96.用公式求回归方程的一般步骤: (1)列表x i ,y i ,x i y i ;(3)代入公式计算b ^、a ^的值; (4)写出回归方程.[再练一题]2.已知变量x,y有如下对应数据:x 123 4y 134 5(1)作出散点图;(2)用最小二乘法求关于x,y的回归直线方程.【解】(1)散点图如图所示:(2)x=1+2+3+44=52,y=1+3+4+54=134,∑i=14x i y i=1+6+12+20=39.∑i=14x2i=1+4+9+16=30,b^=39-4×52×13430-4×⎝⎛⎭⎪⎫522=1310,a^=134-1310×52=0,所以y^=1310x为所求回归直线方程.利用回归方程对总体进行估计下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 345 6y 2.534 4.5(1)(2)请根据上表提供的数据,用最小二乘法求出回归方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【导学号:25440039】【精彩点拨】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ^,a ^的值;(3)实际上就是求当x =100时,对应的v 的值.【尝试解答】 (1)散点图,如图所示:(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5, y =2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86, ∴b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7, a ^=y -b ^x =3.5-0.7×4.5=0.35,故线性回归方程为y ^=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨)标准煤.回归分析的三个步骤:(1)判断两个变量是否线性相关:可以利用经验,也可以画散点图;(2)求线性回归方程,注意运算的正确性;(3)根据回归直线进行预测估计:估计值不是实际值,两者会有一定的误差.[再练一题]3.某种产品的广告费支出y (百万元)与销售额x (百万元)之间的关系如下表所示.x 8 12 14 16 y58911(1)假定y 与x 之间存在线性相关关系,求其回归直线方程. (2)若广告费支出不少于60百万元,则实际销售额应不少于多少?【解】 (1)设回归直线方程为y ^=bx +a ,则b ^=438-412.5660-625=25.535=5170,a ^=y -b ^x =5+8+9+114-5170×8+12+14+164=334-5170×252=-67,则所求回归直线方程为y ^=5170x -67. (2)由y ^=5170x -67≥60,得x ≥4 26051≈84,所以实际销售额不少于84百万元.[探究共研型]散点图的特征探究 1 关系?【提示】 任意两个统计数据均可以作出散点图,对于作出的散点图,如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.特别地,若所有的样本点都落在某一直线附近,变量之间就具有线性相关关系;如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系;如果散点图中的点的分布几乎没有什么规则,则这两个变量之间不具有相关关系.回归直线的特征探究2 【提示】 (1)建立直角坐标系,两轴的长度单位可以不一致. (2)将n 个数据点描在平面直角坐标系中.(3)画回归直线时,一定要画在多数点经过的区域,可以先观察有哪两个点在直线上. 探究3 回归系数b ^的含义是什么?【提示】 (1)b ^代表x 每增加一个单位,y 的平均增加单位数,而不是增加单位数. (2)当b ^>0时,两个变量呈正相关关系,含义为:x 每增加一个单位,y 平均增加b ^个单位数;当b ^<0时,两个变量呈负相关关系,含义为:x 每增加一个单位,y 平均减少b ^个单位数.探究4 回归直线方程与直线方程的区别是什么?【提示】 线性回归直线方程中y 的上方加记号“^ ”是与实际值y 相区别,因为线性回归方程中的“y ^”的值是通过统计大量数据所得到的一个预测值,它具有随机性,因而对于每一个具体的实际值而言,y ^的值只是比较接近,但存在一定的误差,即y =y ^+e (其中e 为随机变量),预测值y ^与实际值y 的接近程度由随机变量e 的标准差决定.已知x 与y 之间的几组数据如下表:x 1 2 3 4 5 6 y21334假设根据上表数据所得线性回归直线方程为y =bx +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′【精彩点拨】 先由已知条件分别求出b ′,a ′的值,再由b ^,a ^的计算公式分别求解b ^,a ^的值,即可作出比较.【尝试解答】 根据所给数据求出直线方程y =b ′x +a ′和回归直线方程的系数,并比较大小.由(1,0),(2,2)求b ′,a ′.b ′=2-02-1=2, a ′=0-2×1=-2.求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136,∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57, a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′. 【答案】 C求回归直线方程时应注意的问题:(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,即使求出回归方程也是毫无意义的.(2)用公式计算a ^、b ^的值时,要先算出b ^,然后才能算出a ^,由a ^=y ^-b ^x 知回归直线必经过点(x ,y ).(3)利用回归方程,我们可以进行估计和预测.若回归直线方程为y ^=bx +a ,则x =x 0处的估计值为y ^=bx 0+a .[再练一题]4.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系.根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg【解析】 b ^为正数,所以两变量具有正的线性相关关系,故A 正确;B ,C 显然正确;若该大学某女生身高为170 cm ,则可估计其体重为58.79 kg.【答案】 D1.设一个回归方程y ^=3+1.2x ,则变量x 增加一个单位时( ) A.y 平均增加1.2个单位 B.y 平均增加3个单位 C.y 平均减少1.2个单位 D.y 平均减少3个单位【解析】 由b =1.2>0,故选A. 【答案】 A2.下列有关线性回归的说法,不正确的是( )A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C.回归方程最能代表观测值x 、y 之间的线性关系D.任何一组观测值都能得到具有代表意义的回归直线【解析】 只有数据点整体上分布在一条直线附近时,才能得到具有代表意义的回归直线.【答案】 D3.(2014·重庆高考)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4【解析】 因为变量x 和y 正相关,则回归直线的斜率为正,故可以排除选项C 和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A 和B 中的直线方程进行检验,可以排除B ,故选A.【答案】 A4.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8 y3040605070【导学号:25440040】【解析】 由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50), 设回归直线方程为y ^=6.5x +b , ∵回归直线过样本中心(5,50), ∴50=6.5×5+b ^,即b ^=17.5, ∴回归直线方程为y ^=6.5x +17.5. 【答案】 y ^=6.5x +17.5我还有这些不足:(1)_________________________________________________________ (2)_________________________________________________________ 我的课下提升方案:(1)_________________________________________________________ (2)_________________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张喜林制2. 3变量间的相关关系一、教材分析本节知识内容不多,但分析本节内容,至少有下列特点:1)知识的联系面广,应用性强,概念的真正理解有难度,教学既要承前启后,完成统计必修基础知识的构建;也要知道知识的来龙去脉,提升学生运用统计知识解决实际问题的能力,更要抓住本质,正确理解统计推断的结论。
