八年级数学上册第14章勾股定理14.2勾股定理的应用第2课时勾股定理在数学中的应用课堂反馈导学华东师

合集下载

14章

14章

14.1.1直角三角形三边关系 第一课时学习目标:1.探索并掌握勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.会应用勾股定理解决实际问题教学过程:自主学习:自学108-110,完成探究2和31. 勾股定理:____________________________________________.2. 在直角三角形ABC 中,角C 是90°,AB=c,BC=a,AC=b 可得,a=________,b=_______, c=_______合作探究:一、探索勾股定理探索一:测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:请你猜想三边的长度a 、 b 、 c 之间的关系 巩固练习:1.做一做求下列图形中表示边的未知数的值2.将长为5.41米的梯子AC 斜靠在墙上,BC长为2.16米,求梯子上端A 到墙的底边的垂直距离AB.(精确到0.01米)2x x15小结这节课主要探索了勾股定理, (1)勾股定理的内容:_______________________________________________________________________________________________ (2)勾股定理公式的几个变形AB=_____________ BC=_____________ AC=_____________达标测评:1.在RT △ABC 中,AB=c,BC=a,AC=b, ∠B= 90(1)已知a=6,b=10,求c (2)已知a=24,c=25,求b2.在△ABC 中,AB=15,AC=13,高AD=12,求△ABC 的周长一个3m 长的梯子AB,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5m,如果梯子的顶端A 沿墙下滑0.5m,那么梯子底端B 也外移0.5m 吗?A OB DC14.1.1勾股定理证明方法第二课时学习目标:1.用拼图的方法说明勾股定理的结论正确。

人教版八年级数学下《勾股定理 第2课时:勾股定理在生活中的应用》精品教学课件

人教版八年级数学下《勾股定理 第2课时:勾股定理在生活中的应用》精品教学课件

创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
2.《九章算术》是我国古代最重要的数学著作之一,在“勾股” 章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵 地,去本三尺,问折者高几何.”翻译成数学问题是:如图所 示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC
AC= 5 ≈2.24.
因为AC大于木板的宽2.2 m,所以木板 能从门框内通过.
若木板长3 m,宽2.5 m能通过吗? AC小于木板的宽,不能通过.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
【例2】如图,一架2.6 m长的梯子AB斜靠在一竖直的 墙AO上,这时AO为2.4 m.如果梯子的顶端A沿墙下滑 0.5 m,那么梯子底端B也外移0.5 m吗?
尺中的的正一方个形问,题在,水原池正文中是央:有今一有根方芦池苇一,它
高出水面一尺.如果把这根芦苇拉向水池一边
丈,葭生其中央,出水一尺,引葭赴
的中点,它的顶端恰好到达池边的水面. 水的
深岸度,与适这与根芦岸苇齐的,长水度深分、别葭是长多各少几?何?
B
C
A
思考
勾股定理
(1)水的深度与芦苇的长度有什么关系? 水池的深度1芦苇的长度
(2)水的深度、半个水池长与芦苇的长度有什么关系?
构成一个直角三角形
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
合作探究
译:有一个水池,水面是一个边长为10 尺的正方形,在水池正中央有一根芦苇,它 高出水面一尺.如果把这根芦苇拉向水池一边 的中点,它的顶端恰好到达池边的水面. 水的 深度与这根芦苇的长度分别是多少?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业

