变量间的相关关系、统计案例教案(绝对经典)
变量间的相关关系教案

变量间的相关关系教案一、教学目标1. 让学生理解变量间的相关关系的概念。
2. 让学生掌握如何判断两个变量之间的相关关系。
3. 让学生学会如何绘制相关系数图。
4. 让学生能够运用相关关系解决实际问题。
二、教学内容1. 变量间的相关关系定义。
2. 相关关系的判断方法。
3. 相关系数图的绘制。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:变量间的相关关系概念,判断方法,相关系数图的绘制。
2. 教学难点:相关系数图的绘制,实际问题中的应用。
四、教学方法1. 讲授法:讲解变量间的相关关系定义、判断方法和绘制相关系数图的步骤。
2. 案例分析法:分析实际问题,让学生学会运用相关关系解决问题。
3. 互动教学法:引导学生提问、讨论,提高学生的参与度。
五、教学过程1. 导入:通过一个实例引入变量间的相关关系概念。
2. 讲解:讲解变量间的相关关系定义、判断方法,并进行相关系数图的绘制演示。
3. 案例分析:分析实际问题,让学生学会运用相关关系解决问题。
4. 练习:让学生独立完成相关系数图的绘制,并分析实际问题。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评价1. 评价方式:采用课堂表现、练习完成情况和课后作业三种方式进行评价。
2. 评价内容:(1)课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。
(2)练习完成情况:检查学生练习题的完成质量,包括相关系数图的绘制和实际问题的分析。
(3)课后作业:评估学生作业的完成情况,巩固所学知识。
七、教学反思1. 反思内容:(1)教学内容:回顾本节课的教学内容,确认是否全面覆盖了变量间的相关关系概念、判断方法和实际应用。
(3)课堂互动:评估学生的参与程度,思考如何提高学生的积极性和主动性。
(4)作业布置:检查作业的难度和量,确保学生能够通过作业巩固所学知识。
八、拓展与延伸1. 相关研究:介绍变量间相关关系在学术研究中的应用,如心理学、经济学等领域。
2. 实际案例:分析更多实际问题,让学生了解相关关系在生活中的重要作用。
(完整word版)2.3变量间的相关关系(教、优秀教案)

2.3变量间地相关关系一、教材分析本节知识内容不多,但分析本节内容,至少有下列特点:1)知识地联系面广,应用性强,概念地真正理解有难度,教学既要承前启后,完成统计必修基础知识地构建;也要知道知识地来龙去脉,提升学生运用统计知识解决实际问题地能力,更要抓住本质,正确理解统计推断地结论.b5E2RGbCAP2)通过典型案例进行教学,使知识形成地过程中具有可操作性,易于创设问题情境,引导学生参与,而学生借助解决问题,通过自主思维活动,会产生感悟、发现,能提出问题,思考交流,不仅能正确、全面地理解基础知识和基本方法,而且能促进、发展学生地统计意识、统计思想.p1EanqFDPw二、教学目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系;2.知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.三、教学重点难点重点:作出散点图和根据给出地线性回归方程系数公式建立线性回归方程.难点:对最小二乘法地理解.四、学情分析本节是一种对样本数据地处理方法,但侧重地是由样本推断总体,其方法是学生初识地、知识地作用也是学生初见地.知识量并不大,但涉及地数学方法、数学思想较充分,同时,在教材中留有供发现地点,设有开放性问题,既具有体验数学方法、数学思想地功能,也具有培养学生从具体到抽象能力、锻炼创造性思维能力地作用.DXDiT a9E3d五、教学方法1.自主探究,互动学习2.学案导学:见后面地学案.3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习RTCrpUDGiT六、课前准备1.学生地学习准备:预习课本,初步把握必须地定义.2.教师地教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案.七、课时安排:1课时5PCzVD7HxA八、教学过程〖复习回顾〗标准差地公式为:______________________________________________________jLBHrnAILg〖创设情境〗1、函数是研究两个变量之间地依存关系地一种数量形式.对于两个变量,如果当一个变量地取值一定时,另一个变量地取值被惟一确定,则这两个变量之间地关系就是一个函数关系xHAQX74J0X2、在中学校园里,有这样一种说法:“如果你地数学成绩好,那么你地物理学习就不会有什么大问题.”按照这种说法,似乎学生地物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间地关系是函数关系吗?LDAYtRyKfE3、“名师出高徒”可以解释为教师地水平越高,学生地水平就越高,那么学生地学业成绩与教师地教学水平之间地关系是函数关系吗?Zzz6ZB2Ltk〖新知探究〗思考:考察下列问题中两个变量之间地关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内地脂肪含量与年龄.问题中两个变量之间地关系是函数关系吗?一、相关关系:自变量取值一定时,因变量地取值带有一定随机性地两个变量之间地关系,叫做相关关系.【说明】函数关系是一种非常确定地关系,而相关关系是一种非确定性关系.思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”地警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起地,所以可以吸烟”地说法对吗?dvzfvkwMI12、某地区地环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣地现象,如果村庄附近栖息地天鹅多,那么这个村庄地婴儿出生率也高,天鹅少地地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子.