2)通过典型案例进行教学,使知识形成的过程中具有可操作性,易于创设问题情境,引导学生参与,而学生借助解决问题,通过自主思维活动,会产生感悟、发现,能提出问题,思考交流,不仅能正确、全面地理解基础知识和基本方法,而且能促进、发展学生的统计意识、统计思想。
二、教学目标1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
三、教学重点难点重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程。
难点:对最小二乘法的理解。
四、学情分析本节是一种对样本数据的处理方法,但侧重的是由样本推断总体,其方法是学生初识的、知识的作用也是学生初见的。
知识量并不大,但涉及的数学方法、数学思想较充分,同时,在教材中留有供发现的点,设有开放性问题,既具有体验数学方法、数学思想的功能,也具有培养学生从具体到抽象能力、锻炼创造性思维能力的作用。
五、教学方法1.自主探究,互动学习2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习课本,初步把握必须的定义。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时八、教学过程〖复习回顾〗标准差的公式为:______________________________________________________〖创设情境〗1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。
”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3、“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?〖新知探究〗思考:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?一、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。
【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。
思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。
吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。
你认为这样的结论可靠吗?如何证明这个问题的可靠性?分析:(1)吸烟只是影响健康的一个因素,对健康的影响还有其他的一些因素,两者之间非函数关系即非因果关系;(2)不对,这也是相关关系而不是函数关系。
上面提到了很多相关关系,那它们之间的相关关系强还是弱?我们下面来研究一下。
二、散点图探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。
思考探究:1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形称为散点图。
3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本85~86P,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?三、线性相关、回归直线方程和最小二乘法在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。
我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。
我们怎么来实现这一目的呢?说一说你的想法。
设所求的直线方程为yˆ=bx+a,其中a、b是待定系数。
则yˆi=bx i+a(i=1,2,…,n).于是得到各个偏差y i-yˆi=y i-(bx i+a)(i=1,2,…,n)显见,偏差y i-yˆi的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2表示n个点与相应直线在整体上的接近程度。
记Q=∑=--niiiabxy12)(这样,问题就归结为:当a、b取什么值时Q最小,a、b的值由下面的公式给出:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.,)())((1221121x b y a x n x yx n yx x x y y x x b ni i ni iini i ni i i其中x =n1∑=ni i x 1,y =n1∑=ni iy1,a 为回归方程的斜率,b 为截距。
求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。
【例题精析】有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到(1)画出散点图;(2)从散点图中发现气温与热饮杯数之间关系的一般规律; (3)求回归方程;(4)如果某天的气温是2℃,预测这天卖出的热饮杯数。
解:(4)当x=2时,y=143.063(四)反思总结,当堂检测。
1、求样本数据的线性回归方程,可按下列步骤进行: (1)计算平均数x ,y ; (2)求a ,b ;(3)写出回归直线方程。
2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.。
3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的。
因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。
(课堂实录)(五)发导学案、布置预习。
完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。
教师课后及时批阅本节的延伸拓展训练。
九、板书设计本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。
课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
本节课学习了变量间的相互关系和两个变量的线性相关,以及最小二乘法和回归直线的定义,体会了用最小二乘法解决两个变量线性相关的方法,在解决问题中要熟练掌握求回归系数b、a的公式,精确计算.同时,要注意培养学生的观察分析两变量的关系和抽象概括的能力在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!2.3变量间相关关系课前预习学案一、预习目标1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
二、预习内容1.举例说明函数关系为什么是确定关系?2.一个人的身高与体重是函数关系吗?3. 相关关系的概念:4. 什么叫做散点图?5.回归分析,(1)求回归直线方程的思想方法;(2)回归直线方程的求法三、提出疑惑课内探究学案一、学习目标1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2.经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.二、学习重难点:重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程难点:对最小二乘法的理解。
三、学习过程思考:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?(一)、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。
【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。
思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。
吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。
你认为这样的结论可靠吗?如何证明这个问题的可靠性? (二)、散点图探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。
思考探究:1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x 轴表示年龄,y 轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本85~86P ,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?(三)、线性相关、回归直线方程和最小二乘法在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。