《第2课时 勾股定理的实际应用》教案 (公开课)2022年湘教版数学

《第2课时 勾股定理的实际应用》教案 (公开课)2022年湘教版数学

第2课时勾股定理的实际应用1.熟练运用勾股定理解决实际问题;(重点)2.勾股定理的正确使用.(难点)一、情境导入如图,在一个圆柱形石凳上,假设小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理在实际生活中的应用【类型一】勾股定理在实际问题中的简单应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保存根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC、AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC =5米,那么AB=BC2-AC2=12米,6秒后,BC×6=10米,那么AB=BC2-AC2=53米,那么船向岸边移动距离为(12-53)米.方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理.【类型二】含30°或45°等特殊角的三角形与勾股定理的综合应用由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A市测得沙尘暴中心在A市的正西方向300km 的B处,以107km/h的速度向南偏东60°的BF方向移动,距沙尘暴中心200km的范围是受沙尘暴影响的区域,问:A市是否会受到沙尘暴的影响?假设不会,说明理由;假设会,求出A市受沙尘暴影响的时间.解析:过点A作AC⊥BF于C,然后求出∠ABC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=12 AB,从而判断出A市受沙尘暴影响,设从D 点开始受影响,此时AD=200km,利用勾股定理列式求出CD的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解.解:如图,过点A作AC⊥BF于C,由题意得,∠ABC=90°-60°=30°,∴AC =12AB=12×300=150(km),∵150<200,∴A市受沙尘暴影响,设从D点开始受影响,那么AD=200km.由勾股定理得,CD=AD2-AC2=2002-1502=507(km),∴受影响的距离为2CD=1007km,受影响的时间位1007÷107=10(h).方法总结:熟记“直角三角形30°角所对的直角边等于斜边的一半〞这一性质,知道方向角如何在图上表示,作辅助线构造直角三角形,再利用勾股定理是解这类题的关键.探究点二:勾股定理在几何图形中的应用【类型一】利用勾股定理解决最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点M,需要爬行的最短距离是多少?解:分三种情况比拟最短距离:如图①(将正面与上面展开)所示,AM=102+〔20+5〕2=529,如图②(将正面与右侧面展开)所示,AM=202+〔10+5〕2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm;如图③(将正面与左侧面展开)所示,AM=〔20+10〕2+52=537(cm).537>25,∴最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比拟取其最小值即可.【类型二】运用勾股定理与方程解决有关计算问题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C =3,那么AM的长是()A.1.5 B.2解析:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x =2,即AM B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型三】勾股定理与数轴如以下图,数轴上点A所表示的数为a,那么a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5,那么点A所表示的数为5C.方法总结:此题考查的是勾股定理和数轴的知识,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.三、板书设计1.勾股定理在实际生活中的应用2.勾股定理在几何图形中的应用就练习的情况来看,一方面学生简单机械地套用了“a2+b2=c2〞,没有分析问题的本质所在;另一方面对于立体图形转化为平面问题在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点) 3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t以内(包括10t)的用户,每吨收水费a元;月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的局部,按每吨b元(b>a)收费.设某户居民月用水x t,应收水费y元,y与x之间的函数关系如以下图.(1)求a的值,并求出该户居民上月用水8t应收的水费;(2)求b的值,并写出当x>10时,y与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t时,设其函数表达式为y=ax,由上图可知图象经过点(10,15),从而求得a的值;再将x=8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t多还是比10t少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x≤10时,图象过原点,所以设y=ax.把(10,15)代入,解得ayx(0≤x≤10).当x=8时,y×8=12,即该户居民的水费为12元;(2)当x>10时,设y=bx+m(b≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b+m=15,20b+m=35,解得⎩⎪⎨⎪⎧b=2,m=-5,即超过10t的局部按每吨2元收费,此时函数表达式为y=2x-5(x>10);(3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t多.设居民乙上月用水x t,那么居民甲上月用水(x+4)t.y甲=2(x+4)-5,y乙=2x,得[2(x+4)-5]+(2x-5)=46,解得x t,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x +9(140-x)=1000,解得x=65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x 越小,W越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得a=23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B(214,135),C,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D(498,135).设BC 的解析式为y1=k1x+b1,由题意得⎩⎪⎨⎪⎧135=214k1+b1,0k1+b1,∴⎩⎪⎨⎪⎧k1=-60,b1=450,∴y1=-60x+450,设ED的解析式为y2=k2x+b2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

