(新)高中数学复习课(一)统计案例教学案新人教A版选修1-2

合集下载

【数学】新课标人教A版选修1-2第一章统计案例教案

【数学】新课标人教A版选修1-2第一章统计案例教案

4
选修 1—2 第一章统计案例
若H0成立 , 则K2应该很小 . 把表中数据代入公式
2
K2 = 9965 7775 49-42 2099
56.632
7817 2148 9874 91
在H0成立的情况下 . 统计学家估算出如下概率
P K2 6.635 0.01
即在H0成立的情况下 ,K 2的值大于 6.635 的概率非常小. 如果K2 6.635, 就断定H 0不成立 , 出错的可能性有多大? 出现K2=56.632 6.635 的概率不超过 1% .
周围 .
令 z=lny , a=lnc1 , b=c2 则 z=bx+a
此时可用线性回归来拟合 z=0.272x-3.843
因此红铃虫的产卵数对温度的非线性回归方程为 Y=e0.272x-3.843
1、1 回归分析的基本思想及其初步应用(习题课) (第五课时 )
目标 :通过习题巩固所学知识
过程 :1、复习有关知识
教学重点: 独立性检验的步骤。 例 2。 教学难点: 对临界值的理解。 教学过程 :1、复习独立性检验的步骤。
2、可信程度。 3、举例。 例 2。略。 补充例题: 对 196 个接受心脏搭桥手术的病人和 196 个接受血管清 障手术的病人进行 3 年跟踪研究, 调查他们是否又发作过心脏病, 调查结果如下 表所示:
尿汞含量 x
2
消光系数 y
64
4
6
8
10
138
205
285
360
连山高级中学高二数学备课组
3
选修 1—2 第一章统计案例
(1)求回归方程。( 2)求相关指数 R2。
解:略 。
3. 练习:选择、填空用小黑板给出。 (题来源于数学天地报) 。 4. 小结。 5. 作业。

高中数学人教A版选修1-2复习课(一) 统计案例课件

高中数学人教A版选修1-2复习课(一) 统计案例课件
复习课(一) 统计案例
回归分析
(1)变量间的相关关系是高考解答题命题的一个,主 要考查变量间相关关系的判断,求解回归方程并进行预报 估计,题型多为解答题,有时也有小题出现.
(2)掌握回归分析的步骤的是解答此类问题的关键, 另外要掌握将两种非线性回归模型转化为线性回归分析 求解问题.
[考点精要]
1.一个重要方程 对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其线性回归直线方程为^y =^b x+^a .
2.2016 年第三十一届奥运会在巴西首都里约热内卢举行,为 调查某高校学生是否愿意提供志愿者服务,用简单随机抽样 方法从该校调查了 60 人,结果如下:
(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取 6 人,其中男生抽取多少人? (2)在(1)中抽取的 6 人中任选 2 人,求恰有一名女生的概率.
(3)在犯错误的概率不超过 0.01 的前提下,是否能认为“其 亲属的饮食习惯与年龄有关”?
[解] (1)30 位亲属中 50 岁以上的人多以食蔬菜为主,50 岁以下的人多以食肉类为主.
(2)2×2 列联表如表所示:
(3) 随 机 变 量
K2
的观测值
k

30×8-1282 12×18×20×10
i=1
≈2.646.
参考公式:相关系数 r=
n
ti- t yi- y
i=1

n
n
ti- t 2 yi- y 2
i=1
i=1
回归方程^y=^a+^bt 中斜率和截距的最小二乘估计公式分别为:^b=
n
ti- t yi- y
i=1
,^a= y -^b t .

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案第一章统计案例第一课时 1.1回归分析的基本思想及其初步应用(一)教学目标1、知识与技能目标 认识随机误差;2、过程与方法目标(1)会使用函数计算器求回归方程; (2)能正确理解回归方程的预报结果. 3、情感、态度、价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性.教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号 1 2 3 4 5 6 7 8 身高/cm165165 157 170 175 165 155 170 体重/kg 4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重. (分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程 第三步:代值计算010203040506070150155160165170175180身高/cm体重/k g② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗? 不一定,但一般可以认为她的体重在60.316kg 左右. ③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.第二课时 1.1回归分析的基本思想及其初步应用(二)教学目标:1知识与技能:会建立回归模型,进而学习相关指数(相关系数r 、总偏差平方和、随机误差的效应即残差、残差平方和、回归平方和、相关指数R2、残差分析) 2过程与方法:通过学习会求上述的相关指数3情感态度价值观:从实际问题发现已有知识不足,激发好奇心、求知欲。

