Electrochemical instability of indium tin oxide (ITO) glass in acidic pH

合集下载

氧化铟锡cas

氧化铟锡cas

氧化铟锡cas
(原创实用版)
目录
1.氧化铟锡介绍
2.氧化铟锡的性质
3.氧化铟锡的应用
4.氧化铟锡的环保问题
正文
氧化铟锡(Indium Tin Oxide,简称 ITO)是一种广泛应用于平板显示器、太阳能电池、电子窗户等领域的半导体材料。

它是由铟、锡两种金属元素与氧元素组成的氧化物,具有高导电性、高透明度和良好的化学稳定性。

氧化铟锡的物理性质表现为黑色或棕色粉末,熔点在 1300 摄氏度左右。

在常温下,氧化铟锡具有良好的导电性,其导电率甚至可以与铜相媲美。

同时,氧化铟锡具有高透明度,这使得它在平板显示器等领域具有广泛的应用。

氧化铟锡最大的应用领域是平板显示器。

在平板显示器中,氧化铟锡主要用于制备透明导电膜。

这种导电膜具有良好的导电性和透明度,可以有效地提高显示器的显示效果。

此外,氧化铟锡还应用于太阳能电池、电子窗户、触摸屏等领域。

然而,氧化铟锡的生产和使用过程中也存在一定的环保问题。

铟元素是一种稀有金属,地球储量有限。

同时,氧化铟锡在使用过程中可能会产生废液、废气等污染物。

因此,在生产和使用氧化铟锡时,应加强环保意识,合理利用资源,减少污染。

总之,氧化铟锡作为一种重要的半导体材料,在平板显示器、太阳能
电池等领域具有广泛的应用。

ITO导电薄膜表面缺陷的图像特征分析

ITO导电薄膜表面缺陷的图像特征分析

Journal of Computer Applications 计算机应用,2017, 37( S I ): 198 - 200,210ISSN 1001-9081CODEN JYIIDU2017-06-15http : //www . joca . cn文章编号:l 〇〇l _9081 (2017) S l -0198-03ITO 导电薄膜表面缺陷的图像特征分析胡海兵,薛源,徐挺,金施群(合肥工业大学光电技术研究院,合肥230009)(*通信作者电子邮箱huhb@ hfut. edu. cn)摘要:针对IT O 导电薄膜缺陷人工分类效率较低的问题,提出了一种基于灰度差分统计法、灰度共生矩阵法和矩描述法的缺陷特征分析方法。

首先,通过灰度差分统计对比得出各缺陷的熵值,利用熵值进行一次分类;其次,通过 灰度共生矩阵,提取了二阶矩、对比度和相关性的数值,通过这三个数值分别设置阈值并对图表进行分析完成对5种 缺陷的分类;最后,根据矩描述的特性并通过实验对矩方法的可行性进行了分析。

实验中,取熵值的阈值为0.5,二阶 矩的阈值为230,对比度的阈值为140,相关性的阈值为22,通过这四个参数的阈值可以达到将5种缺陷分类的效果。

实验结果表明,基于灰度差分统计法和灰度共生矩阵法的分类方法可以更有效地完成缺陷分类。

关键词:IT 0导电薄膜;灰度差分统计;灰度共生矩阵;矩;阈值 中图分类号:TP 751.1文献标志码:AImage feature analysis of surface defects of ITO conductive filmHU Haibing*, XUE Yuan, XU Ting, JIN Shiqun(Academy of Photoelectric Technology, Hefei University of Technology, Hefei Anhui 230009, China)Abstract: Since the artificial classification of Indium Tin Oxide (ITO ) conductive film is inefficient , a method based ongray differential statistical method , grey-level co-occurrence matrix and moment was proposed . Firstly , the entropy value was figured out using gray differential statistical method to make the first classification ; Secondly , the second moment value , contrast value and correlation value were extracted and the classification of defects was finished by threshold values of the parameters ; Finally , the feasibility of moment method was analyzed by experiments . In the comparison experiments , the threshold value of entropy was 0. 5, the threshold value of second moment was 230, the threshold value of contrast was 140, and the threshold value of correlation was 22. The classification result of five kinds of defects was achieved using the four threshold values . The experimental results show that the method based on gray differential statistical method and grey-level co ­occurrence matrix method is more efficient .Key words : Indium Tin Oxide (ITO ) conductive film ; gray differential statistics ; grey-level co-occurrence matrix ;moment ; threshold value骤;另外,缺陷分类后可方便地解决部分缺陷问题,例如水滴缺 陷,可找出接触水的生产环节,并加强对相应生产过程的管理,从 而减少或避免缺陷,从而达到优化的效果。