八年级数学上册 第14章 勾股定理 14.2 勾股定理的应用(1)课件

八年级数学上册 第14章 勾股定理 14.2 勾股定理的应用(1)课件

()
A.7m
B.8m
C.9m
A
D.10m
8m
C
8m
第五页,共十四页。
B
2m
●2005年8月,中俄两国在青岛举行联合军事演习.甲、 乙两艘军舰同时从某港口O出发(chūfā),分别向北偏西60°、
南偏西30°方向航行围攻敌舰,已知甲、乙两艘军舰
速度分别为60海里/时、80海里/时,问两舰出发后多
长时间相距200海里?
送行二步与人齐,五尺人高曾记;
仕女佳人争蹴,终朝笑语欢嬉,
良工高士(ɡāo shì)素好奇,算出索长有几?
(一步合5尺)
第十页,共十四页。
平地秋千未起,踏板一尺(yī chǐ)离地, 送行二步与人齐,五尺人高曾记;
仕女佳人争蹴,终朝笑语欢嬉,
良工高士素好奇,算出索长有几?
第十一页,共十四页。
O
x
A
O
第六页,共十四页。
B
◆一架长为10m的梯子(tī zi)AB斜靠在墙上.
⑴ 若梯子的顶端距地面(dìmiàn)的垂直 距离为8m,则梯子的顶端A与它的底端 B哪个距墙角C远?
A
⑵在⑴中如果梯子(tī zi)的顶端下滑 1m,那么它的底端是否也滑动1m?
⑶有人说,在滑动过程中,梯子的底端
滑动的距离总比顶端下滑的距离大, C
路大致成直角三角形,从C处到B处,如果直接走 湖底隧道CB,比绕道CA (约1.36km)和AB (约
2.95km)减少多少行程?
A 中 C 央

第四页,共十四页。




B


■如图,有两棵树,一棵高8m,另一棵高2m,两树

17.1勾股定理(第2课时 勾股定理在实际生活中的应用)(课件)-八年级数学下册(人教版)

17.1勾股定理(第2课时 勾股定理在实际生活中的应用)(课件)-八年级数学下册(人教版)

归纳小结
D
C
从实际问题中构建出直角三角形
用勾股定理求边长解决实际问题
A
B
典例分析
例2 如图,一架 2.6 m 长的梯子 AB 斜靠在一竖直的墙 AO 上,这时 AO 为
2.4 m. 如果梯子的顶端 A 沿墙下滑 0.5 m,那么梯子底端 B 也外移 0.5 m 吗?
A
B
O
典例分析
例2 如图,一架 2.6 m 长的梯子 AB 斜靠在一竖直的墙 AO 上,这时 AO 为
不是也外移 0.5 m,而是外移约 0.77 m.
B
O
D

归纳小结
生活中默认垂直的物体包括:柱子、电线杆、楼体、旗杆、
墙壁、地板、门窗玻璃、书架、桌子等。这些物体在设计和
建造时,通常都会确保其部分或整体与地面或另一物体保持
垂直关系,以满足结构稳定性和功能需求。因此,当这些物
体出现在题目中时,默认为已知直角。
答:小鸟至少飞行 10 米.
C
A
典例分析
二、列勾股定理方程解应用题
例3 我国古代数学著作《九章算术》中的一个问题,原文是:今有方池一丈,
葭生其中央,出水一尺,引葭赴岸,适与岸齐,水深、葭长各几何?译:有
一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它
高出水面一尺. 如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池
OB2 = AB2 - OA2 =2.62 - 2.42 =1,∴OB = 1.
在 Rt△COD 中,根据勾股定理得
OD2 =CD2 - OC2 =
2.62-(2.4-0.5)2=3.15,
A
0.5m
C
∴OD = 3.15 ≈ 1.77

