数学选修23第三章统计案例教案
高中数学选修2-3公开课教案3.1回归分析的基本思想及其初步应用

第三章、统计案例3.1回归分析的基本思想及其初步应用(共计4课时) 授课类型:新授课一、教学内容与教学对象分析学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
二、学习目标1、知识与技能通过本节的学习,了解回归分析的基本思想,会对两个变量进行回归分析,明确建立回归模型的基本步骤,并对具体问题进行回归分析,解决实际应用问题。
2、过程与方法 本节的学习,应该让学生通过实际问题去理解回归分析的必要性,明确回归分析的基本思想,从散点图中点的分布上我们发现直接求回归直线方程存在明显的不足,从中引导学生去发现解决问题的新思路—进行回归分析,进而介绍残差分析的方法和利用R 的平方来表示解释变量对于预报变量变化的贡献率,从中选择较为合理的回归方程,最后是建立回归模型基本步骤。
3、情感、态度与价值观 通过本节课的学习,首先让显示了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,培养我们利用整体的观点和互相联系的观点,来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心。
加强与现实生活的联系,以科学的态度评价两个变量的相关系。
教学中适当地增加学生合作与交流的机会,多从实际生活中找出例子,使学生在学习的同时。
体会与他人合作的重要性,理解处理问题的方法与结论的联系,形成实事求是的严谨的治学态度和锲而不舍的求学精神。
培养学生运用所学知识,解决实际问题的能力。
三、教学重点、难点教学重点:熟练掌握回归分析的步骤;各相关指数、建立回归模型的步骤;通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法。
教学难点:求回归系数 a , b ;相关指数的计算、残差分析;了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较。
人教版高中选修2-3第三章统计案例教学设计

人教版高中选修2-3第三章统计案例教学设计一、教学背景本教学设计面向人教版高中数学选修2-3第三章《统计》的教学内容,本章节主要讲解相关的统计知识,包括频率分布、分组、频率分布直方图、累计频率分布、等分点、统计标准差等等。
本教学设计针对高中学生特点,通过设计案例,激发学生的学习兴趣,增强学生的统计知识复习和巩固的效果,提高学生的学习兴趣和学习效果,通过实际案例让学生更好地理解理论知识,拓宽学生的思维维度,提高他们的综合应用能力。
二、教学目标1.了解和掌握统计的相关概念和方法2.掌握构造频数分布表、频数分布图、累计频数分布表、累计频数分布图的方法3.熟练应用统计方法解决实际问题4.培养数据分析和解决问题的能力三、教学内容1.频数分布•频数分布表•频数分布图2.累计频数分布•累计频数分布表•累计频数分布图3.等分点及等分位数4.统计标准差本教学设计采用讲授、案例分析和问答等教学方法相结合。
教师通过针对教学目标讲解知识点,设计相关案例进行分析,让学生参与案例分析过程中,深入了解教学重点。
教师根据学生的学习情况提问,引导学生思考,提高学生的思维能力和综合应用能力。
五、课程安排第一节课:频数分布1.讲解概念,构造表格2.讲解构造频数分布图方法3.讲解统计数据分析第二节课:累计频数分布1.讲解累计频数分布概念2.构造累计频数分布表3.构造累计频数分布图4.讲解累计数据分析第三节课:等分点及等分位数1.讲解概念2.讲解求解方法3.应用案例分析第四节课: 统计标准差1.讲解概念2.讲解求解方法3.应用案例分析通过本教学设计的教学实践,学生们以案例为基础,通过讲述来了解和掌握统计的相关概念和方法、熟练应用统计方法解决实际问题、培养数据分析和解决问题的能力。
教学效果良好,学生积极参与,学习效果明显。
值得注意的是,案例的选择要与学生相关,注重实用性,让学生通过教学理论知识的学习能够得到运用和提升。
在教学过程中,要注重学生的积极性,充分发挥案例分析的效果,让学生通过实例了解和理解知识点,提高学习效率和兴趣。
人教版高中数学选修2-3第三章统计案例3.2独立性检验的基本思想及其初步应用教案(2)

回归分析与独立性检验教材分析(一)地位与作用:本节课是一节高三文科复习课,复习内容为新课标人教版高中数学课本选修1-2第一章《统计案例》p1-19页的内容,是在《必修3》概率统计的基础上,通过研究一些典型案例进一步介绍回归分析、独立性检验的基本思想、方法及初步应用。
(二)学情分析:1、学生已经初步掌握概率统计的相关知识;2、学生已经具备了一定的抽象思维能力和演绎推理能力;3、学生整体基础比较薄弱,但求学意识浓厚,高考压力大。
目标分析通过对典型案例的探究,了解回归与独立性检验的基本思想、方法及其初步应用。
(一)教学目标:1、了解回归的基本思想、方法及其简单应用。
2、了解独立性检验(只要求列联表)的基本思想、方法及其简单应用。
(二)重点难点:重点是了解回归分析的方法步骤,独立性检验的基本思想及实施步骤;难点是独立性检验的基本思想及K2的含义。
(三)情感态度与价值观:教材案例典型,方案设计、数据的处理与分析、结论的形成主要通过学生的自主研究来完成,强化了学生的相互协作、合作交流的能力。
知识体系构建本节内容重在线性相关和列联表,最终体现在应用。
教法分析、学法分析(一)教法分析:基于本节课的内容特点和高三学生的年龄特征,在本节课中我采用启发式教学法和合作探究法,突出学生的主体地位,培养学生的自主意识和合作意识。
1、从学生熟悉的实际问题引入课堂,创设情境,引导学生温故知新。
尤其注重以典型案例引领学生探索、发现、掌握方法。
2、教师介绍高考要求和最新动态,学生相互补充复习要点,以起到明确目标、互动交流的作用。
3、合理安排例题讲解与习题巩固,以达到精讲多练、以练为主的目的。
4、合理采用多媒体手段,扩容增效,强化教学效果。
(二)学法分析:学习过程始终贯穿自主学习,通过分组协作,分工配合,协同完成学习。
教学过程分析一、考纲解读1、会作两个变量的散点图,判断两变量之间是否具有相关关系;2、了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程;3、了解常见的统计方法,并能应用这些方法解决一些常见问题:①了解独立性检验(只要求列联表)的基本思想、方法及其简单应用;②了解回归的基本思想、方法及其简单应用.③了解假设检验的基本思想、方法及其简单应用.二、高考预测近几年全国高考个别省市对本部分内容考查有加强趋势,大部分地区以容易题为主。
数学人教A版选修2-3教学设计:第3章统计案例 Word版含解析

教学设计本章复习本章知识脉络基础知识聚焦1.回归分析是对具有相关关系的两个变量进行统计分析的一种方法,而联系这两个变量之间的关系的方程称为回归方程,下列叙述正确的是()A.回归方程一定是直线方程B.回归方程一定不是直线方程C.回归方程是变量之间关系的严格刻画D.回归方程是变量之间关系的一种近似刻画2.在两个变量Y与X的回归模型中,选择了4个不同的模型,它们的相关指数R2如下,其中拟合效果最好的是()A.R2=0.98B.R2=0.80C.R2=0.50D.R2=0.25 3.下列关于K2的说法正确的是()A.K2在任何相互独立的问题中都可以用来检验有关还是无关B.K2的观测值越大,事件相关的可能性就越大C.K2是用来判断两个分类变量是否有关系的随机变量,只对两个分类变量适合D.当K2的观测值大于某一数值(比如10.828)时,我们就说两个分类变量X与Y一定相关4.当我们建立多个模型拟合某一数据时,为了比较各个模型的拟合效果,我们可通过计算下列哪些量来确定()①残差平方和;②回归平方和;③相关指数R 2;④相关系数rA .①B .①②C .①②③D .③④ 5.线性回归方程y ^=b ^x +a ^必经过( )A .(0,0)B .(x ,0)C .(0,y )D .(x ,y ) 学生活动:先用3~5分钟的时间完成上面5个小题,然后再交流答案,相互讨论,并根据题目设计的知识,回顾本章的主要内容.活动结果:1.D 2.A 3.B 4.C 5.D 基础知识回顾:1.回归方程模型及相关检验(1)回归方程中a ^=y ^-b ^x ,b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,其中(x ,y )称为样本点的中心.(2)r 具有如下性质:||r ≤1,并且||r 越接近1,线性相关程度越强,||r 越接近0,线性相关程度越弱.(3)为了衡量预报的精确度,我们要进行残差分析,通常σ2越小,预报精度越高. 2.2×2列联表的独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,这类变量称为分类变量. (2)列联表:两个分类变量的频数表称为列联表.有两个分类变量的样本频数列联表称为2×2列联表.(3)独立性检验独立性检验一般采用列联表的形式,每个因素可以分为两个类别.当列联表是2×2列联表的形式时,独立性检验的随机变量K 2的计算公式如下:K 2=n(ac -bd)2(a +b)(c +d)(a +c)(b +d).这里的字母如下表在给定的出错概率上限下,我们可以通过K 2的观测值与已知数据的大小关系,来判断分类变量的关系.设计目的:把某一节复习课要复习的基础知识(概念、公式、法则、公理、定理、方法、思想、技能、技巧等)整理成一组问题的形式,通过解答问题,达到引发学生再现某些基础知识,进而牢记某些基础知识的目的,即这里的主要目的是再现本节课所要复习的知识、技能、方法与思想.