ITO玻璃OLED基板说明书

ITO玻璃OLED基板说明书

MATERIAL SAFETY DATA SHEETaccording to Regulation (EC) No. 1907/2006Revision number: 1 Revision date: 28/03/2018 1. Identification of the substance/mixture and of the company/undertaking1.1. Product DetailsProduct Code : S101Full Name : ITO-coated soda lime float glass OLED pixelated anode (6 pixel) substratesREACH No. : A registration number is not available for this substance as the substance or its uses areexempted from registration or the annual tonnage does not require a registration.CAS No. : 65997-17-31.2. Relevant identified uses of the substance or mixture and uses advised againstIdentified uses : Laboratory supplies1.3. Supplier detailsSupplied by : Ossila LimitedSolpro Business ParkWindsor Street, SheffieldS4 7WB, UKTelephone : 0114 2999 180Email address :2. Hazards identification2.1. Classification of the substance or mixtureNot a hazardous substance or mixture according to Regulation (EC) No. 1272/2008.2.2. Label elementsThe product does not need to be labelled in accordance with EC directives or respective national laws.2.3. Other hazardsThe mixture does not meet the criteria for PBT or vPvB substances according to Annex III of REACH regulation EC 1907/2006.No hazards identified.3. Composition/Information on ingredients3.2. MixturesSynonyms: : ITO Glass OLED Substrates - Pixelated Anode (6 Pixel), ITO glassCAS No. : 65997-17-3No components need to be disclosed according to the applicable regulations. The products are based on typical soda-lime-silicate flat glass. This product is coated with hard durable amorphous coating of indium tin oxide (80:20 to 90:10 of In2O3:SnO2) on the surface around 100 nm in thickness.4. First aid measuresThis product is not considered to be or to contain hazardous chemicals based on EU regulations. Any dust generated during breakage or usage is an amorphous silicate substance and should be considered as a “nuisance particulate”.4.1. Description of first aid measuresAfter InhalationGlass dust: Remove person to fresh air and seek medical attention.After skin contactGlass dust: Wash with soap and water. Do not rub.Glass: If laceration occurs seek first aid or medical attention for cuts and bleeding.After eye contactGlass dust: Flush with copious amounts of water and seek medical attention.Glass: Rinse with water and seek medical attentionAfter IngestionSeek medical attention4.2. Most important symptoms and effects, both acute and delayedThe most important known symptoms and effects are described in section 11.4.3. Indication of any immediate medical attention and special treatment neededNo data available.5. Fire fighting5.1. Extinguishing mediaThe product is not classified as flammable or combustible under Directives 67/548 / EEC and Regulation EC No.1272/2008.5.2. Special hazards arising from the substance of mixtureHazardous decomposition products: tin/tin oxides, indium/indium oxides5.3. Advice for firefightersWear a self-contained breathing apparatus if necessary. During a fire, irritating and highly toxic gases and vapours may be generated by thermal decomposition.6. Accidental release measures6.1. Personal precautions, protective equipment and emergency proceduresWear personal protective equipment (section 8).6.2. Environmental precautionsNot considered a hazardous waste. Recycle broken glass wherever appropriate facilities exist.6.3. Containment and cleaningSweep up and shovel. Keep in suitable, closed containers for disposal.7. Handling and storage7.1. Precautions for safe handlingUse proper material handling to avoid accidental breakage. Ensure product is handled with suitable personal protective equipment to avoid lacerations. Avoid formation of dust. Provide exhaust ventilation in places where dust is formed.7.2. Conditions for safe storage, including any incompatibilitiesStore in a cool, dry and well-ventilated place protected against breaking, failing, impact and vibrations.7.3. Specific end usesUse in laboratories.8. Exposure controls / Personal protection8.1. Control parametersExposure limit sourcesUK – EH40 Workplace Exposure Limits (WEL).Components with workplace control parametersThe product in its normal state and under normal use does not result in the release of hazardous dusts. Operations such as cutting, grinding or breaking may result in the release of airborne dust which may present a health hazard. Component CAS # Control parametersDiindium trioxide dust 1312-43-2 0.1 mg/m3 (TWA); 0.3 mg/m3 (STEL)Tin (IV) oxide dust 18282-10-5 2 mg/m3 (TWA); 4 mg/m3 (STEL)Silica (amorphous) dusts 65997-17-3 Inhalable: 6 mg/m3 (TWA); Respirable: 2.4 mg/m3 (TWA) TWA - time weighted average; STEL - Short Term Exposure Limit.Inhalable – airborne material that enters the nose and mouth during breathing available for deposition anywhere in the respiratory tract. Respirable – airborne material that penetrates to the lower gas exchange region of the lung.Biological occupational exposure limitsThis product does not contain any hazardous materials with biological limits.8.2. Exposure controlsThe greatest risk in the handling and storage of glass is through laceration. Appropriate precautions