华师大版初中数学八年级上册课程目录与教学计划表

华师大版初中数学八年级上册课程目录与教学计划表

华师大版初中数学八年级上册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。

不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。

目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第11章数的开方
11.1 平方根与立方根
1. 平方根
2. 立方根
11.2 实数
小结
复习题
第12章整式的乘除
12.1 幂的运算
1.同底数幂的乘法
2.幂的乘方
3.积的乘方
4.同底数幂的除法
12.2 整式的乘法
1.单项式与单项式相乘
2.单项式与多项式相乘
3.多项式与多项式相乘
12.3 乘法公式
1.两数和乘以这两数的差
2.两数和(差)的平方
12.4 整式的除法
1.单项式除以单项式
2.多项式除以单项式
12.5 因式分解
小结
复习题
第13章全等三角形
13.1 命题、定理与证明13.2 三角形全等的判定
1.全等三角形
2.全等三角形的判定条件
3.边角边
4.角边角
5.边边边
6.斜边直角边
13.3 等腰三角形
13.4 尺规作图
13.5 逆命题与逆定理
小结
复习题
第14章勾股定理
14.1 勾股定理
14.2 勾股定理的应用
小结
复习题
第15章数据的收集与表示15.1 数据的收集
15.2 数据的表示
小结
复习题
总复习。

八年级数学上册第14章勾股定理14.2勾股定理的应用第1课时勾股定理的应用习题课件


8. 如图所示,有一个长为12 cm 、宽为4 cm 、高 为3 cm 的长方体铁盒,在其内部要放一根笔直的铁
丝,则铁丝的最大长度是多少?
解:连结AC、BC. 在Rt△ ADC中, ∠ADC=90° ,CD=12,AD=4,∴AC2=AD2+ CD2=42+122=160. 在Rt△ ABC中,∠BAC=90° ,AB=3, ∴BC= AB2+AC2= 32+160= 169=13(cm ).
解:设E站应建在距离A点x km 处,则BE=AB- AE=(25-x) km ,∵DE=EC,∠A=∠B=90° , ∴EC2=BC2+BE2=152+(25-x)2, DE2=AD2+AE2=102+x2, 即102+x2=152+(25-x)2,解得x=15,
答:E站应建在距离A点15 km 处.
答:铁丝的最大长度Байду номын сангаас13 cm .
9.如图,有一个小朋友拿着一根竹竿要通过一个长 方形的门,如果把竹竿竖放,则此门高出1尺;如果斜 放,则恰好等于门的对角线的长.已知门宽4尺,请你 求出竹竿的长与门的高.
解:设竹竿的长为x尺,则门高为(x-1)尺,由勾股 定理,得x2=(x-1)2+42,解得x=8. 5,则门高为8. 5- 1=7. 5(尺),∴竹竿的长为8. 5尺,门高为7. 5尺.
短距离时,把立体图形的表面(或侧面)展开,然后再利 用勾股定理来求.
知识点
不在同一平面上的两点之间的最短距离
1. 如图,长方体的长为 15,宽为 10,高为 20,点 B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从 点 A 爬到点 B,需要爬行的最短距离是( B ) A.5 37 C.10 5+5 B.25 D.35
B.5 cm D.7 cm

勾股定理应用说课稿

勾股定理应用说课稿勾股定理应用说课稿“勾股定理的应用”说课稿(秦安县兴丰中学,甘肃秦安孟小平741617) [关键词]勾股定理应用;教材;教法;学法;教学程序一.说教材本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一.勾股定理是我国古数学的一项伟大成就.勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用.据此,制定教学目标如下:1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解.2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的.3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美.教学重点:勾股定理的应用.教学难点:勾股定理的正确使用.教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.二.说教法和学法1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程.2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力.3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望.三.教学程序本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:一.回顾问:勾股定理的内容是什么?勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用.二.新授课例1.如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线.思考:那条路线最短?②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗?③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?BCADBCAD思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”.学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。

初中数学华东师大八年级上册第14章 勾股定理利用勾股定理求最短路径(教案)