典型示例类型一:线性回归模型及回归分析例1下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =b ^x +a ^; (3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?思路分析:结合统计知识,正确作图和计算. 解:(1)散点图如图所示:(2)由系数公式可知,x =4.5,y =3.5,b ^ =66.5-4×4.5×3.586-4×4.52=66.5-635=0.7. a ^ =3.5-0.7×92=0.35,所以线性回归方程为y =0.7x +0.35;(3)x =100时,y =0.7x +0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.点评:回归分析是对具有相关关系的两个变量进行统计分析的常用方法.采用回归分析基本思想,解决实际问题的基本步骤如下:①明确对象;②画散点图;③选择模型,即通过观察分析散点图确定回归方程的类型,如果观察到数据呈线性关系,则选用线性回归方程y ^=b ^x +a ^;④估算方程,即按一定的规则估计回归方程的参数,如最小二乘法原理;⑤线性相关程度的判定,即通过样本相关系数的大小作出判断:|r|≤1;|r|越接近于1,线性相关程度越强;|r|越接近于0,线性相关程度越弱.变式练习:一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:(1)y 与x 是否具有线性相关关系?(2)如果y 与x 具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少? 解:(1)列出下表x =55,y =91.7,∑i =110x 2i =38 500,∑i =110y 2i =87 777,∑i =110x i y i =55 950,因此 r =∑i =110x i y i -10x y(∑i =110x 2i -10x 2)(∑i =110y 2i -10y 2)=55 950-10×55×91.7(38 500-10×552)×(87 777-10×91.72)≈0.999 8, 由于r =0.999 8>0.75,因此x 与y 之间有很强的线性相关关系,因而可求回归直线方程.(2)设所求的回归直线方程为y ^ =b ^ x +a ^,则有b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.668,a ^=y -b ^x ≈54.96,因此,所求线性回归方程为y ^=0.668x +54.96.(3)这个回归直线方程的意义是当x 每增大1时,y 的值约增加0.668,而54.96是y 不随x 增加而变化的部分,因此,当x =200时,y 的估计值为y ^=0.668×200+54.96=188.56≈189,因此,加工200个零件所用的工时约为189分.类型二:非线性回归模型及回归分析 例2在试验中得到变量y 与x 的数据如下:由经验知,y 与1x 之间具有线性相关关系,试求y 与x 之间的回归曲线方程;当x 0=0.038时,预测y 0的值.分析:通过换元转化为线性回归问题.解:令u =1x,由题目所给数据可得下表所示的数据:计算得b ^=0.29,a ^=34.24,∴y ^=34.24+0.29u.故所求回归曲线方程为y ^=34.24+0.29x ,当x 0=0.038时,y ^ =34.24+0.290.038≈41.87.点评:非线性回归问题有时并不给出经验公式,此时我们可以由已知的数据画出散点图,并把散点图与已经学习过的各种函数,如幂函数、指数函数、对数函数、二次函数等作比较,挑选出跟这些散点拟合得最好的函数,然后再采用变量的变换,把问题转化为线性回归问题,使问题得以解决.变式练习:某地大气中氰化物浓度测定结果如下:(1)试建立氰化物浓度与距离之间的回归方程. (2)求相关指数.(3)作出残差图,并求残差平方和.解:(1)选取污染源距离为自变量x ,氰化物浓度为因变量y ,作散点图.从表中所给的数据可以看出,氰化物浓度与距离有负的相关关系,用非线性回归方程来拟合,建立y 关于x 的指数回归方程:y ^=0.929 3e-0.009 4x.(2)相关指数R 2=1-∑ni =1(y i -y ^i )2∑n i =1(y i -y)2≈0.991 5.(3)残差平方和∑ni =1 (y i -y ^i )2=0.011 8. 类型三:独立性检验思想例3某些行为在运动员的比赛之间往往被赋予很强的神秘色彩,如有一种说法认为,在进入某乒乓球场比赛前先迈入左脚的运动员就会赢得比赛的胜利.某记者为此追踪了某著名乒乓球运动员在该球场中的308场比赛,获得数据如下表:据此资料,在出错概率不超过0.1的前提下,是否可以认为先迈进左脚与否跟比赛的胜负有关?思路分析:根据列联表,求出K 2的观测值,再进行判断. 解:由K 2=n(ad -bc)2(a +b)(a +c)(b +d)(c +d),得K 2的观测值k =308×(178×19-84×27)2205×103×262×46≈1.502.因为1.502<2.706,所以在出错概率不超过0.1的前提下,我们没有充分理由认为先迈进左脚与否跟比赛的胜负有关.点评:在日常生活中,经常会面临一些需要推断的问题.在对这些问题作出推断时,我们不能仅凭主观臆断得出结论,需要通过试验来收集数据,并依据独立性检验的原理作出合理的推断,这就是独立性检验的基本思想.依据这一基本思想,我们可以考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度.其基本步骤是:①考察需抽样调查的背景问题,确定所涉及的变量是否为两个分类变量;②根据样本数据制作2×2列联表;③计算统计量K 2的观测值,并查表分析.变式练习:某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:对于人力资源部的研究项目,在出错概率不超过0.01的前提下,根据上述数据能得出什么结论?解:根据列联表中的数据,得到K 2的观测值k =189×(54×63-40×32)294×95×86×103=10.76.因为10.76>6.635,所以在出错概率不超过0.001的前提下,可以得出:员工工作积极性与积极支持企业改革有关.设计目的:通过这组题目的解答,使学生在进一步加深对所复习基础知识、方法、思想的理解基础上,能力方面有所提高.目的是训练、培养学生灵活运用和综合运用知识解决问题的能力.这组题目一般先由学生稍作思考,再由教师精讲.达标检测1.下列两个变量之间的关系中,哪个是函数关系( )A .学生的性别与他的数学成绩B .人的工作环境与健康状况C .女儿的身高与父亲的身高D .正三角形的边长与面积 答案:D2.下列说法中正确的是( )①独立性检验的基本思想是带有概率性质的反证法;②独立性检验就是选取一个假设H 0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H 0的推断;③独立性检验一定能给出明确的结论.A .①②B .①③C .②③D .①②③ 答案:A3.已知两个变量的样本点的中心是(5,50),则两个变量间的回归直线方程可能为( ) A.y ^=7.5x +17.5 B.y ^=6.5x +17.5 C.y ^=7.5x +18.5 D.y ^=6.5x +18.5 答案:B (样本点的中心的坐标为(5,50),代入验证即可)4.在性别与吃零食这两个分类变量的判断中,下列说法正确的是______________.①若K2的观测值为k=6.635,我们认为吃零食与性别有关系的出错概率不超过0.01,那么在100个吃零食的人中必有99人是女性;②从独立性检验可知吃零食与性别有关系的出错概率不超过0.01时,我们说某人吃零食,那么此人是女性的可能性为0.1%;③若从统计量中求出K2的观测值为k=6.635,则有1%的可能性使得出的判断出现错误.答案:③课堂小结1.本章的重要题型:(1)回归分析思想的应用;(2)独立性检验思想的应用.2.本章涉及的主要数学思想与方法:数形结合思想、化归思想等.补充练习【基础练习】1.下列结论正确的是()①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A.①②B.①②③C.①②④D.①②③④2.对两个变量的相关系数r,下列说法中错误的是()A.|r|越大,相关程度越大B.|r|越小,相关程度越大C.r>0时,两个变量正相关D.|r|≤13.由“假设H0:评委的性别与参评年轻选手的性别没有关系”,而得到K2的观测值k≈7.056,则判断H0成立的出错概率不超过(设参评的男、女选手入围或被淘汰的人数均超过5人)()A.1% B.0.01% C.0.1% D.0.5%4.回归分析中,相关指数R2的值越大,说明残差平方和()A.越小B.越大C.可能大也可能小D.以上都不对5.为了考察两个变量x和y之间的线性相关性,甲乙两位同学各自独立地进行100次和150次试验,并且利用线性回归方程,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()A.l1和l2有交点B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合6.