高中数学人教A版选修1-2 第一章 统计案例章末复习学案

高中数学人教A版选修1-2 第一章 统计案例章末复习学案

第一章统计案例复习教案一、本章知识脉络:二、本章要点追踪: 1.样本点的中心(x -,y -) 其中x -=1nn ∑i =1x i ,y -= n ∑i =1 y i .2.线性回归模型的完美表达式 ⎩⎨⎧y =bx +a +e E (e )=0,D (e )=σ23.类比样本方差估计总体方差的思想,可以用 σ2∧=1n -2 n∑i =1e 2∧i =1n -2Q (a ∧,b ∧)(n >2)作为σ2的估计量 其中a ∧=y --b ∧x -b ∧= n∑i =1(x i -x -)(y i -y -) n∑i =1(x i -x -)24.我们可以用相关指数R 2来刻画回归的效果,其计算公式是: R 2=1- n∑i =1(y i -y i ∧)2 n∑i =1(y i -y i -)2R 2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.5.建立回归模型的基本步骤:(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y =bx +x );(4)按一定规则估计回归方程中的参数(如最小二乘法);(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等等),若存在异常,则检查数据是否有误,或模型是否合适等。

6.作K 2来确定结论“X 与 Y 有关系”的可信程度. 三、几个典型例题:例1 某地区10名健康儿童头发和全血中的硒含量(1000ppm )如下,(1)画出散点图; (2)求回归方程;(3)如果某名健康儿童的血硒含量为94(1000ppm )预测他的发硒含量.例2 某地大气中氰化物测定结果如下:(1)试建立氰化物浓度与距离之间的回归方程.(2)求相关指数.(3)作出残差图,并求残差平方和例3某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机制取了189名员工进行调查,所得数据如下表所示:对于人力资源部的研究项目,根据上述数据能得出什么结论?例4有人统计了同一个省的6个城市某一年的人均国内生产总值(即人均GDP)和这一年各城市患白血病的儿童数量,如下表:(1)画出散点图;(2)求y对x的回归直线方程;(3)如果这个省的某一城市同时期年人均GDP为12万元,估计这个城市一年患白血病的儿童数目;例5寒假中,某同学为组织一次爱心捐款,于2008年2月1日在网上给网友发了张帖子,并号召网友转发,下表是发帖后一段时间的收到帖子的人数统计:(1)作出散点图,并猜测x 与y 之间的关系; (2)建立x 与y 的关系,预报回归模型并计算残差;(3)如果此人打算在2008年2月12日(即帖子传播时间共10天)进行募捐活动,根据上述回归模型,估计可去多少人.例6 有人发现了一个有趣的现象,中国人的邮箱名称里含有数字的比较多,而外国人邮箱名称里含有数字的比较少.为了研究国籍和邮箱名称里是否含有数字的关系,他收集了124个邮箱名称,其中中国人的70个,外国人的54个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.(1)根据以上数据建立一个2×2的列联表;(2)他发现在这组数据中,外国人邮箱名称里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关,你能帮他判断一下吗?例7 针对时下的“韩剧热”,某校团委对“学生性别和是否喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的21,男生喜欢韩剧的人数占男生人数的61,女生喜欢韩剧人数占女生人数的32. (1)若有0095的把握认为是否喜欢韩剧和性别有关,则男生至少有多少人; (2)若没有充分的证据显示是否喜欢韩剧和性别有关,则男生至多有多少人.。

