稳态热分析例子

合集下载

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态热模拟基本步骤基于ANSYS 9。

0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。

其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:(3-1)=0+-q q q流入生成流出在稳态分析中,任一节点的温度不随时间变化.基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences菜单,出现对话框1。

对话框1我们主要针对的是热分析的模拟,所以选择Thermal.这样做的目的是为了使后面的菜单中只有热分析相关的选项.2、定义单元类型GUI:Preprocessor>Element Type〉Add/Edit/Delete 出现对话框2对话框2点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。

对于三维模型,多选择SLOID87:六节点四面体单元。

3、选择温度单位默认一般都是国际单位制,温度为开尔文(K).如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。

4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。

GUI: Preprocessor〉Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。

则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确.设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。

对话框5中,Material菜单,New Model选项,添加多种材料的热参数。

(最新整理)ANSYS热分析详解

(最新整理)ANSYS热分析详解

(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。

第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。

工程热力学与传热学 第二章 稳态热传导 基本概念

工程热力学与传热学 第二章 稳态热传导  基本概念

t—温度(0C);
x , y , z—直角坐标
由傅里叶定律可知,求解导热问题的关键是获 得温度场。导热微分方程式即物体导热应遵循的一 般规律,结合具体导热问题的定解条件,就可获得 所需的物体温度场。
具体推导: 傅里叶定律
能量守衡定律
导热微分方程式
假定导热物体是各向同性的,物性参数为常数。 我们从导热物体中取出一个任意的微元平行六面 体来推导导热微分方程,如下图所示。
2. 说明: 导热系数表明了物质导热能力的程度。 它是物性参数 物质的种类 热力状态(温度、压力等)。
在温度t=200C时:
纯铜λ=399 w/m0C;水λ=0.599 w/m0C;干空气0C λ(固体)大--------→(液体)---------→(气体)小
隔热材料(或保温材料)----石棉、硅藻土、矿渣棉等,它 们的导热系数通常:λ < 0.2 w/m0C。
c t ( x 2t2 y 2t2 z 2t2)q'
这是笛卡儿坐标系中三维非稳态导热微分方程的一般形式。
导热微分方程式——温度随时间和空间变化的一般关系。 它对导热问题具有普遍适用的意义。
Cp t ( x2t2 y2t2 z2t2)qv
最为简单的是一维温度场的稳定导热微分方程为:
稳态温度场:物体各点的温度不随时间变动; 非稳态(瞬态)温度场:物体的温度分布随时间改变。
2. 等温面(Isothermal surface)(线):同一时刻物体中温度 相同的点连成的面(或线)。 特点:(1)同一时刻,不同等温线(或面)不可能相交; (2)传热仅发生在不同的等温线(或面)间; (3)由等温线(或面)的疏密可直观反映出不同区域 热流密度的相对大小。
在半径r处取一厚度为dr长度为l米的薄圆筒壁。则

ANSYS热分析详解

ANSYS热分析详解

第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析∙在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

∙ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

∙ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类∙稳态传热:系统的温度场不随时间变化∙瞬态传热:系统的温度场随时间明显变化四、耦合分析∙热-结构耦合∙热-流体耦合∙热-电耦合∙热-磁耦合∙热-电-磁-结构耦合等第二章 基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。

三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。

热传导遵循付里叶定律:dxdTkq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。

ANSYS之杯具热分析

ANSYS之杯具热分析

第N章水杯热分析案例这个案例是使用ANSYS WORKBENCH 热分析模块功能进行演示。

通过对杯子模型加载温度荷载来分析出其温度分布状况。

1.5.1案例介绍此案了使用一个铜合金材料的水杯模型,在内表面施加100℃的温度载荷在外表面施加对流传热系数来模拟一下当水杯装满热水时候的温度以及热流分布状况以演示AMSYS WORKBENCH 热分析模块的基本操作过程。

1.5.2启动Workbench并建立分析项目(1) 首先打开ANSYS WORKBENCH 14.0。

双击Toolbox(工具箱)→Analysis System (分析系统)→Steady-State Therma(热分析模块)打开,如图-1所示。

图-1 打开热分析模块图-2 选择材料1.5.3定义材料参数(1)双击打开A2项目(Engineering Data)。

(2)打开后在菜单栏中点击图标。

然后在Engineering Data Sources项目中单击A3项General Materials(一般材料)→单击Outline of General Materials中的A7项Copper Alloy(铜合金)中的B7项的图标来选择上此材料。