你认为这样地结论可靠吗?如何证明这个问题地可靠性?rqyn14ZNXI分析:(1)吸烟只是影响健康地一个因素,对健康地影响还有其他地一些因素,两者之间非函数关系即非因果关系;EmxvxOtOco)不对,这也是相关关系而不是函数关系.上面提到了很多相关关系,那它们之间地相关关系强还是弱?我们下面来研究一下.二、散点图探究:在一次对人体脂肪含量和年龄关系地研究中,研究人员获得了一组样本数据:其年龄对应地脂肪数据是这个年龄人群脂肪含量地样本平均数.思考探究:1、对某一个人来说,他地体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定地规律性.观察上表中地数据,大体上看,随着年龄地增加,人体脂肪含量怎样变化?SixE2yXPq52、为了确定年龄和人体脂肪含量之间地更明确地关系,我们需要对数据进行分析,通过作图可以对两个变量之间地关系有一个直观地印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应地图形吗?6ewMyirQFL表示具有相关关系地两个变量地一组数据图形称为散点图.3、观察人地年龄地与人体脂肪含量散点图地大致趋势,有什么样地特点?阅读课本P,这种相关85~86关系我们称为什么?还有没有其他地相关关系?它又有怎样地特点?kavU42VRUs三、线性相关、回归直线方程和最小二乘法在各种各样地散点图中,有些散点图中地点是杂乱分布地,有些散点图中地点地分布有一定地规律性,年龄和人体脂肪含量地样本数据地散点图中地点地分布有什么特点?y6v3ALoS89如果散点图中地点地分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.M2ub6vSTnP我们所画地回归直线应该使散点图中地各点在整体上尽可能地与其接近.我们怎么来实现这一目地呢?说一说你地想法.0YujCfmUCw 设所求地直线方程为yˆ=bx +a ,其中a 、b 是待定系数. 则yˆi =bx i +a (i =1,2,…,n ).于是得到各个偏差 y i -yˆi =y i -(bx i +a )(i =1,2,…,n ) 显见,偏差y i -yˆi 地符号有正有负,若将它们相加会造成相互抵消,所以它们地和不能代表几个点与相应直线在整体上地接近程度,故采用n 个偏差地平方和eUts8ZQVRd Q =(y 1-bx 1-a )2+(y 2-bx 2-a )2+…+(y n -bx n -a )2表示n 个点与相应直线在整体上地接近程度. 记Q =∑=--ni i i a bx y 12)(这样,问题就归结为:当a 、b 取什么值时Q 最小,a 、b 地值由下面地公式给出:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.,)())((1221121x b y a x n x yx n yx x x y y x x b ni i ni iini i ni i i其中x =n1∑=ni i x 1,y =n1∑=ni iy1,a 为回归方程地斜率,b 为截距.求回归直线,使得样本数据地点到它地距离地平方和最小地方法叫最小二乘法. 【例题精析】有一个同学家开了一个小卖部,他为了研究气温对热饮销售地影响,经过统计,得到一个卖出地饮料杯数与当天气温地对比表:sQsAEJkW5T(1)画出散点图;(2)从散点图中发现气温与热饮杯数之间关系地一般规律;(3)求回归方程;(4)如果某天地气温是2℃,预测这天卖出地热饮杯数.解:)当x=2时,y=143.063(四)反思总结,当堂检测.1、求样本数据地线性回归方程,可按下列步骤进行: (1)计算平均数x ,y ; (2)求a ,b ;(3)写出回归直线方程.2、回归方程被样本数据惟一确定,对同一个总体,不同地样本数据对应不同地回归直线,所以回归直线也具有随机性..GMsIasNXkA3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具线性相关关系,即不存在回归直线,那么所得地“回归方程”是没有实际意义地.因此,对一组样本数据,应先作散点图,在具有线性相关关系地前提下再求回归方程TIrRGchYzg 教师组织学生反思总结本节课地主要内容,并进行当堂检测.设计意图:引导学生构建知识网络并对所学内容进行简单地反馈纠正.(课堂实录) (五)发导学案、布置预习.完成本节地课后练习及课后延伸拓展作业.设计意图:布置下节课地预习作业,并对本节课巩固提高.教师课后及时批阅本节地延伸拓展训练. 九、板书设计十、教学反思本课地设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑地地方.课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率地目地.7EqZcWLZNX本节课学习了变量间地相互关系和两个变量地线性相关,以及最小二乘法和回归直线地定义,体会了用最小二乘法解决两个变量线性相关地方法,在解决问题中要熟练掌握求回归系数b、a地公式,精确计算.同时,要注意培养学生地观察分析两变量地关系和抽象概括地能力lzq7IGf02E在后面地教学过程中会继续研究本节课,争取设计地更科学,更有利于学生地学习,也希望大家提出宝贵意见,共同完善,共同进步!zvpgeqJ1hk2.3变量间相关关系课前预习学案一、预习目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系;2.知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.二、预习内容1.举例说明函数关系为什么是确定关系?2.一个人地身高与体重是函数关系吗?3.相关关系地概念:4.