人教A版高中数学选修1-2《一章 统计案例 1.2 独立性检验的基本思想及其初步应用》精品课件_33

人教A版高中数学选修1-2《一章 统计案例  1.2 独立性检验的基本思想及其初步应用》精品课件_33

解:根据题目所给数据得到如下列联表:
患心脏病 不患心脏病 总计
秃顶
214
ቤተ መጻሕፍቲ ባይዱ不秃顶
451
总计
665
175
389
597
1048
772
1437
根据列联表中的数据,得到
K 2 1437 (214597 175 451)2 16.373 6.635. 3891048 665 772
案 例:某医疗机构为了了解呼吸道疾病与吸 烟是否有关,进行了一次抽样调查,共调查了 515个成年人,其中吸烟者220人,不吸烟者 295人。
调查结果:吸烟的220人中有37人患呼吸道疾 病,183人未患呼吸道疾病;不吸烟的295人中 有21人患病,274人未患病。
根据这些数据,能否断定:患呼吸道疾 病与吸烟有关?
(2)求k值 (3)下结论
5
8
3
2
6
1
4
5
9
8
(1)如果k 10.828,就有99.9%的把握认为" X 与Y有关系" (2)如果k 7.879,就有99.5%的把握认为" X 与Y有关系"
(3)如果k 6.635,就有99%的把握认为" X 与Y有关系"
(4)如果k 5.024,就有97.5%的把握认为" X 与Y有关系"
练习3:为了调查胃病是否与生活规律有关,在某地对540名40岁以上 的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者 生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生 活规律的共200人. (1)根据以上数据列出2×2列联表; (2)能够以99%的把握认为40岁以上的人患胃病与否和生活规律有关 系吗?为什么?

高中数学选修1-2复习教案

高中数学选修1-2复习教案

第4周教学反思:在上一周的教学中,主要学习框图的部分内容,知识点不难,学会绘制简单实际问题的流程图和结构,学生学习也轻松简单,高考对这部分的内容要求不高,主要让学生多动手自己算就能够掌握,重点是一定要做好本周的复习工作。

选修1-2复习-第5周第一章统计案例 小结与复习一、教学目标设计了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。

(1)独立性检验:了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;(2) 回归分析:了解回归分析的基本思想、方法及其简单应用。

二、教学重点及难点重点: 理解回归分析的基本思想及实施步骤;理解独立性检验的基本思想及实施步骤. 难点:了解回归分析的基本思想、方法及其初步应用,以及了解独立性检验(只要求2×2列联表)的基本思想、方法及其初步应用 三、教学方法 讲授法 四、教学过程 一.知识归纳1.正相关:如果点散布在从左下角到右上角的区域,则称这两个变量的关系为正相关。

2.负相关:如果点散布在从左上角到右下角的区域,则称这两个变量的关系为负相关。

3.回归直线方程的斜率和截距公式:⎪⎪⎩⎪⎪⎨⎧-=--=---=∑∑∑∑====xb y a xn x yx n yx x x y y x xb ni i ni ii ni i i ni i1221121)()()((此公式不要求记忆)。

4.最小二乘法:求回归直线,使得样本数据的点到它的距离的平方最小的方法。

5.随机误差e :我们把线性回归模型e a bx y ++=,其中b a ,为模型的未知参数,e 称为随机误差。

随机误差a bx y e i i i --=6.残差eˆ:我们用回归方程a x b y ˆˆˆ+=中的y ˆ估计a bx +,随机误差)(a bx y e +-=,所以y y e ˆˆ-=是e 的估计量,故a x b y y y e ii i i i ˆˆˆˆ--=-=,e ˆ称为相应于点),(i i y x 的残差。