某医院,利用独立性检验方法判断“长期服用安眠药与患抑郁症”是否有关,如图所示为“长期服用安眠药与患抑郁症”列联表,则认为“长期服用安眠药与患抑郁症有关”的判断出错概率最小不超过()A.10% B.5% C.2.5% D.0.1%【拓展练习】7.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得数据,试问:在出错概率不超过0.05的前提下,能否判断“文科学生总成绩不好与数学成绩不好有关系”?8.为了研究某种细菌随时间x的变化,繁殖的个数y,收集数据如下:(1)用天数x作解释变量,繁殖个数y作预报变量,作出这些数据的散点图;(2)描述解释变量与预报变量之间的关系;(3)计算残差平方和、相关指数R2.补充练习答案1.C 2.B 3.A 4.A5.A解析:回归直线一定过样本点的中心(x,y),而两次测量的样本点的中心都是(s,t),所以l1和l2一定交于点(s,t).6.D 解析:根据给出的列联表,求出K 2的观测值,再与临界值比较. 7.解析:依题意,计算随机变量K 2的观测值: k =913×(478×24-399×12)2490×423×877×36≈6.233>5.024,所以在出错概率不超过0.025的前提下,可以判断“文科学生总成绩不好与数学成绩不好有关系”.8.解析:(1)略.(2)由散点图看出样本点分布在一条指数函数y =c 1ec 2x 的附近,于是令Z =lny ,则由计算器算得Z ^=0.69x +1.112,则有y ^=e 0.69x +1.112.(3)∑i =16e 2i =∑i =16 (y i -y ^ i )2=3.1643,∑i =16 (y i -y )2=∑i =1ny 2i -6y 2≈24 642.8,R 2=1-3.164 324 642.8≈0.999 9.即解释变量天数对预报变量繁殖细菌的个数解释了99.99%.设计说明本节课的设计思路是:题组教学法.就是针对本节复习课的教学目标,精心设计几组题目(一般为四组,其中,前三组课前和课上用,最后一组课后用),将有关数学基础知识、基本技能、基本方法与数学思想溶于其中,换言之,即以分组题目为设计教学,在具体教学时,以题组中的题目开路(先出现题目,再出现其他),然后引导学生对题目进行分析、讨论、研究和解答.老师借题生话,借题发挥,画龙点睛,把有关的基础知识和解题方法总结出来,把解题的关键显露出来,把解题规律共同探讨出来,把易错点暴露出来,并共同找出错因,且纠正过来.使学生在积极主动的探索研究中,在解答题目的过程中巩固所学的知识,发现规律性的东西,并使学生智力与能力得到训练与提高.(设计者:杨雪峰)。
第三章统计案例小结与复习 教案高中数学选修2-3 北师大版

第三章统计案例小结与复习一、教学目标:会利用散点图和线性回归方程,分析变量间的相关关系;掌握独立性检验的步骤与方法。
二、教学重难点:会利用散点图和线性回归方程,分析变量间的相关关系;掌握独立性检验的步骤与方法。
三、教学方法:探析归纳,讲练结合 四、教学过程(一)、知识归纳与梳理 1、线性回归:(1)相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。
注:与函数关系不同,相关关系是一种非确定性关系。
(2)回归分析:对具有相关关系的两个变量进行统计分析的方法。
(3)散点图:表示具有相关关系的两个变量的一组数据的图形。
(4)回归直线方程:a bx y +=,其中⎪⎪⎩⎪⎪⎨⎧-=--=∑∑==x b y a x n x y x n y x b n i i ni i i 2121, ∑==n i i x n x 11。
相应的直线叫回归直线,对两个变量所进行的上述统计叫做回归分析。
(5)相关系数:)()(21221211y n y x n x yx n yx r ni i n i i ni ii ---=∑∑∑====相关系数的性质:(1)|r|≤1。
(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小。
2、独立性检验①22⨯列联表:列出的两个分类变量X 和Y ,它们的取值分别为12{,}x x 和12{,}y y 的样本频数表称为22⨯列联表1构造随机变量2χ()()()()()2n ad bc a b c d a c b d -=++++(其中n a b c d =+++)得到2χ常与以下几个临界值加以比较:如果 2 2.706χ>,就有0090的把握因为两分类变量X 和Y 是有关系; 如果 2 3.841χ> 就有0095的把握因为两分类变量X 和Y 是有关系; 如果 2 6.635χ> 就有0099的把握因为两分类变量X 和Y 是有关系; 如果22.706χ≤,就认为没有充分的证据说明变量X 和Y 是有关系. (二)、典例探析例1、一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间由如下一组数据:归直线方程. 解: 1)画出散点图:x2)r=∑∑∑===---1211212222121)12)(12(12i i i i i ii y y x x yx yx=18.534.1754.243120.997891-⨯⨯=在“相关系数检验的临界值表”查出与显著性水平0.05及自由度12-2=10相应的相关数临界值r 0 05=0.576<0.997891, 这说明每月产品的总成本y (万元)与该月产量x (万件)之间存在线性相关关系.3)设回归直线方程a bx y+=ˆ, 利用⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=∑∑==xb y a x x y x y x b i i i i i 121221211212,计算a ,b ,得b≈1.215, a=x b y -≈0.974,∴回归直线方程为:974.0215.1ˆ+=x y例2、在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
高中数学选修2-3第三章 统计案例

3.1回归分析的基本思想及其初步应用(一)(新授课) 3.1回归分析的基本思想及其初步应用(二)(新授课) 3.1回归分析的基本思想及其初步应用(三)(新授课) 3.1 回归分析的基本思想及其初步应用(四)(新授课) 3.2 独立性检验的基本思想及其初步应用(一)(新授课)3.2 独立性检验的基本思想及其初步应用(二)(新授课)第三章统计案例单元练习题(习题课)一、课程目标在《数学3(必修)》概率统计内容的基础上,通过典型案例进一步介绍回归分析的基本思想、方法以及初步应用;通过典型案例介绍独立性检验的基本思想、方法以及初步应用,使学生认识统计方法在决策中的作用。
二、学习目标1、通过典型案例的探究,进一步了解回归分析的基本思想、方法及其应用。
2、通过典型案例的探究,了解独立性检验的基本思想、方法以及初步应用。
三、本章知识框图四、课时分配本章共2小结,教学约需2课时,具体安排如下3.1 回归分析的基本思想及其初步应用约4课时3.2 独立性检验的基本思想及其初步应用约2课时3.1 回归分析的基本思想及其初步应用(一)(新授课)一、教学目标: 知识与能力:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 过程与方法:通过本节的学习,让雪生通过实际问题去理解回归分析的必要性,明确回归分析的基本思想。
情感、态度与价值观:培养学生运用所学的知识,解决实际问题的能力。
二、教学重点与难点: 重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.难点:解释残差变量的含义,了解偏差平方和分解的思想. 三、教学过程: (一)课前复习: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.(二)讲授新课: 1. 举例应用:例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号 1 2 3 4 5 6 7 8身高/cm 165 165 157 170 175 165 155 170体重/kg 48 57 50 54 64 61 43 59求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重. (分析思路→教师演示→学生整理)第一步:作散点图 第二步:求回归方程 第三步:代值计算 (1)思考:身高为172cm 的女大学生的体重一定是60.316kg 吗? 不一定,但一般可以认为她的体重在60.316kg 左右. (2)解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.10203040506070150155160165170175180身高/cm体重/k g2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.(三)课时小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.四、课后反思:3.1 回归分析的基本思想及其初步应用(二)(新授课)一、教学目标: 知识与能力:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 过程与方法:从散点图中点的分布上发现直接求回归方程存在的不足,从中引导学生去发现解决问题的新思路,进行回归分析,进而介绍残差分析的方法。