to prevent the risk of this should be taken. Cutting activities should be carried out using appropriate personal protective equipment and local engineering controls to reduce the risk of nuisance dusts.Engineering measuresHandle in accordance with good industrial engineering/laboratory practices for hygiene and safety. Ensure eyewash stations and safety showers are close to the laboratory workstation. Ensure good general ventilation or local exhaust extraction is present where cutting or grinding activities are carried out.Personal protective equipmentEyes: Wear safety glasses with side-shields conforming to appropriate government standards such as NOISH (US) or EN166 (EU).Skin: Glass handlers’ cuffs, chaps and apron should be worn as required when cutting or grinding.Hands: Anti-lacerative gloves recommended when cutting or grinding.Clothing: The type of equipment should be appropriate for the concentration and amount of substance used.Respirators: Respiratory protection is not required under normal use where there are no cutting or grinding operations that may generate dust. Where protection from nuisance dusts is needed, use type N95 (US) or type P1 (EN 143) dust masks or those approved under appropriate government standards such as NIOSH (US) or CEN (EU).9. Physical and chemical properties9.1. Information on basic physical and chemical propertiesAppearance: (Semi)transparent, patterned solidOdour: No data availableOdour threshold : No data availablepH : No data availableMelting/freezing point : No data availableBoiling point/range : No data availableFlash point : No data availableEvaporation rate : No data availableFlammability : No data availableExplosive limits : No data availableVapour pressure : No data availableVapour density : No data availableRelative density : No data availableSolubility(ies) : No data availablePartition coefficient: n-octanol/water : No data availableAutoignition temperature : No data availableDecomposition temperature :No data availableViscosity :No data availableExplosive properties :No data availableOxidising properties :No data available9.2. Other safety informationNo data available.10. Stability and reactivity10.1 ReactivityNo data available.10.2. Chemical stabilityStable under normal temperatures and pressures under recommended storage conditions.10.3. Possibility of hazardous reactionsNo data available.10.4. Conditions to avoidNo data available.10.5. Incompatible materialsNo data available.10.6. Hazardous decomposition productsNo known hazardous decomposition products.11. Toxicological information11.1. Information on toxicological effectsAcute toxicityNo data available.Skin corrosion/irritationNo data available.Serious eye damage/eye irritationNo data available.Respiratory or skin sensitizationNo data available.Germ cell mutagenicityNo data available.CarcinogenicityNo data available.Reproductive toxicityNo data available.Specific target organ toxicity - single exposureNo data available.Specific target organ toxicity - repeated exposureNo data available.Aspiration hazardNo data available.Routes of exposureEye contact, ingestion, inhalation, skin contact.Signs and Symptoms of ExposureNo data available.To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.12. Ecological information12.1. ToxicityThe product is classified as nontoxic.12.2. Persistence and degradabilityNot applicable.12.3. Bioaccumulative potentialNot applicable.12.4. Mobility in soilNot applicable.12.5. Results of PBT and vPvB assessmentThe product does not contain PBT or vPvB substances according to Annex XIII of REACH regulation.12.6. Other adverse effectsNo data available.13. Disposal13.1. Waste treatment methodsProductGlass and glass dust is not considered a hazardous waste under USEPA RCRA, or European Hazardous Waste Directive definitions. The mass of material in the coatings is negligible therefore has no impact on the composition of the glass with regard disposal. The coated glass can be recycled through conventional means alongside other glass when possible. Observe all federal, state and local environmental regulations and directives on waste and hazardous waste. Offer surplus material to a licensed professional waste disposal professional.Contaminated packagingDispose of as unused product.14. TransportNon-hazardous for road, air and sea transport.IATA: Not regulated as a hazardous material.IMO: Not regulated as a hazardous material.RID/ADR: Not regulated as a hazardous material.15. Regulatory informationThis safety datasheet complies with the requirements of Regulation (EC) No. 1907/2006, the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).15.1 Safety, health and environmental regulations/legislation specific for the substance or mixtureNo data available.15.2 Chemical safety assessmentNot applicable.16. Other informationWarrantyThis material is for research and development use only. The information provided here is based upon the available information from material suppliers but not warranted as complete and is provided only as a guide. Ossila Limited shall not be held responsible for any damage resulting from use or handling of this product.。