2019高中数学 第1章 统计案例阶段复习课学案 新人教A版选修1-2

2019高中数学 第1章 统计案例阶段复习课学案 新人教A版选修1-2

第一课 统计案例[核心速填]1.线性回归方程对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),回归直线y =bx +a 的斜率和截距的最小二乘估计公式分别为b ^=∑i =1nx i -xy i -y∑i =1nx i -x2=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^x ,其中(x ,y )称为样本点的中心.2.线性回归模型为y =bx +a +e ,其中e 为随机误差. 3.残差e ^i =y i -y ^i . 4.刻画回归效果的方法 (1)残差平方和法残差平方和∑i =1n(y i -y ^)2越小,模型拟合效果越好.(2)残差图法残差图形成的带状区域的宽度越窄,模型拟合效果越好. (3)相关指数R 2法R 2越接近1,模型拟合效果越好.5.K 2公式K 2=n ad -bc 2a +cb +d a +bc +d,其中n =a +b+c+d .[题型探究](2)请根据上表提供的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^; (3)据此估计2022年该市人口总数.【导学号:48662025】[解] (1)散点图如图:(2)因为x =0+1+2+3+45=2,y =5+7+8+11+195=10,0×5+1×7+2×8+3×11+4×19=132, 02+12+22+32+42=30,所以b ^=132-5×2×1030-5×22=3.2, a ^=y -b ^x =3.6.所以线性回归方程为y ^=3.2x +3.6. (3)令x =8,则y ^=3.2×8+3.6=29.2, 故估计2020年该城市人口总数为29.2(十万).1.在一段时间内,某种商品的价格x 元和需求量y 件之间的一组数据为:[解] x =15×(14+16+18+20+22)=18,y =15×(12+10+7+5+3)=7.4,i =15x 2i =142+162+182+202+222=1 660,∑i =15y 2i =122+102+72+52+32=327, ∑i =15x i y i =14×12+16×10+18×7+20×5+22×3=620,所以b ^=∑i =15x i y i -5 x y∑i =15x 2i -5x 2=620-5×18×7.41 660-5×182=-1.15,所以a ^=7.4+1.15×18=28.1,所以y 对x 的线性回归方程为y ^=-1.15x +28.1, 列出残差表为所以∑i =15(yi -y ^i )2=0.3,∑i =15(y i -y )2=53.2,R 2=1-∑i =15y i -y ^i2∑i =15y i -y2≈0.994.所以R 2≈0.994,拟合效果较好.单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是35.(1)请将上面的列联表补充完整; (2)求该公司男、女员工各多少人;(3)在犯错误的概率不超过0.005的前提下能否认为喜欢户外运动与性别有关?并说明你的理由. 下面的临界值表仅供参考:(参考公式:K 2=a +bc +d a +cb +d,其中n =a +b +c +d )【导学号:48662026】[解] (1)因为在全部50人中随机抽取1人抽到喜欢户外运动的员工的概率是35,所以喜欢户外运动的男女员工共30人,其中男员工20人,列联表补充如下:(3)K 2的观测值k =-230×20×25×25≈8.333>7.879,所以在犯错误的概率不超过0.005的前提下认为喜欢户外运动与性别有关.先计算观测值k ,再与临界值表作比较,最后得出结论2.研究人员选取170名青年男女大学生的样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;男生110名在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?分别用条形图和独立性检验的方法判断.[解] 建立性别与态度的2×2列联表如下:根据列联表中所给的数据,可求出男生中作肯定态度的频率为110=0.2,女生中作肯定态度的频率为60≈0.37.作等高条形图如图,其中两个深色条形的高分别表示男生和女生中作肯定态度的频率,比较图中深色条形的高可以发现,女生中作肯定态度的频率明显高于男生中作肯定态度的频率,因此可以认为性别与态度有关系.根据列联表中的数据得到K 2的观测值k =-2110×60×44×126≈5.622>5.024.因此,在犯错误的概率不超过0.025的前提下认为性别和态度有关系.检验每册书的成本费y 与印刷册数的倒数x之间是否具有线性相关关系.如有,求出y 对x 的回归方程.思路探究:令z =1x,使问题转化为z 与y 的关系,然后用回归分析的方法,求z 与y 的回归方程,进而得出x 与y 的回归方程.[解] 把1x 置换为z ,则有z =1x,从而z 与y 的数据为拟合.z =110×(1+0.5+0.333+0.2+0.1+0.05+0.033+0.02+0.01+0.005)=0.225 1, y =110×(10.15+5.52+4.08+…+1.15)=3.14,∑i =110z 2i =12+0.52+0.3332+…+0.012+0.0052≈1.415, ∑i =110z i y i =1×10.15+0.5×5.52+…+0.005×1.15=15.221 02,所以b ^=∑i =110z i y i -10z y∑i =110z 2i -10z 2≈8.976,a ^=y -b ^z =3.14-8.976×0.225 1≈1.120,所以所求的z 与y 的回归方程为y ^=8.976z +1.120. 又因为z =1x ,所以y ^=8.976x+1.120.确定变量,作出散点图根据散点图,选择恰当的拟合函数变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程分析拟合效果:通过计算相关指数或画残差图来判断拟合效果根据相应的变换,写出非线性回归方程[跟踪训练3.在某化学试验中,测得如下表所示的6对数据,其中x (单位:min)表示化学反应进行的时间,y (单位:mg)表示未转化物质的质量.(2)估计化学反应进行到10 min 时未转化物质的质量(精确到0.1).【导学号:48662027】[解] (1)在y =cd x两边取自然对数,令ln y =z ,ln c =a ,lnd =b ,则z =a +bx .由已知数据,得由公式得a ≈3.905 5,b ≈-0.221 9,则线性回归方程为z =3.905 5-0.221 9x .而ln c =3.905 5,lnD =-0.221 9,故c≈49.675,d≈0.801,所以c,d的估计值分别为49.675和0.801.(2)当x=10时,由(1)所得公式可得y≈5.4(mg).所以,化学反应进行到10 min时未转化物质的质量约为5.4 mg.。