高中数学 第三章 统计案例教案 北师大版选修23

第三章统计案例§1回归分析1.1 回归分析(教师用书独具)●三维目标1.知识与技能(1)了解回归分析的基本思想,会对两个变量进行回归分析.(2)明确建立回归模型的基本步骤,并对具体问题进行回归分析.(3)会解决实际问题.2.过程与方法(1)通过实际问题去理解回归分析的必要性,明确回归分析的基本思想.(2)从散点图中的点的分布上,发现直接求回归直线方程存在明显不足,从中引导学生去发现解决问题的新思路——进行回归分析.3.情感、态度与价值观(1)培养学生用整体的观点和互相联系的观点,来分析问题.(2)进一步加强数学的应用意识,培养学生学好数学、用好数学的信心.(3)加强与现实生活中的联系,以科学的态度评价两个变量的相关关系.●重点难点重点:掌握回归分析的步骤、相关系数、建立回归模型的步骤;体会有些非线性模型通过变换,可以转化为线性回归模型;在解决实际问题的过程中寻找更好的建型方法.难点:求线性回归方程的系数a,b;相关系数;选择不同的模型建模.回归分析主要是研究两个变量间的关系,是在必修三的基础上学习,教材的1.1回归分析是复习必修三的内容,为了使建立回归方程有意义,提出了相关系数,这与回归直线中b的系数有关联,教师可通过实例,让学生了解相关系数的大小与线性相关的关系;在现实中又有一种非线性的相关性,如何解决引导学生转化为线性关系,主要通过数形结合思想、函数思想,使问题化归为线性关系,教学中可通过提醒、猜想、练习等方法,使学生掌握本节的重点内容.(教师用书独具)●教学建议建议本节课用3课时讲解完成.教学中通过组织学生自己动手操作计算、观察、分析、交流、讨论、归纳让他们在探究学习中经历知识形成的全过程,从而形成“自主探究、合作交流”的数学学习方法.教师在课堂上可以用计算机软件进行参数的估计、相关系数的计数,让学生掌握利用计算器进行线性回归方程的求解和评价.●教学流程第1课时以实际问题作为课题引入.⇒回顾建立回归直线方程的基本步骤.⇒通过实例巩固、体验线性回归直线方程的求法及应用.⇒第2课时提出新问题,如何用其他方法刻画变量之间的线性相关.⇒师生共同探究,得出相关系的概念及相关系数的大小与线性相关之间的关系.⇒通过例题,巩固验证相关系数刻画变量之间的线性相关的特点.⇒第3课时引导学生探究如果不是线性回归模型,如何估计参数,能否利用线性回归模型.⇒对数据进行分析变换后,对新数据建立线性模型.⇒转化为原来变量模型,得出结论,总结建模思想,补充拓展.⇒课堂小结并完成当堂双基达标,巩固本节所学知识.课标解读 1.通过实例掌握回归分析的基本思想方法.2.利用最小二乘法会求线性回归直线方程,并能用线性回归直线方程进行预报.变量之间的相关关系【问题导思】1.正方形的面积S 与其边长a 是什么关系?圆的周长l 与半径r 是什么关系? 【提示】 ∵S =a 2,l =2πr , ∴它们都是确定的函数关系.2.父亲的身高与儿子的身高之间有何关系?耕种深度与水稻产量之间有何关系? 【提示】 非确定关系.1.变量之间有一定的联系,但不能完全用函数来表达.如人的体重y 与身高x .一般来说,身高越高,体重越重,但不能用一个函数来严格地表示身高与体重之间的关系.相关关系是非确定性关系,因变量的取值具有一定的随机性.2.在考虑两个变量的关系时,为了对变量之间的关系有一个大致的了解,人们通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常把这种图叫作变量之间的散点图.线性回归方程【问题导思】1.确定线性回归方程,只需得出哪两个量?【提示】 确定线性回归直线方程,只需确定a ,b 两个量即可.2.在线性回归方程y =a +bx 中,当一次项系数b 为正数时,说明两个变量有何相关关系?在散点图上如何反映? 【提示】 说明两个变量正相关,在散点图上自左向右看这些点呈上升趋势.假设样本点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),设线性回归方程为y =a +bx ,要使这n 个点与直线y =a +bx 的“距离”平方之和最小,即使得Q (a ,b )=(y 1-a -bx 1)2+(y 2-a -bx 2)2+…+(y n -a -bx n )2达到最小,a ,b 需满足b =∑nb =1x i y i -n x y∑ni =1x 2i -n x2,a =y -b x .由数据求线性回归方程已知x ,y 之间一组数据:x 0 1 2 3 y1357(1)分别计算:x 、y 、x 1y 1+…+x 4y 4,x 21+x 22+…+x 24; (2)求出线性回归方程y =bx +a .【思路探究】 可利用表格的数直接计算,然后把这些结果代入线性回归方程系数公式,分别求得a ,b ,再求出线性回归方程. 【自主解答】 (1)x =0+1+2+34=1.5,y =1+3+5+74=4,x 1y 1+…+x 4y 4=0×1+1×3+2×5+3×7=34,x 21+x 22+…+x 24=02+12+22+32=14;(2)b =x 1y 1+x 2y 2+x 3y 3+x 4y 4-4x yx 21+x 22+x 23+x 24-4x 2=34-4×1.5×414-4×1.52=2;a =y -b x =4-2×1.5=1.故y =2x +1.答:(1)所求的值分别为:1.5,4,34,14; (2)所求的线性回归方程是:y =2x +1.求线性回归方程的步骤:(1)列表求出x ,y ,∑ni =1x 2i ,∑ni =1x i y i ;(2)利用公式b =∑ni =1x i y i -n x y∑ni =1x 2i -n x2,a =y -b x ,求出b ,a ;(3)写出线性回归方程.观察两相关量得如下数据:x -1 -2 -3 -4 -5 5 3 4 2 1 y-9-7-5-3-115379求两变量间的回归方程. 【解】 列表i 12345678910 x i-1-2-3-4-55342 1 y i-9-7-5-3-115379 x2i1491625259164 1 x i y i9141512551512149由此可得x=0,y=0,∑10i=1x2i=110,∑10i=1x i y i=110,b=∑10i=1x i y i-10x y∑10 i=1x2i-10x2=110-10×0110-10×0=1,a=y-b x=0,∴所求回归方程为y=x.求实际问题的回归方程某企业想通过做广告来提高自己的知名度,经预测可知本企业产品的广告费支出x 与销售额y(单位:百万元)之间有如下对应数据:x 24568y 3040605070(1)判断y与x是否具有线性相关关系;(2)求回归直线方程.【思路探究】先画出散点图,即可判断y与x是否具有相关关系,如果y与x具有相关关系可将有关数据代入公式求得回归直线方程.【自主解答】(1)散点图如图所示:根据散点图可知,所给的数据点都在一条直线的附近,所以y与x具有线性相关关系.(2)列出下表,并且科学地的进行有关计算.i 1234 5x i24568y i3040605070x i y i60160300300560x=5,y=50,∑5 i=1x2i=145,∑5i=1y2i=135 000,∑5i=1x i y i=1 380于是可得,b=∑5i=1x i y i-5x y∑5 i=1x2i-5x2=1 380-5×5×50145-5×52=6.5,a=y-b x=50-6.5×5=17.5,于是所求的回归直线方程是y=6.5x+17.5.对一级数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,再依系数a、b的计算公式,算出a、b.由于计算量较大,所以在计算时应借助技术手段,认真细致,谨防计算中产生错误.某医院用光电比色计检验尿汞时,得尿汞含量(毫克/升)与消光系数如下表:汞含量x 2 4 6 8 10 消光系数y64138205285360(1)作散点图;(2)如果y 与x 之间具有线性相关关系,求线性回归方程. 【解】 (1)散点图如图.(2)由散点图可知,y 与x 呈相关关系,设线性回归方程为:y =bx +a .经计算:得x =6,y =210.4,∑5i =1x 2i =220,∑5i =1x i y i =7 790.∴b =7 790-5×6×210.4220-5×62=36.95, a =210.4-36.95×6=-11.3.∴线性回归方程为y =36.95x -11.3.利用回归直线方程进行统计某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x (x 取整数)元与日销售量y 台之间有如下关系:x 35 40 45 50 y 56 41 28 11(1)画出散点图,并判断y 与x 是否具有线性相关关系; (2)求日销售量y 对销售单价x 的线性回归方程;(3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.【思路探究】 两个变量呈现近似的线性关系,可通过公式计算出其线性回归方程,并根据方程求出其预测值.【自主解答】 (1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量线性相关.(2)∵x =14×(35+40+45+50)=42.5,y =14×(56+41+28+11)=34,∑4i=1x i y i=35×56+40×41+45×28+50×11=5 410,∑4i=1x2i=352+402+452+502=7 350,∴b=∑4i=1x i y i-4x·y∑4 i=1x2i-4x2=5 410-4×42.5×347 350-4×42.52=-370125=-2.96.