关于ITO相关信息的了解

关于ITO相关信息的了解
中而发生的电化腐蚀;
析氢腐蚀:在酸性较强的溶液中发生电化腐蚀时放出氢气; 应力腐蚀开裂:是指承受应力的合金在腐蚀性环境中由于裂纹的扩展而互生
失效的一种通用术语;
点腐蚀:是一种导致腐蚀的局部腐蚀形式; 晶间腐蚀:大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀; 间隙腐蚀:是局部腐蚀的一种形式,它可能发全于溶液停滞的缝隙之中或屏蔽
如何理解Panel上的ITO腐蚀?
一、什么是ITO。 二、理解下常见的几种ITO腐蚀。 三、生产遇见ITO腐蚀图片 四、ITO腐蚀容易出现的几种不良故障。 五、针对故障查找COF上是否有ITO腐蚀技巧。 六、现场指导
一、什么是ITO
ITO 是一种N型氧化物半导体-氧化铟锡,ITO薄膜即铟 锡氧化物半导体透明导电膜,通常有两个性能指标: 电阻率和透光率。
Thanks
四、针对故障查找COF上ITO腐蚀技巧。
先查看X1 或Y1 和X轴的最后一个COF,COF背面有无明显的发黑或发白的区域。 对部分竖线(带)或横线(带)对应的区域,要有针对的性的查看相对应的COF。
四、针对故障查找COF上ITO腐蚀技巧。
先查看X1 或Y1 和X轴的最后一个COF,COF背面有无明显的发黑或发白的区域。 对部分竖线(带)或横线(带)对应的区域,要有针对的性的查看相对应的COF。
简单理解下ITO就是一种在Panel内侧上敷有一层透明 线路的半导体,比较常见的叫氧化铟锡(Indium Tin Oxide)。
二、理解下常见的几种ITO腐蚀
电化学腐蚀:金属材料与电解质溶液接触,通过电极反应产生的腐蚀; 吸氧腐蚀:金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜
的表面内;
全面腐蚀:是用来描述在整个合金表面上以比较均匀的方式,由于材料腐蚀逐

ITO电化学腐蚀

ITO电化学腐蚀

ITO电化学腐蚀规律研究材料科学系蒋程捷顾雄指导老师:蒋益明摘要:建立电化学极化曲线扫描方法,表征ITO(氧化铟锡)透明导电薄膜电化学腐蚀现象,发现ITO薄膜阴极极化下发生严重电化学腐蚀。

利用SEM和XRD分析了ITO腐蚀产物,并通过极化曲线和四探针法测方块电阻得到ITO的腐蚀随电压、pH值、氯离子浓度的变化规律。

结果表明,ITO经腐蚀后三价的铟转化为单质的铟,且ITO腐蚀的强度随电压、酸度(或碱度)、氯离子的浓度的增大而增强。

该研究对理解氧化物腐蚀特殊规律,促进低腐蚀率优良ITO薄膜制备技术发展就有重要意义。

关键词:ITO薄膜极化曲线电化学腐蚀引言In2O3:Sn(ITO)透明导电氧化物薄膜具有电阻率低、高可见光率、高红外光反射率、易刻蚀和易低温制备等优点,是平板显示器件三大关键材料之一,广泛应用于光电信息显示产业,对平板显示器件的质量和成本起着至关重要的作用。

一般而言,ITO是空气稳定性的材料,但是近年来随着制备工艺日趋多样化及使用条件日趋复杂化,由于ITO腐蚀而导致器件失效的问题日渐突出,众多的平板显示生产线上已经不同程度出现了ITO腐蚀问题。

例如在加工制备过程中,主流ITO象素电极的制造工艺均采用湿法刻蚀,刻蚀液是由HCl、HNO3和H2O组成的混酸,这种刻蚀的本质就是电化学腐蚀[1],因版图设计的电极走线不当而产生缝隙腐蚀等;在使用过程中,由于受到空气中水氧[2-4]、杂质(如氯离子)等因素影响,电极之间存在的电压差引的起电化学腐蚀导致器件性能下降[5];在返修过程中,数据线金属成膜可能会引入一些灰尘杂质和盐酸、硝酸混合刻蚀液,灰尘杂质、金属膜和刻蚀液就构成了微观原电池,产生电化学腐蚀。