什么叫做散点图?5.回归分析,(1)求回归直线方程地思想方法;(2)回归直线方程地求法三、提出疑惑同学们,通过你地自主学习,你还有哪些疑惑,请把它填在下面地表格中课内探究学案一、学习目标1.通过收集现实问题中两个有关联变量地数据作出散点图,并利用散点图直观认识变量间地相关关系.2.经历用不同估算方法描述两个变量线性相关地过程,知道最小二乘法地思想,能根据给出地线性回归方程系数公式建立线性回归方程.NrpoJac3v1二、学习重难点:重点:作出散点图和根据给出地线性回归方程系数公式建立线性回归方程难点:对最小二乘法地理解.三、学习过程思考:考察下列问题中两个变量之间地关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内地脂肪含量与年龄.这些问题中两个变量之间地关系是函数关系吗?(一)、相关关系:自变量取值一定时,因变量地取值带有一定随机性地两个变量之间地关系,叫做相关关系.【说明】函数关系是一种非常确定地关系,而相关关系是一种非确定性关系.思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”地警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起地,所以可以吸烟”地说法对吗?1nowfTG4KI2、某地区地环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣地现象,如果村庄附近栖息地天鹅多,那么这个村庄地婴儿出生率也高,天鹅少地地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子.你认为这样地结论可靠吗?如何证明这个问题地可靠性?fjnFLDa5Zo(二)、散点图探究:在一次对人体脂肪含量和年龄关系地研究中,研究人员获得了一组样本数据:其中各年龄对应地脂肪数据是这个年龄人群脂肪含量地样本平均数.思考探究:1、对某一个人来说,他地体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定地规律性.观察上表中地数据,大体上看,随着年龄地增加,人体脂肪含量怎样变化?tfnNhnE6e52、为了确定年龄和人体脂肪含量之间地更明确地关系,我们需要对数据进行分析,通过作图可以对两个变量之间地关系有一个直观地印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应地图形吗?HbmVN777sL3、观察人地年龄地与人体脂肪含量散点图地大致趋势,有什么样地特点?阅读课本P,这种相关关85~86系我们称为什么?还有没有其他地相关关系?它又有怎样地特点?V7l4jRB8Hs(三)、线性相关、回归直线方程和最小二乘法在各种各样地散点图中,有些散点图中地点是杂乱分布地,有些散点图中地点地分布有一定地规律性,年龄和人体脂肪含量地样本数据地散点图中地点地分布有什么特点?83lcPA59W9如果散点图中地点地分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.mZkklkzaaP我们所画地回归直线应该使散点图中地各点在整体上尽可能地与其接近.我们怎么来实现这一目地呢?说一说你地想法.AVktR43bpw这样,问题就归结为:当a 、b 取什么值时Q 最小,a 、b 地值由下面地公式给出:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.,)())((1221121x b y a x n x yx n yx x x y y x x b ni i ni iini i ni i i其中x =n1∑=ni i x 1,y =n1∑=ni iy1,a 为回归方程地斜率,b 为截距.求回归直线,使得样本数据地点到它地距离地平方和最小地方法叫最小二乘法. 【例题精析】【例1】下表是某小卖部6天卖出热茶地杯数与当天气温地对比表:(1)将上表中地数据制成散点图.(2)你能从散点图中发现温度与饮料杯数近似成什么关系吗?(3)如果近似成线性关系地话,请求出回归直线方程来近似地表示这种线性关系. (4)如果某天地气温是-5℃时,预测这天小卖部卖出热茶地杯数.(四)反思总结1、求样本数据地线性回归方程,可按下列步骤进行: (1)计算平均数x ,y ; (2)求a ,b ;(3)写出回归直线方程.2、回归方程被样本数据惟一确定,对同一个总体,不同地样本数据对应不同地回归直线,所以回归直线也具有随机性..ORjBnOwcEd3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得地“回归方程”是没有实际意义地.因此,对一组样本数据,应先作散点图,在具有线性相关关系地前提下再求回归方程.2MiJTy0dTT(五)当堂检测1.有关线性回归地说法,不正确地是A.相关关系地两个变量不是因果关系B.散点图能直观地反映数据地相关程度C.回归直线最能代表线性相关地两个变量之间地关系D.任一组数据都有回归方程2.下面哪些变量是相关关系A.出租车费与行驶地里程B.房屋面积与房屋价格C.身高与体重D.铁地大小与质量3.回归方程yˆ=1.5x-15,则A.y=1.5x-15B.15是回归系数aC.1.5是回归系数aD.x=10时,y=04.r是相关系数,则结论正确地个数为①r∈[-1,-0.75]时,两变量负相关很强②r∈[0.75,1]时,两变量正相关很强③r∈(-0.75,-0.3]或[0.3,0.75)时,两变量相关性一般④r=0.1时,两变量相关很弱A.1B.2C.3D.45.线性回归方程yˆ=bx+a过定点________.6.一家工厂为了对职工进行技能检查,对某位职工进行了10次实验,收集数据如下:(1)画出散点图;(2)求回归方程.参考答案:1. 答案:D解析:只有线性相关地数据才有回归直线.2.答案:C解析:A、B、D都是函数关系,其中A一般是分段函数,只有C是相关关系.3.