高中数学人教版选修1-2_模块复习课 第一课 统计案例 (共54张PPT)精选ppt课件

高中数学人教版选修1-2_模块复习课 第一课 统计案例 (共54张PPT)精选ppt课件

【解析】依题意有
P=(-3x+161.5)(x-30)=-3x2+251.5x-4845
=-3(x- )2+ 2 5 1.5
2 5 -1 .45 2845.
所以当x=6 ≈42时1 2 ,P有最大值,约为426.
2 5 1.5 即预测销售单6 价为42元时,能获得最大日销售利润.
【方法技巧】求线性回归方程的基本步骤
每晚都打鼾
30
224
254
不打鼾
24
1 355
1 379
总计
54
1 579
1 633
【解析】由列联表中的信息 知打鼾人群中未患心脏病的 比例为0.88,即患有心脏病 的比例为0.12;同理不打鼾 人群中未患心脏病的比例为0.98,即患有心脏病的比 例为0.02.作出等高条形图(如图).
从该图中可以看出:打鼾样本中患心脏病的比例明显 多于不打鼾样本中患心脏病的比例.因此可以认为“打 鼾与患心脏病有关”.
所以y关于x的b线9 4 性7 3 7 4 回 9 4 归7 3 2 2 方 程5 2,为a 2 7 5 2 1 2 3 ,
y 5 x 3. 2
(3)当x=10时,y =22,|22-23|<2,当x=11时y , =24.5
|24.5-25|<2,当x=13时, =29.5,|29.5-30|<2.
M包含的基本事件有:(AC)、(AD)、(BC)、(BD)、
(CD),所以P(M)=5 . 6
【补偿训练】某研究性学习小组对春季昼夜温差大小 与某花卉种子发芽多少之间的关系进行研究,他们分 别记录了3月1日至3月5日的每天昼夜温差与实验室每 天每100颗种子浸泡后的发芽数,得到如下资料:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习课(一) 统计案例回归分析(1)变量间的相关关系是高考解答题命题的一个,主要考查变量间相关关系的判断,求解回归方程并进行预报估计,题型多为解答题,有时也有小题出现.(2)掌握回归分析的步骤的是解答此类问题的关键,另外要掌握将两种非线性回归模型转化为线性回归分析求解问题.[考点精要]1.一个重要方程对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其线性回归直线方程为y ^=b ^x +a ^.其中b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b ^x .2.重要参数相关指数R 2是用来刻画回归模型的回归效果的,其值越大,残差平方和越小,模型的拟合效果越好.3.两种重要图形 (1)散点图:散点图是进行线性回归分析的主要手段,其作用如下:一是判断两个变量是否具有线性相关关系,如果样本点呈条状分布,则可以断定两个变量有较好的线性相关关系;二是判断样本中是否存在异常. (2)残差图:残差图可以用来判断模型的拟合效果,其作用如下:一是判断模型的精度,残差点所分布的带状区域越窄,说明模型的拟合精度越高,回归方程的预报精度越高.二是确认样本点在采集中是否有人为的错误.[典例] (全国卷Ⅲ)如图是我国2008年到2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17y i -y2=0.55,7≈2.646.参考公式:相关系数r =∑i =1nt i -ty i -y∑i =1nt i -t2∑i =1n y i -y2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1nt i -ty i -y∑i =1nt i -t2,a ^=y -b ^t .[解] (1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17y i -y2=0.55,∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈2.892×2.646×0.55≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17t i -ty i -y∑i =17t i -t2=2.8928≈0.103, a ^=y -b ^t ≈1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t . 将2016年对应的t =9代入回归方程得 y ^=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨. [类题通法]回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤是先画出散点图,并对样本点进行相关性检验,在此基础上选择适合的函数模型去拟合样本数据,从而建立较好的回归方程,并且用该方程对变量值进行分析;有时回归模型可能会有多种选择(如非线性回归模型),此时可通过残差分析或利用相关指数R 2来检查模型的拟合效果,从而得到最佳模型.