∴a=y-b x=34-(-2.96)×42.5=159.8.∴y=-2.96x+159.8.(3)依题意有P=(-2.96x+159.8)(x-30)=-2.96x2+248.6x-4 794,∴当x=248.62×2.96≈42时,P有最大值,约为426,即预测销售单价为42元时,能获得最大日销售利润.1.b=-2.96是斜率的估计值,说明单价每增加一个单位,日销售量就减少2.96. 2.借助于回归方程对实际问题的估计值是个近似值,不是一个准确值.假设关于某设备的使用年限x 和所支出的维修费y (万元)有如下的统计资料:x 2 3 4 5 6 y2.23.85.56.57.0若由资料可知y 对x 呈线性相关关系. (1)求线性回归方程;(2)估计使用年限为10年时,维修费用是多少万元? 【解】 (1)列表如下:ix iy ix 2ix i y i1 2 2.2 4 4.4 2 3 3.8 9 11.4 3 4 5.5 16 22.0 4 5 6.5 25 32.5 5 6 7.0 36 42.0 ∑202590112.3由此可得:x =4,y =5.进而可以求得b =∑5i =1x i y i -5x y∑5i =1x 2i -5x2=1.23,a =y -b x =0.08.∴线性回归方程为y =0.08+1.23x .(2)当x =10时,y =0.08+1.23×10=12.38(万元),即估计使用10年时维修费用是12.38万元.数形结合思想在回归分析中的应用(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨标准煤)与相应的生产能耗y(吨标准煤)的几组对照数据.x 345 6y 2.534 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【思路点拨】(1)可直接由表格提供的点,列出散点图;(2)可利用线性回归方程中a,b公式直接求解;(3)直接用方程来估计所求值.【规范解答】(1)图形如图所示.3分(2)x =3+4+5+64=4.5;y =2.5+3+4+4.54=3.5;∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5.∑4i =1x 2i =32+42+52+62=86. 6分∴b =∑4i =1x i y i -4x ·y ∑4i =1x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7, 8分 a =y -b x =3.5-0.7×4.5=0.35. 9分∴y =0.7x +0.35. 10分 (3)现在生产100吨甲产品用煤y =0.7×100+0.35=70.35,∴降低90-70.35=19.65吨标准煤. 12分线性回归方程的应用(1)描述两变量间的依存关系;(2)利用回归方程可进行预测;(3)利用回归方程还可以进行统计控制.1.作回归分析要有实际意义.2.回归分析前,最好先做出散点图.3.应用回归分析预测时,最好先作出散点图.1.下列说法正确的是( )A.任何两个变量都具有相关关系B.球的体积与该球的半径具有相关关系C.农作物的产量与施化肥量之间是一种确定性的关系D.某商品的生产量与该商品的销售价格之间是一种非确定性的关系【解析】两个变量之间的关系有两种,即函数关系与相关关系,故A错误.B中球的体积与该球的半径是函数关系.C中农作物的产量与施化肥量之间不是严格的函数关系,但是具有相关关系,因而是非确定性的关系.D中商品的生产量还和市场需求有关,故商品的生产量与该商品的销售价格之间是非确定性的关系.故选D.【答案】 D2.一位母亲记录了儿子3岁~9岁的身高(数据略),由此建立的身高y(单位:cm)与年龄x(单位:岁)的回归模型为y=7.19x+73.93.用这个模型预测这个孩子10岁时的身高,则下列叙述正确的是( )A.身高一定是145.83 cmB.身高在145.83 cm以上C.身高在145.83 cm以下D.身高在145.83 cm左右【解析】x=10时,y=7.19×10+73.93=145.83,但这是预测值而不是精确值,所以只能选D.【答案】 D3.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y与x之间的线性回归方程为________.【解析】通过检验A,B,C,D四点共线,都在直线y=x+1上.【答案】y=x+14.已知一个回归直线方程为y=1.5x+45,x∈{1,7,5,13,19},求y.【解】由已知可知:x=1+7+5+13+195=9.又∵回归直线过点(x,y),∴y =1.5x +45,即y =1.5×9+45=58.5.一、选择题1.对具有线性相关关系的两个变量建立的线性回归方程y =a +bx 中,回归系数b ( ) A .可以小于0 B .只能大于0 C .可能等于0D .只能小于0【解析】 b 可能大于0,也可能小于0,但当b =0时,x ,y 不具有线性相关关系. 【答案】 A2.下列两个变量间的关系不是函数关系的是( ) A .正方体的棱长与体积 B .角的弧度数与它的正弦值C .单产为常数时,土地面积与粮食总产量D .日照时间与水稻亩产量【解析】 ∵A 、B 、C 都可以得出一个函数关系式,而D 不能写出确定的函数关系式,它只是一个不确定关系. 【答案】 D3.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y =bx +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .63.36万元 B .65.5万元 C .67.7万元D .72.0万元【解析】 x =4+2+3+54=3.5,y =49+26+39+544=42,∴a=y-b x=42-9.4×3.5=9.1,∴回归方程为y=9.4x+9.1,∴当x=6时,y=9.4×6+9.1=65.5,故选B.【答案】 B4.由一组样本数据(x1,y1),(x2,y2),…,(x n,y n)得到回归直线方程y=bx+a,那么下列说法中不正确的是( ) A.直线y=bx+a必经过点(x,y)B.直线y=bx+a至少经过点(x1,y1)(x2,y2),…,(x n,b n)中的一个点C.直线y=bx+a的斜率为∑ni=1x i y i-n x·y∑ni=1x2i-n x2D.直线y=bx+a的纵截距为y-b x【解析】回归直线可以不经过任何一个点.其中A:由a=y-b x代入回归直线方程y=bx+y-a x,即y=b(x-x)+y过点(x,y).∴B错误.【答案】 B5.已知两个变量x和y之间具有线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归的方法求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y的观测数据的平均数都是t,则下列说法正确的是( )A.l1与l2一定有公共点(s,t)B.l1与l2相交,但交点一定不是(s,t)C.l1与l2必定平行D.l1与l2必定重合【解析】由于回归直线y=bx+a恒过(x,y)点,又两人对变量x的观测数据的平均值为s,对变量y的观测数据的平均值为t,所以l1和l2恒过点(s,t).【答案】 A二、填空题6.从某大学随机选取8名女大学生,其身高x(cm)和体重y(kg)的线性回归方程为y=0.849x-85.712,则身高172 cm的女大学生,由线性回归方程可以预测其体重约为________.【解析】将x=172代入线性回归方程y=0.849x-85.712,有y=0.849×172-85.712=60.316(kg).【答案】60.316 kg7.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本的资料进行线性回归分析,结果如下:x=72,y=71,∑6i=1x2i=79,∑6i=1x i y i=1 481.b =1 481-6×72×7179-6×722≈-1.818 2,a =71-(-1.818 2)×72≈77.36,则销量每增加1 000箱,单位成本下降________元.【解析】 由上表可得,y =-1.818 2x +77.36,销量每增加1千箱,则单位成本下降1.818 2元. 【答案】 1.818 28.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y =0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 由题意知[0.254(x +1)+0.321]-(0.254x +0.321)=0.254. 【答案】 0.254 三、解答题9.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:推销员编号 1 2 3 4 5 工作年限x /年 3 5 6 7 9 推销金额y /万元23345(1)求年推销金额y 关于工作年限x 的线性回归方程;(2)若第6名推销员的工作年限为11年,试估计他的年推销金额. 【解】 (1)设所求的线性回归方程为y =bx +a ,则b =∑i =15x i -xy i -y∑i =15x i -x2=1020=0.5, a =y -b x =0.4.