答案:A解析:D中x=10时yˆ=0,而非y=0,系数a、b地意义要分清.4.答案:D解析:相关系数r地性质.5.答案:(x,y)解析:yˆ=bx+a,yˆ=bx+y-b x,(yˆ-y)=b(x-x)课后练习与提高1.下列两个变量之间地关系不具有线性关系地是()A.小麦产量与施肥值B.球地体积与表面积C.蛋鸭产蛋个数与饲养天数D.甘蔗地含糖量与生长期地日照天数2.下列变量之间是函数关系地是()A.已知二次函数2=++,其中a,c是已知常数,取b为自变量,因变量是这个函数地判别式:y ax bx c24∆=-b acB.光照时间和果树亩产量C.降雪量和交通事故发生率D.每亩施用肥料量和粮食亩产量3.下面现象间地关系属于线性相关关系地是()A.圆地周长和它地半径之间地关系B.价格不变条件下,商品销售额与销售量之间地关系C.家庭收入愈多,其消费支出也有增长地趋势D.正方形面积和它地边长之间地关系4.下列关系中是函数关系地是( ) A.球地半径长度和体积地关系 B.农作物收获和施肥量地关系 C.商品销售额和利润地关系 D.产品产量与单位成品成本地关系5.设有一个回归方程为ˆ2 1.5yx =-,则变量x 增加一个单位时( ) A.y 平均增加1.5单位 B.y 平均增加2单位 C.y 平均减少1.5单位 D.y 平均减少2单位6.工人月工资(x 元)与劳动生产率(x 千元)变化地回归直线方程为ˆ5080yx =+,下列判 断不正确地是( ) A .劳动生产率为1000元时,工资约为130元 B.劳动生产率提高1000元时,则工资平均提高80元 C.劳动生产率提高1000元时,则工资平均提高130元 D.当月工资为210元时,劳动生产率约为2000元7.某城市近10年居民地年收入x 与支出y 之间地关系大致符合0.80.1y x =+(单位:亿元),预计今年该城市居民年收入为15亿元,则年支出估计是.gIiSpiue7A8、在某种产品表面进行腐蚀线试验,得到腐蚀深度y 与腐蚀时间x 之间对应地一组数据:(1)画出散点图;(2)试求腐蚀深度y对时间t地回归直线方程.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.uEh0U1Yfmh用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.IAg9qLsgBXUsers may use the contents or services of this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.WwghWvVhPE转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.asfpsfpi4k Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.ooeyYZTjj1。
变量间的相关关系、统计案例教案(绝对经典)

§11.3 变量间的相关关系与独立性检验⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧、不相关、非线性相关、线性相关、不确定的相关关系、确定的函数关系两个变量的关系32121 1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样的近似过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,这条直线叫回归直线.若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关.如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. (4)相关系数①r =∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x)2∑ni =1(y i -y )2或()()12211ni i i n ni i i i x ynx yr x x y y ===-=--∑∑∑;②当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当r 的绝对值>0.75时,认为两个变量有很强的线性相关关系。
2.线性回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线ˆˆˆybx a =+的接近程度,使得上式达到最小值的直线ˆˆˆy bx a =+就是所要求的直线,这种方法称为最小二乘法(使得样本数据的点到回归直线的距离平方和最小的方法). (2)回归方程方程ˆˆˆybx a =+是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中,是待定参数.121()()ˆ()niii nii x x y y bx x ==--=-∑∑[]112222212()()()()...()()()()...()nnnx x y y x x y y x x yy x x x x x x --+--++--=⎡⎤-+-++-⎣⎦或者1221ˆni ii nii x ynx ybxnx ==-=-∑∑[]1122222212...,...n n nx y x y x y nx y x x x nx++-⋅=⎡⎤+++-⎣⎦ˆˆay bx =- 线性回归方程过样本点的中心(,)3、回归分析(1)y =bx +a +e 中,a 、b 称为模型的未知参数;e 称为随机误差.(2)随机误差e 的估计值e ˆ(a x b y y y e ii i i i ˆˆˆˆ--=-=)叫做相对于点(x i ,y i )的残差。
课件3:11.3 变量间的相关关系、统计案例

【规律方法】解独立性检验的应用问题的关注点 (1)两个明确: ①明确两类主体. ②明确研究的两个问题. (2)两个关键: ①准确画出2×2列联表; ②准确理解K2. 提醒:准确计算K2的值是正确判断的前提.