[题组训练]1.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1解析:选C 画散点图,由散点图可知X 与Y 是正相关,则相关系数r 1>0,U 与V 是负相关,相关系数r 2<0,故选C .2.寒假中, 某同学为组织一次爱心捐款, 在网上给网友发了张帖子, 并号召网友转发,下表是发帖后一段时间收到帖子的人数统计:天数x 1 2 3 4 5 6 7 人数y711212466115325(1)作出散点图,并猜测x 与y 之间的关系. (2)建立x 与y 的关系, 预报回归模型.(3)如果此人打算在帖子传播10天时进行募捐活动, 根据上述回归模型, 估计可去多少人.解:(1)画出散点图如图所示.从散点图可以看出x 与y 不具有线性相关关系, 同时可发现样本点分布在某一个函数曲线y =k e mx的周围, 其中k, m 是参数.(2)对y =k e mx两边取对数,把指数关系变成线性关系. 令z =ln y ,则变换后的样本点分布在直线z =bx +a (a =ln k, b =m )的周围, 这样就可以利用线性回归模型来建立x 与y 之间的非线性回归方程了, 数据可以转化为:天数x 1 2 3 4 5 6 7人数的 对数z 1.946 2.398 3.045 3.178 4.190 4.745 5.784求得回归直线方程为z ^=0.620x +1.133, 所以y ^=e 0.620x +1.133.(3)当x =10, 此时y ^=e 0.620×10+1.133≈1 530(人). 所以估计可去1 530人.独立性检验(1)近几年高考中对独立性检验的考查频率有所降低,题目多以解答题形式出现,一般为容易题,多与概率、统计等内容综合命题.(2)独立性检验的基本思想类似于数学中的反证法,要确认“两个分类变量有关系” 这一结论成立的可信程度,首先假设该结论不成立,即假设结论“两个分类变量没有关系” 成立,在该假设下构造的随机变量K 2应该很小,如果由观测数据计算得到的K 2的观测值k 很大,则在一定程度上说明假设不合理,根据随机变量K 2的含义,可以通过概率P (K 2≥6.635)≈0.01来评价该假设不合理的程度,由实际计算出的k >6.635,说明该假设不合理的程度约为99%,即“两个分类变量有关系” 这一结论成立的可信程度约为99%.[考点精要]在实际问题中常用的几个数值(1)K 2≥6.635表示认为“X 与Y 有关系”犯错误的概率不超过0.01. (2)K 2≥3.841表示认为“X 与Y 有关系”犯错误的概率不超过0.05.(3)K2≥2.706表示认为“X与Y有关系”犯错误的概率不超过0.1.[典例] 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数,如图所示.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食为肉类为主.)(1)根据茎叶图,帮助这位同学说明其亲属30人的饮食习惯.(2)根据以上数据完成如表所示的2×2列联表.主食蔬菜主食肉类总计50岁以下50岁以上总计(3)在犯错误的概率不超过0.01的前提下,是否能认为“其亲属的饮食习惯与年龄有关”?[解] (1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉类为主.(2)2×2列联表如表所示:主食蔬菜主食肉类总计50岁以下481250岁以上16218总计201030(3)随机变量K2的观测值k=30×8-128212×18×20×10=30×120×12012×18×20×10=10>6.635,故在犯错误的概率不超过0.01的前提下认为“其亲属的饮食习惯与年龄有关”.[类题通法]独立性检验问题的求解策略(1)等高条形图法:依据题目信息画出等高条形图,依据频率差异来粗略地判断两个变量的相关性.(2)K2统计量法:通过公式K 2=n ad -bc 2a +bc +d a +cb +d先计算观测值k ,再与临界值表作比较,最后得出结论.[题组训练]1.下表是某地区的一种传染病与饮用水的调查表:得病 不得病 总计 干净水 52 466 518 不干净水 94 218 312 总计146684830(1)能否在犯错误概率不超过0.01的前提下认为这种传染病与饮用水的卫生程度有关,请说明理由.(2)若饮用干净水得病的有5人,不得病的有50人,饮用不干净水得病的有9人,不得病的有22人.按此样本数据分析能否在犯错误概率不超过0.025的前提下认为这种疾病与饮用水有关.解:(1)把表中的数据代入公式得 K 2的观测值k =830×52×218-466×942146×684×518×312≈54.21.∵54.21>6.635,所以在犯错误的概率不超过0.01的前提下,认为该地区这种传染病与饮用水不干净有关.(2)依题意得2×2列联表:得病 不得病 总计 干净水 5 50 55 不干净水 9 22 31 总计147286此时,K 2的观测值k =86×5×22-50×9214×72×55×31≈5.785.