所以年推销金额y 关于工作年限x 的线性回归方程为y =0.5x +0.4. (2)当x =11时,y =0.5x +0.4=0.5×11+0.4 =5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元.10.一种机器可以按各种不同速度运转,其生产物件中有一些含有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x 表示转速(单位:转/秒),用y 表示每小时生产的有缺点物件个数.现观测得到(x ,y )的4组值为(8,5),(12,8),(14,9),(16,11).(1)假设y 与x 之间存在线性相关关系,求y 与x 之间的线性回归方程.(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1) 【解】 (1)设回归方程为y =a +bx ,则x =8+12+14+164=12.5,y =5+8+9+114=8.25, ∑4i =1x 2i =660,∑4i =1x i y i =438,b =∑4i =1x i y i -4x y∑4i =1x 2i -4x2=438-4×12.5×8.25660-4×12.52≈0.73, a =y -b x =8.25-0.73×12.5=-0.875,所以所求回归方程为y =-0.875+0.73x .(2)由y ≤10,即-0.875+0.73x ≤10,得x ≤10.8750.73≈15,即机器速度不得超过15转/秒.11.高二(3)班学生每周用于数学学习的时间x (单位:小时)与数学成绩y (单位:分)之间有如下数据:x 24 15 23 19 16 11 20 16 17 13 y92799789644783687159若某同学每周用于数学学习的时间为18小时,试预测该同学的数学成绩.【解】 显然学习时间与学习成绩间具有相关关系,可以列出下表,并用科学计算器进行计算.i 1 2 3 4 5 6 7 8 9 10 x i 24 15 23 19 16 11 20 16 17 13 y i 927997896447 83687159 x i y i2 208 1 185 2 231 1 691 1 024 5171 660 1 088 1 207767∑10i =1x 2i=3 182,∑10i =1x i y i=13 578于是可得b =∑10i =1x i y i -10x y∑10i =1x 2i -10x2=545.4154.4≈3.53,a=y-b x=74.9-3.53×17.4≈13.5.因此可求得回归直线方程为y=3.53x+13.5.当x=18时,y=3.53×18+13.5≈77.故该同学预计可得77分左右.(教师用书独具)在一段时间内,某种商品的价格x(万元)和需求量y(t)之间的一组数据如下表所示:价格x 1.4 1.6 1.82 2.2需求量y 121075 3(1)画出散点图;(2)求出y对x的回归直线方程;(3)如价格定为1.9万元,预测需求量大约是多少.(精确到0.01 t)【思路探究】先根据所给数据画出散点图,判断y与x是否具有线性相关关系,在此基础上利用回归方程系数的有关公式,求出相应的系数,然后结合函数知识预测需求量.【自主解答】(1)散点图如图所示.(2)采用列表的方法计算a与回归系数b.序号x i y i x2i x i y i1 1.412 1.9616.82 1.610 2.56163 1.87 3.2412.64 25 4 105 2.2 3 4.84 6.6Σ9 37 16.6 62x=15×9=1.8,y=15×37=7.4,b=62-5×1.8×7.416.6-5×1.82=-11.5,a=7.4+11.5×1.8=28.1.所以y对x的回归直线方程为y=a+bx=28.1-11.5x.(3)当x=1.9时,y=28.1-11.5×1.9=6.25,所以价格定为1.9万元时,需求量大约是6.25 t.解答本类题目的关键首先应先通过散点图来分析两变量间的关系是否相关,然后再利用求回归方程的公式求解回归方程,在此基础上,借助回归方程对实际问题进行预测.已知10只狗的血球体积x(单位:mm3)及红血球数y(单位:百万)的测量值如下:x 45424648423558403950y 6.53 6.309.257.50 6.99 5.909.49 6.20 6.557.72(1)画出散点图;(2)求出y对x的回归线性方程;(3)若血球体积为49 mm3,预测红血球数大约是多少?【解】(1)散点图如图(2)设线性回归方程为y =bx +a ,由表中数据代入公式,得b =∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.16,a =y -b x ≈0.12.所以所求线性回归方程为y =0.16x +0.12. (3)把x =49代入线性回归方程得:y =0.16×49+0.12≈7.96(百万),计算结果表明,当血球体积为49 mm 3时,红血球数大约为7.96百万.拓展阅读GDDS 和SDDS随着世界经济一体化的加快,各国间的交流与合作越来越频繁,为加强国际组织对各国经济运行状况的监督,国际社会在各领域纷纷建立了国际通行标准,其中国际货币基金组织(简称IMF)制定的数据公布通用系统(简称GDDS)和数据公布特殊标准(简称SDDS).GDDS 的主要内容和要求:在统计范围内,它将国民经济活动划分为5大经济部门,对每一部门各选定一组能够反映其活动实绩和政策以及可以帮助理解经济发展和结构变化的最为重要的数据.系统提出了五大部门综合框架和相关的数据类别和指标编制、公布的目标.选定的数据类别和指标中规定为主要部分.SDDS 将国民经济活动划分为4大经济部门.选定的数据类别分为:必须的、受鼓励的和“视相关程度”三类.必须的数据类别包括:综合统计框架、跟踪性数据、与部门有关的其他数据.IMF 为什么制定GDDS 和SDDS 呢?进入20世纪90年代以来,世界一些地区金融危机频繁爆发.1994年墨西哥的金融危机、1997年东南亚金融危机都导致国际金融市场剧烈动荡.两次金融危机给IMF 一个深刻的教训,也对其职能提出了挑战,在总结经验教训的基础上,IMF 认为,在新的国际经济、金融形势下,必须制定统一的数据发布标准,使各成员国按照统一程序提供全面、准确的经济金融信息,从而可以有效及时地对各国的经济进行正确的分析预测,从宏观上来作出调控,减少金融危机的发生和影响.1.2 相关系数课标解读 1.了解两个随机变量间的线性相关系数r ,并能利用公式求出相关系数r ;了解正相关、负相关、不相关的概念. 2.能利用相关系数r 判断两个随机变量间线性相关程度的大小,从而判断回归直线拟合的效果.相关系数【问题导思】1.有什么办法判断两个变量是否具有线性相关关系?【提示】 作出散点图,看这些点是否在某一直线的附近,计算线性相关系数. 2.线性相关系数与最小误差有何关系? 【提示】 Q (误差)=l yy (1-r 2).3.相关系数r 的绝对值的大小对相关性有何影响?【提示】 |r |越大,变量之间的相关程度越高;|r |越小,变量间线性相关程度越低;当r =0时,两个变量线性不相关.4.r 的正负对相关性的影响. 【提示】 r >0,b =l xyl xx>0两变量正相关; r <0,b =l xyl xx<0,两变量负相关.1.判断两个变量之间的线性相关关系的方法有: (1)计算线性相关系数r . (2)画散点图.2.假设两个随机变量的数据分别为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则变量间线性相关系数r 的计算公式为r =l xyl xx l yy=∑ni=1x i-x y i-y∑ni=1x i-x2i=1ny i-y2=∑ni=1x i y i-n x y∑ni=1x2i-n x2∑ni=1y2i-n y2相关系数及其应用维尼纶纤维的耐热水性能的好坏可以用指标“缩醛化度”y来衡量,这个指标越高,耐热水性能就越好,而甲醛浓度是影响“缩醛化度”的重要因素,在生产中常用甲醛浓度x(克/升)去控制这一指标,为此必须找出它们之间的关系,现安排一批试验,获得如下表数据.甲醛浓度18202224262830(克/升)缩醛化度26.8628.3528.7528.8729.7530.0030.36(克分子%)求相关系数r.【思路探究】可直接利用相关系数r的公式直接计算.【自主解答】列表如下:i x i y i x2i x i y i y2i11826.86324483.48721.459 622028.35400567803.722 532228.75484632.5826.562 542428.87576692.88833.476 952629.75676773.5885.062 562830.0078484090073030.36900910.80921.729 6∑168202.94 4 144 4 900.16 5 892.013 6 x=24,y=28.99,r=∑7i=1x i y i-7x y∑7i=1x2i-7x2∑7i=1y2i-7y2=4 900.16-7×24×28.994 144-7×242×5 892.013 6-7×28.992≈0.94.当相关系数|r|越接近1时,两个变量的线性相关程度越高,当相关系数|r|越接近0时,两个变量的线性相关程度越低.下列是小麦产量与施化肥量的一组观测数据:施化肥量15202530354045小麦产量320330360410460470480 判断施化肥量与水稻产量是否有相关关系.