教学内容:勾股定理的应用——关于最短路径问题知识目标:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力目标:学会观察图形,勇于探索图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感目标:通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点:探索、发现给定事物中隐含的勾股定理及其逆定理,并用它们解决生活实际问题。

教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学准备:多媒体课件。

教学过程:一、复习回顾 1. 如图,直角三角形中的三边a ,b ,c 满足什么关系?2. 当a =2,b =3时,求c ; 当c =3,a =2时,求b 。

二、新课讲解㈠立体图形中的最短路径1. 正方体蚂蚁怎样走最近:学生分组,测量、画图、计算、总结规律例1 如图,蚂蚁在边长为10cm 的正方体A 处嗅到了放置在正方体的B 处位置上的面包,蚂蚁沿着正方体表面怎样的路线行走才能很快地吃到面包?蚂蚁行走的最短路线长是多少?利用多媒体展示展开图,并引导“两点之间线段最短”得到AB 的最短路径:500201022=+=AB ㎝2. 长方体例2 长为3cm ,宽为1cm ,高为2cm 的长方体,蚂蚁沿着表面从A 到B 爬行的最短路程又是多少呢?教师利用多媒体展示长方体的三种展开方式和计算结果:()189921322=+=++=AB ()2016431222=+=++=AB BBA BA b a c 1 2 3 A B()2625132122=+=++=AB ∴AB 的最短路径为18。

利用以上计算,小结方法:对于一般的长方体,长、宽、高分别为a 、b 、c 时,AB 的最短路径可能有三种情况:⑴()bc c b a c b a AB 222222+++=++= ⑵()ac c b a c a b AB 222222+++=++= ⑶()ab c b a b a c AB 222222+++=++= 要找最短距离,只需要比较bc 、ac 、ab 的大小,取最小值。

八年级数学上第14章勾股定理14.1勾股定理2直角三角形三边的关系__验证勾股定理授课新华东师大1


知1-讲
3.用拼图法证明命题1的思路: (1)图形经过割补拼接后,只要没有重叠,没有空隙,面
积不会改变; (2)根据同一种图形的面积的不同表示方法列出等式; (3)利用等式性质变换证明结论成立,即拼出图形→写出
图形面积的表达式→找出等量关系→恒等变形→推出 命题1的结论.
知1-讲
例1 图14.1-1是用硬纸板做成的四个两直角边长分别 是a,b,斜边长为c的全等的直角三角形和一个 边长为c的正方形,请你将它们拼成一个能证明 命题1的图形. (1)画出拼成的这个图形的示意图; (2)证明命题1.
知2-讲
(2)已知直角三角形的一边确定另两边的关系; (3)证明含有平方关系的几何问题; (4)作长为n(n≥1,且n为整数)的线段; (5)一些非直角三角形的几何问题、日常生活中的
应用问题,对于这些问题,首先要将它们转化, 建立直角三角形模型,然后利用勾股定理构建方 程或方程组解决.
知2-讲
例2 如图,Rt △ABC的斜边AC比直角边 AB长 2cm,另一直角边BC长为6 cm.求AC的长.
知2-讲
本题运用建模思想解题,根据实际问题画出直 角三角形,再运用勾股定理解答.当图形不是直角 三角形时,常常通过作垂线构造直角三角形.
知2-讲
例5 如图,有一张直角三角形纸片,两直角边AC =6 cm,BC=8 cm,现将直角边AC沿AD折 叠,使点C落在斜边AB上的点E处,试求CD 的长.
导引:利用折叠前后重合的线段相等、重合的角相等, 通过勾股定理列方程,在Rt△BDE中求出线段 DE的长,从而得到CD的长.
解: 由已知AB=AC - 2, BC =6cm, 根据勾股定理,可得 AB2 + BC2 = (AC - 2)2 +62 = AC2, 解得AC= 10(cm).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档