因为5.785>5.024,所以能在犯错误概率不超过0.025的前提下认为该种疾病与饮用水不干净有关. 2.2016年第三十一届奥运会在巴西首都里约热内卢举行,为调查某高校学生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了60人,结果如下:是否愿意提供志愿者服务性别愿意不愿意男生 20 10 女生1020(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人, 其中男生抽取多少人?(2)在(1)中抽取的6人中任选2人, 求恰有一名女生的概率.(3)你能否在犯错误的概率不超过0.01的前提下认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:P (K 2≥k 0)0.150.100.05 0.025 0.010 0.005 0.001k 02.072 2.706 3.841 5.024 6.635 7.879 10.828独立性检验统计量K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .解:(1)由题意,男生抽取6×2020+10=4(人),女生抽取6×1020+10=2(人).(2)在(1)中抽取的6人中任选2人,恰有一名女生的概率P =C 14C 12C 26=815.(3)K 2=60×20×20-10×10230×30×30×30≈6.667,由于6.667>6.635,所以能在犯错误的概率不超过0.01的前提下认为该校高中生是否愿意提供志愿者服务与性别有关.1.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见下表,则实验效果与教学措施( )优、良、中差 总计 实验班 48 2 50 对比班 38 12 50 总计86 14100A .有关 C .关系不明确D .以上都不正确解析:选A 随机变量K 2的观测值k =100×48×12-38×2250×50×86×14≈8.306>6.635,则有99%的把握认为“实验效果与教学措施有关”.2.下列说法中正确的有:( ) ①若r >0,则x 增大时,y 也相应增大;②若r <0,则x 增大时,y 也相应增大;③若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.A .①②B .②③C .①③D .①②③解析:选C 若r >0,表示两个相关变量正相关,x 增大时,y 也相应增大,故①正确.r <0,表示两个变量负相关,x 增大时,y 相应减小,故②错误.|r |越接近1,表示两个变量相关性越高,|r |=1表示两个变量有确定的关系(即函数关系),故③正确.3.有下列数据( )x 1 2 3y35.99 12.01下列四个函数中,模拟效果最好的为( ) A .y =3×2x -1B .y =log 2xC .y =3xD .y =x 2解析:选A 分别把x =1,2,3,代入求值,求最接近y 的值.即为模拟效果最好,故选A .4.若两个变量的残差平方和是325, i =1n(y i -y )2=923,则随机误差对预报变量的贡献率约为( )A .64.8%B .60%C .35.2%D .40%解析:选C 由题意可知随机误差对预报变量的贡献率约为325923≈0.352.5.已知x 与y 之间的几组数据如下表:x 1 2 3 4 5 6 y21334假设根据上表数据所得线性回归直线方程为y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y ′=b ′x +a ′,则以下结论正确的是( )A .b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C .b ^< b ′,a ^>a ′ D.b ^<b ′,a ^<a ′解析:选C 过(1,0)和(2,2)的直线方程为y =2x -2,画出六点的散点图,回归直线的大概位置如图所示,显然b ^<b ′,a ^>a ′. 故选C .6.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,并按不同的曲线来拟合y 与x 之间的回归方程,并算出了对应相关指数R 2如下表:拟合曲线直线指数曲线 抛物线二次曲线 y 与x 回归方程y ^=19.8x -463.7 y ^=e 0.27x -3.84y ^=0.367x 2-202 y ^=x -0.782-1相关指数R 20.7460.9960.9020.002则这组数据模型的回归方程的最好选择应是( ) A .y ^=19.8x -463.7 B .y ^=e 0.27x -3.84 C .y ^=0.367x 2-202 D .y ^=x -0.782-1解析:选B 用相关指数R 2来刻画回归效果,R 2的值越大,说明模型的拟合效果越好. 7.某学校对课程《人与自然》的选修情况进行了统计,得到如下数据:选 未选 总计 男 405 45 450 女 230 220 450 总计635265900那么,认为选修《人与自然》与性别有关的把握是________. 