考点3 线性回归分析及应用 知·考情
高考中对线性回归分析的考查主要在两个方面:一是求回归直线 方程,尤其是回归直线必过样本点中心是常考知识点;二是利用回归直 线方程进行预测.
本节内容结束
更多精彩内容请登录:
0.100 2.706
0.050 3.841
0.010 6.635
【规范解答】(1)因为P(K2≥3.841)=0.05,4.844>3.841, 所以判断出错的可能性不超过5%. 答案:不超过5% (2)①将2×2列联表中的数据代入计算公式, 得K2= 100(6010-2010)2 100 4.762,
a y bt 4.3 1 4 2.3, 2
所以y关于t的回归方程为y 1 t 2.3. 2
(2)因为 b
=
1 2
>0,所以2007年至2013年该地区人均纯收入稳步增
长,预计到2015年,该地区人均纯收入y= 1 ×9+2.3=6.8(千元),
2
所以预计到2015年,该地区人均纯收入约6 800元左右.
两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(xn,yn),
其回归方程为 y bx a
n
n
xi x yi y
xiyi nx y
则b i1 n
2
xi x
i1 n
x
2 i
2
nx
,a y bx,
i1
i1
其中, b 是回归方程的_斜__率__, a 是在y轴上的截距.
变量间的相关关系教案

变量间的相关关系教案一、教学目标:1. 让学生理解变量间的相关关系概念,掌握相关系数的概念及计算方法。
2. 能够运用相关系数判断两个变量间的线性相关程度。
3. 能够运用图表和数学方法分析实际问题中的变量相关关系。
二、教学内容:1. 变量间的相关关系概念介绍。
2. 相关系数的概念及计算方法。
3. 相关系数与线性相关程度的关系。
4. 实际问题中的变量相关关系分析。
三、教学重点与难点:1. 教学重点:相关系数的概念及计算方法,实际问题中的变量相关关系分析。
2. 教学难点:相关系数的计算方法,如何判断两个变量间的线性相关程度。
四、教学方法:1. 讲授法:讲解变量间的相关关系概念,相关系数的概念及计算方法。
2. 案例分析法:分析实际问题中的变量相关关系。
3. 小组讨论法:分组讨论相关系数与线性相关程度的关系。
五、教学准备:1. 教学PPT:包含变量间的相关关系概念,相关系数的概念及计算方法,实际问题中的变量相关关系分析等内容。
2. 案例材料:选取实际问题中的变量相关关系案例,用于课堂分析。
3. 计算器:用于计算相关系数。
六、教学过程:1. 引入新课:通过一个简单的实际问题,引导学生思考变量间的相关关系。
2. 讲解相关关系概念:介绍变量间的相关关系,解释相关系数的概念。
3. 相关系数的计算方法:讲解相关系数的计算方法,示例演示。
4. 案例分析:分析实际问题中的变量相关关系,引导学生运用相关系数进行判断。
5. 小组讨论:分组讨论相关系数与线性相关程度的关系,分享讨论成果。
6. 总结与反思:总结本节课的主要内容,布置课后作业。
七、课时安排:1. 第一课时:介绍变量间的相关关系概念,相关系数的概念及计算方法。
2. 第二课时:实际问题中的变量相关关系分析,小组讨论,总结与反思。
八、课后作业:1. 复习本节课的内容,掌握相关系数的概念及计算方法。
2. 分析课后练习中的实际问题,运用相关系数判断变量间的线性相关程度。
3. 思考如何运用相关关系解决实际问题,准备课堂分享。
变量间的相关关系教案

一、教案基本信息1. 教学科目:数学2. 教学年级:八年级3. 教学课时:2课时4. 教学目标:(1) 理解变量间的相关关系的概念(2) 学会判断变量间的正相关、负相关和无关关系(3) 能够运用相关关系解决问题二、教学重点与难点1. 教学重点:(1) 变量间的相关关系概念(2) 判断变量间的正相关、负相关和无关关系的方法2. 教学难点:(1) 相关系数的概念及其计算方法(2) 运用相关关系解决实际问题三、教学方法与手段1. 教学方法:(1) 讲授法:讲解变量间的相关关系概念及判断方法(2) 案例分析法:分析实际问题,引导学生运用相关关系解决问题(3) 小组讨论法:分组讨论,培养学生的合作与交流能力2. 教学手段:(1) 投影仪:展示相关关系图像和实际问题案例(2) 计算机软件:运用数学软件进行相关系数的计算和分析四、教学内容与步骤1. 第一课时(1) 导入新课:介绍变量间的相关关系概念(2) 讲解相关关系:阐述正相关、负相关和无关关系的定义及特点(3) 案例分析:分析实际问题,引导学生运用相关关系解决问题(4) 课堂练习:布置相关练习题,巩固所学内容2. 第二课时(1) 复习导入:回顾上节课的内容,引入新的知识点(2) 讲解相关系数:介绍相关系数的概念及其计算方法(3) 运用相关关系解决实际问题:通过案例分析,引导学生运用相关关系解决实际问题(4) 课堂练习:布置相关练习题,巩固所学内容五、课后作业与评价1. 课后作业:(1) 完成课后练习题,巩固所学知识(2) 选取一个实际问题,运用相关关系进行分析和解决2. 评价方法:(1) 课堂表现:观察学生在课堂上的参与程度、提问回答等情况(2) 课后作业:检查学生作业完成情况,评估其对知识的掌握程度(3) 小组讨论:评价学生在小组讨论中的表现,包括合作与交流能力六、教学拓展与延伸1. 介绍其他衡量变量间关系的方法,如散点图、回归直线等。