由此可见,ITO薄膜电化学腐蚀是个极其重要的问题,它在平板信息显示产业的各个环节都不可避免地存在着。

深入系统地研究ITO电化学腐蚀规律和机理,可以为平板显示器件腐蚀失效分析、寿命评估、防腐抗蚀以及功能薄膜的制备提供重要理论依据和应用指导,对低缺陷TFT-LCD平面显示器件的实现、提高平面显示阵列基板的良品率、器件的可靠性与失效分析以及寿命评估都具有显著的科学意义和实际意义。

PVD溅射室中无意引入H2O对ITO薄膜和电池效率的影响

PVD溅射室中无意引入H2O对ITO薄膜和电池效率的影响

在这项研究中,我们研究了H2O分压对氧化铟锡(ITO)薄膜的化学特性和光电性能的影响,以及异质结(HJT)太阳能电池的性能和稳定性。

从磁控管溅射装置室中的残余气体中获得分压从2.72 × 10− 5 Pa到8.38 × 10− 5 Pa的H2O。

随着H2O分压的升高,ITO薄膜的电阻率从3.6 × 10− 4 Ω·cm增加到5.3 × 10− 4 Ω·cm,近红外区域的有效总透射率略有提高。

尽管短路电流(Isc)增加,但由于填充系数(FF)的恶化,在高H2O分压下沉积的ITO薄膜的HJT太阳能电池的效率较低。

因此,在低H2O分压下,HJT太阳能电池的最大效率为25.30%。

此外,还跟踪了在没有照明的氮环境中HJT太阳能电池的Perfor-Mance。

据观察,低H2O分压获得的高电池效率具有更大的降解,这主要来自FF降解。

1. Introduction异质结(HJT)太阳能电池因其卓越的效率、简单的低温制造工艺和低温效率[1-4]而引起了光伏行业的广泛兴趣。

HJT太阳能电池中amor-phous硅层的宽带隙和有效钝化提供了高开路电压(Voc),然而,Isc和FF的明显缺点限制了进一步的效率收益。

为了在保持高FF的同时增加Isc,有必要研究HJT太阳能电池中用作前后电极的透明导电氧化物(TCO)层。

TCO薄膜需要结合最佳的光电性能和与非晶硅层的良好接触,以允许更多的光线进入HJT太阳能电池,同时确保向金属电极的高效载体传输。

通过增加载流子浓度(N)和载流子流动性(μ),可以提高TCO薄膜的电导率。

N值> 5 × 1020 cm− 3通常导致近红外区域的高自由载波吸收(FCA),导致HJT太阳能电池的性能下降。

因此,改善μ是一种有吸引力的方法,可以规避透明度和电导率之间的权衡。

在氧化铟基质上掺杂Ti、Ce [8]和W [9]金属的TCO薄膜显示μ超过80 cm2V-1s-1。

利用多氟丙烯酸酯添加剂提升准二维钙钛矿发光二极管性能

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2023, 39 (12), 2301024 (1 of 8)Received: January 14, 2023; Revised: February 13, 2023; Accepted: February 14, 2023; Published online: February 28, 2023. *Correspondingauthors.Emails:****************.cn(P.C.);*******************.cn(Q.C.);*******************.cn(L.C.).The project was supported by the Ministry of Science and Technology of China (2021YFA1202802), the National Natural Science Foundation of China (21875280, 21991150, 21991153, 22022205), the CAS Project for Young Scientists in Basic Research (YSBR-054), the Special Foundation for Carbon Peak Neutralization Technology Innovation Program of Jiangsu Province (BE2022026) and the Natural Science Foundation Project of Chongqing (CSTB2022NSCQ-MSX0438). 科技部国家重点研发计划(2021YFA1202802), 国家自然科学基金(21875280, 21991150, 21991153, 22022205), 中国科学院稳定支持基础研究领域青年团队计划(YSBR-054), 江苏省碳达峰碳中和科技创新专项资金(BE2022026)和重庆市自然科学基金(CSTB2022NSCQ-MSX0438)资助项目© Editorial office of Acta Physico-Chimica Sinica[Article]doi: 10.3866/PKU.WHXB202301024Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting DiodesTao Zhang 1,2, Simin Gong 3, Ping Chen 3,*, Qi Chen 1,2,*, Liwei Chen 2,4,*1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.2 i -Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, China.3 Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China.4 In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.Abstract: Quasi-two-dimensional (quasi-2D) perovskites are one of the most promising luminescent layer candidates for light-emitting diodes (LEDs) because of their excellent optoelectronic properties such as large exciton binding energy, efficient energy transfer, high photoluminescence quantum yield, and adjustable band gap. However, the formation of a large number of low-dimensional phases and surface/interface defects during solution processing of quasi-two-dimensionalperovskite films gives rise to an increase in non-radiative recombination, resulting in deteriorated light-emitting diode performance. It is highly desirable to simultaneously realize low-dimensional phase formation inhibition and surface/interface defect passivation during quasi-two-dimensional perovskite film formation. Herein, we report a multifunctional additive, 1,6-bis(acryloyloxy)-2,2,3,3,4,4,5,5-octafluorohexane (OFHDODA), which has strong physical and chemical interactions with the PEA 2Cs 2Pb 3Br 10 precursor