【解】i x i y i x2i y2i x i y i115320225102 400 4 800220330400108 900 6 600325360625129 6009 000430410900168 10012 300535460 1 225211 60016 100640470 1 600220 90018 800745480 2 025230 40021 600∑210 2 8307 000 1 171 90089 200∴r=∑i=17x i y i-7x y∑i=17x2i-7x2∑i=17y2i-7y2=4 300700×27 771.43≈0.975.由于r=0.975>0,因此施化肥量和水稻产量近似成线性正相关关系.线性回归分析的综合应用“阿曼德匹萨”是一个制作和外卖意大利匹萨的餐饮连锁店,其主要客户群是在校大学生,为研究各店铺的销售额与店铺附近地区大学生人数的关系,随机抽取十个分店的样本,得到数据如下:店铺编号 区内大学生数(万人)季度销售额(万元)1 0.2 5.8 2 0.6 10.53 0.8 8.84 0.8 11.85 1.2 11.76 1.6 13.7 7 2 15.78 2 16.9 9 2.2 14.9 10 2.620.2(1)试对区内大学生人数与店铺的销售额的关系进行相关性检验;(2)试根据这些数据建立回归模型,然后再进一步根据回归方程预测一个区内大学生人数1万人店铺的季度销售额; (3)若店铺的季度销售额低于10万元则亏损,试求建店区内大学生人数至少约多少人?【思路探究】 先根据表中的数据作相关检验,然后判断是否具有相关关系,再根据所给的数据解出线性回归方程,最后进行预测. 【自主解答】 (1)根据数据我们对区内大学生人数x 与店铺季度销售额y 作相关检验.根据数据可知:x =110(0.2+0.6+…+2.6)=1.4;y =110(5.8+10.5+…+20.2)=13,∑10i =1x 2i -10x 2=5.68,∑10i =1x i y i -10x y =28.4,∑10i =1y 2i -10y 2=157.3,因此r =28.45.68×157.3≈0.95;|r |接近1,因此有把握认为区内大学生人数x 与店铺季度销售额y 具有线性相关关系,求y 对x 的回归直线方程有意义.(2)回归系数b =28.45.68=5,a =13-5×1.4=6.因此回归直线方程是y=bx+a=5x+6.当x=1时,y=5×1+6=11,即区内大学生人数1万元店铺的季度销售额约11万元.(3)由回归直线方程是y=5x+6.令y≥10,解得x≥0.8,所以当建店区内大学生人数至少8 000人时才适合建店.进行相关性检验主要有两种常用方法,一是作散点图,观察所给的数据点是否在一条直线的附近,作散点图的优点是既直观又方便,是解决相关性检验问题比较常用的方法;缺点是作图总是存在误差,有时很难判断这些点是不是分布在一条直线的附近.二是利用样本相关系数对其进行相关性检验,优点是判断准确,缺点是计算繁琐,但可以借助计算器进行处理.在我国某地的一个县城,近期发现了好几个癌症村.政府部门十分震惊,马上组成调查组调查病因,经调查发现致癌的罪魁祸首是水源中的金属砷,它们来自附近的几家化工厂,化工厂排出的废水中含有金属砷,废水污染了水源,人食用了这种水就会致癌.下面就是调查组对几个癌症村水源中的砷超标的倍数和患癌症的人数统计的数据:砷超标的倍数x 34 5.5 4.2 5.86 3.5患癌症人数y 15202824354434(1)画出表中数据的散点图; (2)求y 对x 的回归方程;(3)若一个村的水源中砷超标的倍数为7,试估计这个村的患癌症的人数. 【解】 (1)散点图如图所示:(2)观察散点图,可知x 、y 成线性相关关系. 计算得x =327,y =2007,根据求b 公式代入数据计算得b ≈6.065,a =2007-6.065×327≈0.846. 所以患癌症人数y 对水源中砷超标的倍数x 的回归直线方程为y =6.065x +0.846.(3)根据上面求得的回归直线方程,当水源中砷超标的倍数为7时,y =6.065×7+0.846=43.301. 即该村患癌症的人数约为43人.对误差的大小与变量相关关系的理解有误对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是( )A.由样本数据得到的回归方程y=bx+a必过样本点的中心(x,y)B.在回归分析中,误差Q越小,变量之间的线性相关程度越高C.相关系数r越小,说明变量之间的线性相关程度越小D.在散点图中,若n个点在一条直线上,说明变量之间的相关性强【错解】 B【错因分析】对误差Q与变量间的相关关系理解错误.【防范措施】正确理解回归方程、相关系数r、误差Q、散点图等概念是解决概念题的基础.【正解】∵误差Q越小,|r|越大,变量之间的线性相关程度越高,而相关系数r的范围为-1≤r≤1,∴C错误.【答案】 C1.相关系数是用来刻画两个变量相关关系的强与弱的.2.相关系数的计算公式r=∑ni=1x i-x y i-y∑ni=1x i-x2∑ni=1y i-y2=∑ni=1x i y i-n x y∑ni=1x2i-n x2∑ni=1y2i-n y21.在对变量y和x进行线性相关检验时,已知n是观测值组数,r是相关系数,且已知:①n=7,r=0.953 3;②n=15,r=0.301 2;③n=17,r=0.499 1;④n=3,r=0.9950.则变量y和x具有较高线性相关程度的是( )A.①和②B.①和④C.②和④D.③和④【解析】相关系数r的绝对值越大,变量x,y的线性相关程度越高,故选B.【答案】 B2.对相关系数r,下列说法正确的是( )A.|r|越大,相关程度越大B.|r|越小,相关程度越大C.|r|越大,相关程度越小,|r|越小,相关程度越大D.|r|≤1且|r|越接近于1,相关程度越大,|r|越接近0,相关程度越小【解析】由两个变量相关系数公式。
人教版高中数学选修2-3第三章统计案例3.2独立性检验的基本思想及其初步应用教案(1)

1.2独立性检验的基本思想及其初步应用(第二课时)一.教学目标:1,理解独立性检验的基本思想; 2,理解独立性检验的实施步骤; 3,了解随机变量K 2的含义。
二.教学重点:理解独立性检验的基本思想实施步骤。
教学难点;1、理解独立性检验的基本思想及实施步骤2、了解随机变量K 2的含义。
三.知识链接独立性检验原理: 四.新课学习1. 独立性检验的概念:利用随机变量2K 来确定在多大程度上可以认为“__________”的方法,称为两个分类变量的独立性检验。
2. 独立性检验的步骤:设有两个分类变量X 与Y ,他们的取值分别为 和 其样本频数列联表(称2⨯2列联表)为:引入随机变量2K ,____________________2=K ,(其中d c b a n +++=为样本容量)推断X 与Y 有关系可按下列步骤进行: (1)假设0H : X 与Y 没有关系(2)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界a ,然后查表1-11确定临界值o k(3)利用公式(1),计算随机变量2K 的观测值k 。
(4)如果,就判断“X 与Y 有关系”,这种判断犯错误的概率不超过a ,否则,就认为在犯错误的概率不超过a 的前提下不能推断“X 与Y 有关系”,或则在样本数据中没有发现足够证据支持结论“X 与Y 有关系”, 3. 为了使不同样本容量的数据有统一的评判标准,我们利用统计量2K 的观测值k 来判断x 与y 有关系的程度。
如果828.10>k ,就有_____的把握认为“x 与y 有关系”; 如果879.7>k ,就有_____的把握认为“x 与y 有关系”;如果_____>k ,就有99%的把握认为“x 与y 有关系”; 如果_____>k,就有97.5%的把握认为“x 与y 有关系”;如果841.3>k ,就有_____的把握认为“x 与y 有关系”; 如果706.2>k ,就有_____的把握认为“x 与y 有关系”; 如果706.2≤k,就认为没有充分证据显示“x 与y 有关系” 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 统计案例§3.1 独立性检验(1)1. 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病.问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”?为了研究这个问题,(1)引导学生将上述数据用下表来表示:一.建构数学 1.独立性检验:(1)假设0H :患病与吸烟没有关系.若将表中“观测值”用字母表示,则得下表:如果实际观测值与假设求得的估计值相差不大,就可以认为所给数据(观测值)不能否定假设0H .否则,应认为假设0H 不能接受,即可作出与假设0H 相反的结论. (2)卡方统计量:为了消除样本对上式的影响,通常用卡方统计量(χ22()-=∑观测值预期值预期值)来进行估计.卡方χ2统计量公式:χ2()()()()()2n ad bc a b c d a c b d -=++++(其中n a b c d =+++)由此若0H 成立,即患病与吸烟没有关系,则χ2的值应该很小.把37,183,21,274a b c d ====代入计算得χ211.8634=,统计学中有明确的结论,在0H 成立的情况下,随机事件“26.635χ≥”发生的概率约为0.01,即2( 6.635)0.01P χ≥≈,也就是说,在0H 成立的情况下,对统计量χ2进行多次观测,观测值超过6.635的频率约为0.01.