解析:K 2=n ad -bc 2a +bc +d a +cb +d=163.794>10.828,即有99.9%的把握认为选修《人与自然》与性别有关. 答案:99.9%8.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.零件数x (个) 10 2030 40 50 加工时间y (min) 62758189现发现表中有一个数据模糊看不清,请你推断出该数据的值为________.解析:由表知x =30,设模糊不清的数据为m ,则y =15(62+m +75+81+89)=307+m5,因为y =0.67x +54.9,即307+m5=0.67×30+54.9,解得m =68. 答案:689.变量U 与V 相对应的一组样本数据为(1,1.4),(2,2.2),(3,3),(4,3.8),由上述样本数据得到U 与V 的线性回归分析,R 2表示解释变量对于预报变量变化的贡献率,则R 2=______.解析:在线性回归中,相关指数R 2等于相关系数,由x 1=1,x 2=2,x 3=3,x 4=4得:x =2.5,y 1=1.4,y 2=2.2,y 3=3,y 4=3.8得:y =2.6,所以相关系数r =∑i =14x i -xy i -y∑i =14x i -x2∑i =14y i -y2= 1.5×1.2+0.5×0.4+0.5×0.4+1.5×1.2-1.52+-0.52+0.52+1.52·-1.22+-0.42+0.42+1.22=45× 3.2=44=1.故R 2=1. 答案:110.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得的数据,试问:文科学生总成绩不好与数学成绩不好有关系吗?总成绩情况数学成绩情况总成绩好 总成绩不好总计 数学成绩好 478 12 490 数学成绩不好399 24 423 总计87736913解:根据题意,计算随机变量的观测值: K 2=913×478×24-399×122490×423×877×36≈6.233>5.024,因此有97.5%的把握认为“文科学生总成绩不好与数学成绩不好有关系”. 11.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:积极参加 班级工作 不太主动 参加班级工作总计 学习积极性高 18学习积极性一般19总计50(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是1225,请完成上面的2×2列联表.(2)在(1)的条件下,试运用独立性检验的思想方法分析:在犯错误概率不超过0.1%的情况下判断学生的学习积极性与对待班级工作的态度是否有关?并说明理由.P (K 2≥k 0)0.010 0.005 0.001 k 06.635 7.879 10.828解:(1)如果随机抽查这个班的一名学生,抽到积极参加班级工作的学生的概率是1225,所以积极参加班级工作的学生有24人,由此可以算出学习积极性一般且积极参加班级工作的人数为6,不太主动参加班级工作的人数为26,学习积极性高但不太主动参加班级工作的人数为7,学习积极性高的人数为25,学习积极性一般的人数为25,得到:积极参加 班级工作 不太主动 参加班级工作总计 学习积极性高 18 7 25 学习积极性一般6 19 25 总计 242650(2)K 2=50×18×19-6×7225×25×24×26≈11.538,因为11.538>10.828,所以在犯错误的概率不超过0.001的前提下可以认为学习积极性与对待班级工作的态度有关系.12.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷总计男女1055总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性.若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:K2=n ad-bc2a+b c+d a+c b+d.P(K2≥k0)0.050.01k03.8416.635解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:非体育迷体育迷总计男301545女451055总计7525100将2×2列联表中的数据代入公式计算,得K2=n ad-bc2a+b c+d a+c b+d=100×30×10-45×15275×25×45×55=10033≈3.030.因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}.其中a i表示男性,i=1,2,3.b j表示女性,j=1,2.Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A表示“任选2人中,至少有1人是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成,因而P(A)=710.。

相关文档
最新文档