that can effectively suppress non-radiative recombination in the perovskite films. The distinct C =C peak in the Fourier transform infrared spectroscopy (FTIR) spectra and the F 1s peak in the X-ray photoelectron spectroscopy (XPS) spectra showed that OFHDODA molecules were successfully incorporated into the perovskite films, and most OFHDODA molecules existed as monomers. With the addition of OFHDODA, the photoluminescence quantum yield (PLQY) of the perovskite film increased from 19.7% to 49.0%, and the PL emission wavelength red-shifted from 508 to 511 nm. It was demonstrated that hydrogen bond interactions between the polyfluorine structure and PEA + can tune perovskite crystallization dynamics, which inhibit the formation of low-dimensional phases, as shown by the reduced peak intensities at 403 nm (n = 1), 434 nm (n = 2), and 465 nm (n = 3) in the absorption spectra. The strong Lewis base moiety of the ester groups passivates the unsaturated Pb 2+ defects at the surface and grain boundaries of the perovskite films, as evidenced by the Pb 4f peak shift in the XPS spectra and the C =O shift in the FTIR spectra. The trap-filled limiting voltage (V TFL ) decreased in both hole-only and electron-only devices, which also proves the reduction of Pb 2+ defects. At the optimized OFHDODA concentration, the scanning electron microscopy (SEM) and atomic force microscopy (AFM) results from the perovskite films show lower roughness and smoother surface potential, which promotes superior interfacial contact. As a result, perovskite LEDs with a device structure of indium tin oxide glass/poly (9-vinylcarbazole)/perovskite/1,3,5-tris(1-phenyl-1H -benzimidazol-2-yl)benzene/8-hydroxyquinolinolato-lithium/Al exhibitedanimproved maximum external quantum efficiency (EQE) from 8.55% to 13.76%, improved maximum brightness from 16400 to 17620 cd∙m−2, and increased lifetime from 8 min to 12 min. This process provides an effective way to suppress non-radiative recombination in quasi-2D perovskites via additive molecular structure design, leading to superior electroluminescence performance.Key Words: Quasi-two-dimensional perovskite; Non-radiative recombination; Low-dimensional inhibition;Defect passivation; Polyfluorinated acrylate additive利用多氟丙烯酸酯添加剂提升准二维钙钛矿发光二极管性能张涛1,2,龚思敏3,陈平3*,陈琪1,2,*,陈立桅2,4,*1中国科学技术大学纳米技术与纳米仿生学院,合肥2300262中国科学院苏州纳米技术与纳米仿生研究所创新实验室,中科院纳米光子材料与器件重点实验室,江苏苏州215123 3西南大学物理科学与技术学院,微纳结构光电子学重庆市重点实验室,重庆4007154上海交通大学化学与化工学院物质科学原位中心,上海200240摘要:准二维钙钛矿由于具有较大的激子结合能和高效的能量转移等优势,在发光二极管(light-emitting diodes,LED)中的应用前景被广泛看好。

氧化铟锡_ITO_薄膜的透明吸波特性研究


Transparent m icrow ave absorp tion properties of ITO fil ms
YANG M eng , D I AO Xun gang , SUN Y i, L I U H a i y in g , WU Zhe , SHU Yuan jie (1 . Schoo l of Science , Be ih ang Un iv ersity, Be ijing 100083 , Ch in a ; 2 . Schoo l of A eronautic Sc ience and T echnology, Be ih ang Un iv ersity, B eijing 100083 , Ch in a ; 3 . Inst itute o f Chem icalM aterials, CAEP, M ianyang , S ichuan 621900 , Ch in a) Abstract : I TO fil m s w ere prepared by D. C . m agnetron sputtering on PET at room te m perature , and w ere com b in ed w ith po lym er and b lank PET f il ms . Such structu re is transparent and its ab ility to absorb m icro w ave is very good . T he reflectiv ity o f this structu re at Ku band ( 12- 18GH z) is low er than - 10dB, and the peak is low er than - 20dB. The m ax i m um transm ittance o f the structure is about 68 %. K ey w ord s : D. C. m agnetron sputtering; ITO fil m; transparent m icrow ave absorber