2. 探讨相关关系在实际生活中的应用,如经济学、生物学、社会学等领域。
变量间的相关关系教案

变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,能够识别和描述两种变量之间的相关关系。
2. 学生能够运用相关系数来衡量两个变量之间的相关程度。
3. 学生能够运用图表和数学模型来分析变量之间的相关关系。
4. 培养学生的数据分析能力和问题解决能力。
二、教学内容:1. 相关关系的概念和类型。
2. 相关系数的计算和解读。
3. 散点图在分析相关关系中的应用。
4. 线性回归方程的构建和应用。
5. 实际案例分析,运用相关关系解决实际问题。
三、教学重点与难点:重点:相关关系的概念和类型,相关系数的计算和解读,散点图在分析相关关系中的应用。
难点:线性回归方程的构建和应用,实际案例分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实际案例来理解和应用相关关系。
2. 使用多媒体教学资源,如图表和数学软件,辅助学生直观地理解相关关系。
3. 组织小组讨论和合作活动,培养学生的团队合作能力和问题解决能力。
4. 提供充足的练习机会,让学生通过实践来巩固所学知识。
五、教学过程:1. 引入:通过一个简单的实际案例,引导学生思考两种变量之间的关系。
2. 讲解相关关系的概念和类型,解释相关系数的意义。
3. 演示如何通过散点图来分析两种变量之间的相关关系。
4. 讲解线性回归方程的构建过程,并演示如何应用线性回归方程来预测未知数据。
5. 提供实际案例分析,让学生运用相关关系来解决实际问题。
7. 布置作业,让学生通过练习来巩固所学知识。
六、教学评估与反馈:1. 通过课堂练习和作业,评估学生对相关关系概念的理解程度。
2. 通过小组讨论和案例分析,评估学生在实际问题中运用相关关系的能力。
3. 收集学生的疑问和困难,及时给予反馈和解答。
4. 鼓励学生提出自己的观点和思考,促进学生的主动学习。
七、拓展与深化:1. 介绍相关关系在社会科学、自然科学和工程科学中的应用。
2. 探讨非线性相关关系和多变量相关关系的研究方法。
变量间的相关关系教案

变量间的相关关系优秀教案第一章:引言1.1 教学目标让学生理解变量间的相关关系概念让学生掌握绘制散点图的方法让学生了解相关系数的概念1.2 教学内容变量间的相关关系定义散点图的绘制方法相关系数的概念及计算方法1.3 教学过程1.3.1 导入通过实际例子引入变量间的相关关系概念,如身高与体重的关系。
1.3.2 新课导入讲解变量间的相关关系定义,解释相关系数的概念。
演示如何绘制散点图,让学生跟随操作。
1.3.3 案例分析提供一些实际数据,让学生绘制散点图,并计算相关系数。
1.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的变量间相关关系。
1.4 教学评价通过课堂练习和讨论,评估学生对变量间的相关关系的理解和应用能力。
第二章:线性相关关系2.1 教学目标让学生理解线性相关关系的概念让学生掌握线性相关关系的判断方法让学生学会绘制线性回归直线2.2 教学内容线性相关关系的定义线性相关关系的判断方法线性回归直线的绘制方法2.3 教学过程2.3.1 导入通过实际例子引入线性相关关系概念,如房价与面积的关系。
2.3.2 新课导入讲解线性相关关系的定义,解释线性回归直线的概念。
演示如何判断线性相关关系,让学生跟随操作。
2.3.3 案例分析提供一些实际数据,让学生判断线性相关关系,并绘制线性回归直线。
2.3.4 练习与讨论让学生回答相关问题,巩固所学内容。
引导学生讨论实际问题中的线性相关关系。
2.4 教学评价第三章:非线性相关关系3.1 教学目标让学生理解非线性相关关系的概念让学生掌握非线性相关关系的判断方法让学生学会绘制非线性回归直线3.2 教学内容非线性相关关系的定义非线性相关关系的判断方法非线性回归直线的绘制方法3.3 教学过程3.3.1 导入通过实际例子引入非线性相关关系概念,如温度与冰点的关系。
3.3.2 新课导入讲解非线性相关关系的定义,解释非线性回归直线的概念。
演示如何判断非线性相关关系,让学生跟随操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§11.3 变量间的相关关系与独立性检验⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧、不相关、非线性相关、线性相关、不确定的相关关系、确定的函数关系两个变量的关系32121 1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样的近似过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,这条直线叫回归直线.若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关.如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. (4)相关系数①r =∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x)2∑ni =1(y i -y )2或()()12211ni i i n ni i i i x ynx yr x x y y ===-=--∑∑∑;②当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当r 的绝对值>0.75时,认为两个变量有很强的线性相关关系。