由此,我们有99%的把握认为0H 不成立,即有99%的把握认为“患病与吸烟有关系”.象以上这种用2χ统计量研究吸烟与患呼吸道疾病是否有关等问题的方法称为独立性检验.2.独立性检验的一般步骤:一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值:类A 和类B (如吸烟与不吸烟),Ⅱ也有两类取值:类1和类2(如患呼吸道疾病与不患呼吸道疾病),得到如下表所示:推断“Ⅰ和Ⅱ有关系”的步骤为:第一步,提出假设0H :两个分类变量Ⅰ和Ⅱ没有关系; 第二步,根据2×2列联表和公式计算χ2统计量; 第三步,查对课本中临界值表,作出判断. 3.独立性检验与反证法:反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立;独立性检验(假设检验)原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立. 四.数学运用 1.例题:例1.在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示.问:该种血清能否起到预防感冒的作用?分析:在使用该种血清的人中,有48.4%500=的人患过感冒;在没有使用该种血清的人中,有28456.8%500=的人患过感冒,使用过血清的人与没有使用过血清的人的患病率相差较大.从直观上来看,使用过血清的人与没有使用过血清的人的患感冒的可能性存在差异.解:提出假设0H :感冒与是否使用该种血清没有关系.由列联表中的数据,求得221000(258284242216)7.075474526500500χ⨯⨯-⨯=≈⨯⨯⨯∵当0H 成立时,26.635χ≥的概率约为0.01,∴我们有99%的把握认为:该种血清能起到预防感冒的作用.例2.为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示.根据所选择的193个病人的数据,能否作出药的效果与给药方式有关的结论?分析:在口服的病人中,有59%98≈的人有效;在注射的病人中,有67%95≈的人有效.从直观上来看,口服与注射的病人的用药效果的有效率有一定的差异,能否认为用药效果与用药方式一定有关呢?下面用独立性检验的方法加以说明.解:提出假设0H :药的效果与给药方式没有关系.由列联表中的数据,求得22193(58314064) 1.3896 2.072122719895χ⨯⨯-⨯=≈<⨯⨯⨯当0H 成立时,21.3896χ≥的概率大于15%,这个概率比较大,所以根据目前的调查数据,不能否定假设0H ,即不能作出药的效果与给药方式有关的结论. 说明:如果观测值22.706χ≤,那么就认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“0H 成立”,即Ⅰ与Ⅱ没有关系.§3.1 独立性检验(2)二.数学运用 1.练习题:1.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2× 2列联表; (2)判断性别与休闲方式是否有关系。
例2.气管炎是一种常见的呼吸道疾病,医药研究人员对两种中草药治疗慢性气管炎的疗效进行对比,所得数据如表所示.问它们的疗效有无差异(可靠性不低于99%)?例3.下表中给出了某周内中学生是否喝过酒的随机调查结果,若要使结论的可靠性不低于95%,根据所调查的数据,能否作出该周内中学生是否喝过酒与性别有关的结论?§3.2 回归分析(1)一.建构数学1.线性回归模型的定义:我们将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型.说明:(1)产生随机误差的主要原因有:①所用的确定性函数不恰当引起的误差;②忽略了某些因素的影响; ③存在观测误差. (2)对于线性回归模型,我们应该考虑下面两个问题: ①模型是否合理;②在模型合理的情况下,如何估计a ,b ? 2.探求线性回归系数的最佳估计值: 设有n对观测数据(,)i i x y (1,2,3,,)i n =L ,根据线性回归模型,对于每一个ix ,对应的随机误差项()i i i y a bx ε=-+,我们希望总误差越小越好,即要使21nii ε=∑越小越好.所以,只要求出使21(,)()ni i i Q y x αββα==--∑取得最小值时的α,β值作为a ,b 的估计值,记为$a,b $. 注:这里的iε就是拟合直线上的点(),i i x a bx +到点(),i i i P x y 的距离.用什么方法求$a,b $? 线性回归方程的方法:最小二乘法.利用最小二乘法可以得到$a,b $的计算公式为 $1122211()()()()nni i i ii i n ni ii i x x y y x y nx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑$$,其中11nii x x n ==∑,11ni i y y n ==∑由此得到的直线$$y a bx =+$就称为这n 对数据的回归直线,此直线方程即为线性回归方程.其中$a ,b $分别为a ,b 的估计值,$a 称为回归截距,b $称为回归系数,$y 称为回归值.3. 线性回归方程$$y abx =+$中$a ,b $的意义是:以$a 为基数,x 每增加1个单位,y 相应地平均增加b$个单位; 4. 化归思想(转化思想)(了解)在实际问题中,有时两个变量之间的关系并不是线性关系,这就需要我们根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数.下面列举出一些常见的曲线方程,并给出相应的化为线性回归方程的换元公式. (1)b y a x =+,令'y y =,1'x x=,则有''y a bx =+. (2)b y ax =,令'ln y y =,'ln x x =,'ln a a =,则有'''y a bx =+. (3)bx y ae =,令'ln y y =,'x x =,'ln a a =,则有'''y a bx =+.(4)b xy ae=,令'ln y y =,1'x x=,'ln a a =,则有'''y a bx =+. (5)ln y a b x =+,令'y y =,'ln x x =,则有''y a bx =+.二.数学运用 1.例题:例1.下表给出了我国从1949年至1999年人口数据资料,试根据表中数据估计我国2004年的人口数.年份 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 人口数/百万542 603 672 705 807 909 975 1035 1107 1177 1246解:为了简化数据,先将年份减去1949,并将所得值用x 表示,对应人口数用y 表示,得到下面的数据表:x5 10 15 20 25 30 35 40 45 50 y542 603 672 705 807 909 975 1035 1107 1177 1246作出11个点(),x y 构成的散点图,由图可知,这些点在一条直线附近,可以用线性回归模型y a bx ε=++来表示它们之间的关系.根据公式(1)可得$14.453,527.591.ba ⎧≈⎪⎨≈⎪⎩$ 这里的$,a b$分别为,a b 的估 计值,因此线性回归方程 为$527.59114.453y x =+ 由于2004年对应的55x =,代入线性回归方程$527.59114.453y x =+可得$1322.506y =(百万),即2004年的人口总数估计为13.23亿.§3.2 回归分析(2)1.相关系数的计算公式:对于x ,y 随机取到的n 对数据(,)i i x y (1,2,3,,)i n =L ,样本相关系数r 的计算公式为()()nniii ix x y y x y nx yr ---==∑∑.2.相关系数r 的性质: (1)||1r ≤;(2)||r 越接近与1,x ,y 的线性相关程度越强; (3)||r 越接近与0,x ,y 的线性相关程度越弱.可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关. 3. 作出统计推断:若0.05||r r >,则否定0H ,表明有95%的把握认为变量y 与x 之间具有线性相关关系;若0.05||r r ≤,则没有理由拒绝0H ,即就目前数据而言,没有充分理由认为变量y 与x 之间具有线性相关关系.说明:1.对相关系数r 进行显著性检验,一般取检验水平0.05α=,即可靠程度为95%.2.这里的r 指的是线性相关系数,r 的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.3.这里的r 是对抽样数据而言的.有时即使||1r =,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.4.对于上节课的例1,可按下面的过程进行检验: (1)作统计假设0H :x 与y 不具有线性相关关系;(2)由检验水平0.05与29n -=在附录2中查得0.050.602r =;(3)根据公式()2得相关系数0.998r =;(4)因为0.9980.602r =>,即0.05r r >,所以有95﹪的把握认为x 与y 之间具有线性相关关系,线性回归方程为$527.59114.453y x =+是有意义的.。