ITO导电玻璃简介

第一篇ITO导电玻璃简介ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。

液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。

高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。

液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。

因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。

在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。

一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。

ITO导电层的特性:ITO膜层的主要成份是氧化铟锡。

在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。

由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。

ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。

ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。

ITO导电玻璃的分类:ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。

高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。

ito能承受的最大温度

ito能承受的最大温度
摘要:
1.ITO的定义和应用
2.ITO能承受的最大温度
3.ITO在不同温度下的性能变化
4.如何提高ITO的耐热性
5.结论
正文:
ITO(Indium Tin Oxide,铟锡氧化物)是一种广泛应用于显示器、太阳能电池和触摸屏等电子器件的材料。

它具有良好的导电性和透明性,但在高温环境下,ITO的性能会受到影响。

因此,了解ITO能承受的最大温度以及在不同温度下的性能变化对于优化其应用具有重要意义。

ITO能承受的最大温度主要取决于其制作工艺和材料成分。

在标准条件下,ITO的熔点约为150摄氏度。

但在实际应用中,ITO膜可能在低于熔点的情况下发生性能退化,例如,导电性和透明性会随着温度的升高而降低。

研究表明,ITO在200摄氏度左右的温度下性能开始明显下降,而在300摄氏度左右可能发生结构破坏。

为了提高ITO的耐热性,研究人员进行了许多尝试。

一种方法是通过掺杂或改性来调整ITO的晶格结构,以提高其热稳定性。

例如,研究发现掺杂锑或铋可以提高ITO的熔点和热稳定性。

另一种方法是通过制备复合材料或纳米结构来提高ITO的耐热性。

例如,将ITO与具有高热稳定性的材料(如氧化锌)
混合制备成复合膜,可以显著提高其耐热性。

总之,ITO能承受的最大温度取决于其制作工艺和材料成分,而在高温环境下,ITO的性能会受到影响。

通过掺杂、改性、制备复合材料等方法可以提高ITO的耐热性,从而优化其在高温环境下的应用性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Available online at www.sciencedirect.comMaterialsChemistryandPhysics 108 (2008) 403–407Electrochemicalinstabilityofindiumtinoxide(ITO)glassinacidicpHrangeduringcathodicpolarization

M.Senthilkumara,J.Mathiyarasub,JamesJosephb,∗,K.L.N.Phanib,V.YegnaramanbaCentreforEducation,CentralElectrochemicalResearchInstitute,Karaikudi630006,India

bElectrodics&ElectrocatalysisDivision,CentralElectrochemicalResearchInstitute,Karaikudi630006,India

Received11April2007;receivedinrevisedform7October2007;accepted21October2007

AbstractIndiumtinoxide(ITO)glasssubstratesarewidelyusedinelectrochemicaldevicesandassubstratesforinsituspectro-electrochemicalexperimentsowingtotheirinterestingoptical,electricalandelectrochemicalproperties.Inthiswork,wefoundITOsurfacestoundergosubstantialchangesintheirpropertiesonpotentiodynamicstressesintheacidicpHrange.ThesurfacechangesoccurringduringcathodiccyclingofITOwerecharacterizedbyredoxcouplesincyclicvoltammetry,andtheresultantsurfacesexaminedbyscanningelectronmicroscopy(SEM),atomicforcemicroscopy(AFM),opticaltransmittancemeasurements,X-raydiffraction(XRD)andthecompositionalchangesbyX-rayfluorescencespectroscopy(XRF).Thestudiesofelectrical,opticalandstructuralpropertiesofITOduringcathodiccyclingintheacidicpHrangeclearlypointtoasetofconditionsthathelpretainingthestabilityofITOsubstratesintactforelectrochemicalapplications.© 2007 Elsevier B.V. All rights reserved.

Keywords:Indiumtinoxide;Cathodicinstability;Thinfilm;Electrodes;Voltammetry

1.IntroductionIndiumtinoxidecoatedglassesarewidelyusedassub-stratesfordepositingthinfilmsofelectro-activematerialssuchasconductingpolymers,semiconductorslikeCdTe[1,2],etc.whicharepartofelectrochemicalandoptoelectronicdevicesandsolarcells[3].ITOglasssubstratesaregenerallypreparedbysputter-coatingathinconductivelayerofindiumtinoxideonahigh-qualityglasssubstrate[4,5].Thesesubstratesarecommonlyusedforspectro-electrochemicalstudiesofelec-troactivethinfilmswhichundergoredoxtransitionsinvolvingchangesintheopticalabsorbance[6].ThechemicalstabilityoftheinterfacesinvolvingITOsurfacesisanimportantfactordeterminingitsuseinvariousapplicationareas.Moreoften,electro-depositionofmetaloxidessuchasCu2O,ZnOorTiO2

filmsbycathodicelectro-depositionfromaqueousacidicbath

solutionsarereportedwithoutpayingmuchattentiontotheelec-trochemicalstabilityofsubstrates[7–10].ElectrodepositionofleadonITOisdescribedbyAvellanedaetal.[11].Inmanyofthesepapers,theresearchersusecathodicpotentialupto−1.2V

∗Correspondingauthor.Tel.:+914565227550;fax:+914565227779.