2.线性回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线ˆˆˆybx a =+的接近程度,使得上式达到最小值的直线ˆˆˆy bx a =+就是所要求的直线,这种方法称为最小二乘法(使得样本数据的点到回归直线的距离平方和最小的方法). (2)回归方程方程ˆˆˆybx a =+是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中,是待定参数.121()()ˆ()niii nii x x y y bx x ==--=-∑∑[]112222212()()()()...()()()()...()nnnx x y y x x y y x x yy x x x x x x --+--++--=⎡⎤-+-++-⎣⎦或者1221ˆni ii nii x ynx ybxnx ==-=-∑∑[]1122222212...,...n n nx y x y x y nx y x x x nx++-⋅=⎡⎤+++-⎣⎦ˆˆay bx =- 线性回归方程过样本点的中心(,)3、回归分析(1)y =bx +a +e 中,a 、b 称为模型的未知参数;e 称为随机误差.(2)随机误差e 的估计值e ˆ(a x b y y y e ii i i i ˆˆˆˆ--=-=)叫做相对于点(x i ,y i )的残差。
残差平方和越大,则拟合效果越好,否则反之。
(3)相关指数用相关指数R 2来刻画回归的效果,其计算公式是:R 2=∑∑==---n i ini i iy yyy1212)()ˆ(1 ,R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R 2表示解释变量对预报变量变化的贡献率,R 2越接近于1,表示回归效果越好. 4.独立性检验设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2;变量B :B 1,B 2;其2×2列联表:BAB 1 B 2 总计 A 1 a b a +b A 2cdc +d 总计 a +c b +dn =a +b +c +d构造一个随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. 通常当K 2<2.706时,认为没有充分依据显示两个变量有关,但也不能显示无关。
参考数据:1.已知x 、y 的取值如下表:x 0 1 3 4 y2.24.34.86.7从所得的散点图分析,y 与x 线性相关,且y =0.95x +a ,则a =________.答案 2.6 解析 因为回归直线必过样本点的中心(x ,y ), 又x =2,y =4.5,代入y =0.95x +a ,得a =2.6.2.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的线性回归方程:y =0.254x +0.321.由线性回归方程可知,家庭P (K 2≥k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k0.4550.708 1.323 2.0722.7063.841 5.024 6.635 7.879 10.828年收入每增加1万元,年饮食支出平均增加______万元.答案0.254解析由题意知[0.254(x+1)+0.321]-(0.254x+0.321)=0.254.3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论中不正确...的是() A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg答案 D 解析由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,故A正确.又线性回归方程必过样本点的中心(x,y),因此B正确.由线性回归方程中系数的意义知,x每增加1 cm,其体重约增加0.85 kg,故C正确.当某女生的身高为170 cm时,其体重估计值是58.79 kg,而不是具体值,因此D不正确.题型一两个变量间的相关关系例15个学生的数学和物理成绩如下表:学生A B C D E学科数学8075706560物理7066686462画出散点图,并判断它们是否具有相关关系.解以x轴表示数学成绩,y轴表示物理成绩,可得到相应的散点图如图所示.由散点图可知,各组数据对应点大致在一条直线附近,所以两者之间具有相关关系,且为正相关.对变量x,y有观测数据(x i,y i) (i=1,2,…,10),得散点图(1);对变量u、v有观测数据(u i,v i) (i =1,2,…,10),得散点图(2).