E-mailaddress:jameskavalam@yahoo.com(J.Joseph).

inacidmediumtoperformelectrodepositionofthesemicon-ductingmetaloxides.Oneoftheprimarycriteriafortheuseofthesesubstratesistheelectrochemicalstabilityoftheunderly-ingITOfilmundertheexperimentalconditionsofformationofelectroactivefilms.ThefirstworkbyKraftetal.[12]reportedtheinstabilityofITOduringanodicpotentialcycling.Theinsta-bilityofITOelectrodesduringanodicoxidationduringoxygenevolutionreactionisproposedasduetotheanodicdissolutionoftheITOcoating[13].ThecomparisonofpropertiesofITOandboron-dopeddiamondelectrodesunderveryaggressiveacidicoralkalineconditions,leadingtototaldeteriorationofsurfacehasbeenreportedrecently[14].Thesurfaceconditionofanyelectrodeisnormallyassessedbyexaminingthevoltammetricresponseofstandardredoxcou-plessuchasferri-/ferro-cyanide.DuringthecourseofexaminingafewredoxcouplesonITOglasssubstrates,wefoundtheresponsesareaffectedconsiderablydependingonthesolutionpHandtheextentandtimedurationofpotentialexcursionsintothecathodicregime.Thisledustoexamineindetailtheelectrochemicalnatureofthesurfaceundertheabovecondi-tions.Inthiscommunication,wereportthestabilityaspectsofITOduringexcursionsintothecathodicpotentialregionintheacidicpHrange.Theinstabilityintermsofchangesintheelectrical,opticalandstructuralpropertieswaschar-

0254-0584/$–seefrontmatter© 2007 Elsevier B.V. All rights reserved.doi:10.1016/j.matchemphys.2007.10.030404M.Senthilkumaretal./MaterialsChemistryandPhysics 108 (2008) 403–407acterizedusingSEM,AFM,opticaltransmittanceandXRFmeasurements.

2.ExperimentalTheITOsubstrates(NipponSheetGlassCo.,Japan)werecleanedbysoni-cationfor10minusingultrasoniccleaner(Ralsonics,Mumbai)atfrequencyof20KHzinacommercialdetergentsolution(Pril)containingnon-ionicsurfac-tants,followedbysonicationinethanolandwatermixturefor2mineachanddriedinairovenat60–70◦C.TheresistanceofthecleanedITOvariedbetween20and25󰀃cm−1.ThicknessoftheITOcoatingonglassisaround100nm.AllITOglasssamplesusedinourexperimentswerefromthesamelot.Allsolu-tionswerepreparedinMilli-QwaterusingAnalar-gradereagents.Thereferenceelectrodeusedwasacalomelelectrodefabricatedinourlaboratory.ScanningelectronmicrographswereobtainedusingHitachiModelelectronmicroscope(S-3000H)andatomicforcemicroscopic(AFM)imageswererecordedwiththeMolecularImagingPicoSPM2100usinggold-coatedsiliconnitride(30nm)cantilevers(forceconstantof0.12Nm−1).UV–vistransmittancemeasurementswerecarriedoutforITOcycledfordifferenttimedurationsinsolutionsofpHswithanOceanOpticsSD2000fibre-opticspectrophotometer.XRDmeasure-mentsweremadeusingaJeolX-raydiffractometerbetween10◦and80◦withCuK␣radiationandthecompositionaldatawereobtainedusingX-rayfluorescencespectrometry(HoribaXGT-2700).Thecyclicvoltammetricmeasurementswerecarriedoutusingapotentiostat(AutolabPGSTAT30,TheNetherlands)con-trolledbyacomputer.AreaoftheITOelectrodesusedinourexperimentswasfixedas0.5cm2.Theelectricalcontactstotheworkingelectrodesweremadewiththehelpofaclipandacopperstrip.AlargeareaPtelectrodeswereusedascounterelectrode.

相关文档
最新文档