由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关答案 C 解析 由图(1)可知,各点整体呈递减趋势,x 与y 负相关;由图(2)可知,各点整体呈递增趋势,u 与v 正相关.题型二 线性回归分析例2.某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,得下表数据:(1)请根据上表数据,用相关系数说明与的线性相关程度;(保留两位小数,参考数据:414.12≈)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.参考公式:121()()ˆ()niii nii x x y y bx x ==--=-∑∑,;相关系数r=∑ni =1(x i -x )(y i -y )∑ni =1(x i -x)2∑ni =1(y i -y )2; 详解:(1)6×2+8×3+10×5+12×6=158,==9,==4, 62+82+102+122=344.,线性相关性非常强.(2)158, =9,=4,344.===0.7,=-=4-0.7×9=-2.3, 故线性回归方程为=0.7x -2.3.(3)由(2)中线性回归方程知,当x =9时,=0.7×9-2.3=4,故预测记忆力为9的同学的判断力约为4.① “双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用x (单位:万元)和利润y (单位:十万元)之间的关系,得到下列数据:x 2 3 4 5 6 8 9 11 y12334568(1)请用相关系数r 说明y 与x 之间是否存在线性相关关系;(2)根据(1)的结果,建立y 与x 的回归方程,并预测当24x =时,对应的利润ˆy为多少(ˆˆˆ,,b a y 精确到0.1). 附参考公式:回归方程中ˆˆˆybx a =+中ˆb 和ˆa 最小二乘估计分别为1221ˆni ii nii x ynx y b xnx ==-=-∑∑,ˆˆay bx =-,相关系数()()12211ni i i n ni i i i x ynx yr x x y y ===-=--∑∑∑.参考数据:()()88882221111241,356,8.25,6i ii iii i i i x yx x x y y ======-≈-=∑∑∑∑.答案及解析:(1)由题意得6,4x y ==.又()()88882221111241,356,8.25,6i ii iii i i i x yx x x y y ======-≈-=∑∑∑∑,所以()()8188221182418640.990.818.256i i i i i i i x yx yr x x y y ===--⨯⨯=≈≈>⨯--∑∑∑,所以y 与x 之间具有线性相关关系. 因为81822218241864ˆ0.7356868i ii ii x yx ybxx ==--⨯⨯==≈-⨯-∑∑, (2)因为ˆˆ40.760.2ay bx =-≈-⨯=-, 所以回归直线方程为ˆ0.70.2y x =-, 当24x =时,ˆ0.70.20.7240.216.6yx =-=⨯-=,即利润约为166万元.②下表提供了某工厂节能降耗技术改造后,一种产品的产量x (单位:吨)与相应的生产能耗y (单位:吨)的几组对应数据:x 3 4 5 6 y2.5t44.5根据上表提供的数据,求得y 关于x 的线性回归方程为0.70.35y x =+,那么表格中t 的值为 .答案:3题型三 线性回归分析例3.已知药用昆虫的产卵数y 与一定范围内的温度x 有关,现收集了该中药用昆虫的6组观测数据如表: 温度x /℃212324272932产卵数y /个 6 11 20 27 57 77经计算得:6666211111126,33,()()557,()84,66i i i i i i i i i x x y y x x y y x x ========--=-=∑∑∑∑621()3930ii y y =-=∑,线性回归模型的残差平方和为31670605.8≈e ,分别为观察数据中温度和产卵数1,2,3,4,5,6i =,(1)若用线性回归模型,求y 关于x 的回归方程ˆˆˆy bx a =+(精确到0.1 );(2)若用非线性回归模型求得y 关于x 的回归方程xe y2303.006.0ˆ=,且相关指数20.9952R =,①试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好;②用拟合效果更好的模型预测温度为35℃时该中药用昆虫的产卵数(结果取整数). 附:一组数据1122(,),(,),,(,)n n x y x y x y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计分为121()()ˆˆˆ,()niii nii x x y y bay bx x x ==--==--∑∑,相关指数R 2=∑∑==---n i ini i iy yyy1212)()ˆ(1答案及解析:(1)依题意,61621()()557ˆ6, 6.684()iii ii x x y y n bx x ==--===≈-∑∑, 所以ˆ33 6.626138.6a≈-⨯=-, 所以y 关于x 的线性回归方程为ˆ 6.6138.6yx =-。