(3)材料选择完成后单击(回到项目管理区)图标。

1.5.4导入模型(1)双击项目A3项Geometry(模型)进入DM模块来导入我们需要分析的模型。

如图-3所示。

图-3 打开DM模块图-5 导入模型(2)单击File(文件)→Import External Geometry File(导入模型文件)。

如图-5所示。

(3)找到模型文件单击选择后单击“打开”按钮。

如图-6所示。

图-6 打开模型图-7 划分网格1.5.5划分网格(1)双击项目文件A4项Model(网格)。

如图-7所示。

打开的模型如图-8所示。

图-8 杯子的模型图-9 刷新网格(2)我们先使用程序自动划分网格,通过查看网格质量再决定是否进行网格控制。

ansys稳态及瞬态热分析.ppt

ansys稳态及瞬态热分析.ppt

Guidelines Them-2
目录 (续)
第三章 稳态传热分析 一、稳态传热的定义 二、热分析的单元 三、ANSYS稳态热分析的基本过程 练习 第四章 瞬态传热分析 一、瞬态传热分析的定义 二、瞬态热分析的单元及命令 三、ANSYS瞬态热分析的主要步骤
1、建模 2、加载求解 3、后处理
四、相变问题 练习
Them-11
第一讲、符号与单位
项目
国际单位
英制单位
ANSYS代号
长度
m
ft[英尺]
时间
s
s
质量
Kg
lbm [磅质量]
温度

oF

N
lbf
能量(热量)
J
BTU[英制热单位]
功率(热流率)
W
BTU/sec
热流密度
W/m2
BTU/sec-ft2
生热速率
W/m3
BTU/sec-ft3
导热系数
W/m-℃
BTU/sec-ft-oF
Lesson Objectives
第一讲、符号与单位 第二讲、传热学经典理论回顾 第三讲、热传递的方式 第四讲、稳态传热 第五讲、瞬态传热 第六讲、线性与非线性 第七讲、边界条件、初始条件 第八讲、热分析误差估计
2001年10月1日 2020/4/16
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Them-6
ANSYS的热分析
P-2. ANSYS的热分析
Objective

ABAQUS热应力分析解析实例详解

ABAQUS热应力分析解析实例详解ABAQUS是一种常用的有限元分析软件,可以进行各种不同类型的分析,包括热应力分析。

热应力分析是通过模拟材料受热后发生的变形来评估材料的热稳定性和耐久性。

在这篇文章中,我们将详细介绍ABAQUS热应力分析的步骤和实例。

首先,我们需要创建一个ABAQUS模型。

模型包括几何形状、材料属性和边界条件。

在热应力分析中,我们通常需要定义一个热源,以及材料的热传导、热膨胀和热辐射等属性。

在这个实例中,我们将模拟一个烤箱的加热过程。

模型是一个简单的长方体,材料是钢铁,边界条件是恒定的热流。

下一步是定义材料属性。

我们需要定义钢铁的热传导系数,热膨胀系数和热辐射系数。

这些属性通常可以从材料手册或实验中获得。

我们将使用以下参数:-热传导系数:40W/mK-热膨胀系数:12e-61/°C-热辐射系数:0.8接下来,我们需要定义边界条件。

在这个实例中,我们将模拟一个恒定的热流输入。

我们可以通过选择“控制模拟”菜单中的“载荷”选项来定义边界条件。

在强制边界条件下选择“热流”载荷,然后指定热流的大小和方向。

我们将选择1000W的热流输入。

然后,我们需要定义分析步骤。

在这个实例中,我们将使用一个稳态热分析步骤。

在强制模式下选择“热”分析步骤,然后指定步骤的参数,包括时间步长和总时间。

我们将选择0.1s的时间步长和10s的总时间。

在模拟之前,我们需要定义网格划分。

网格划分是将模型分解为多个小元素的过程,以便于进行数值计算。

ABAQUS中有多种网格划分方法可供选择。

我们可以通过选择“网格”菜单中的“划分”选项来进行网格划分,然后选择适当的网格划分方法和参数。

当所有定义都完成后,我们可以点击“开始模拟”按钮开始进行热应力分析。

ABAQUS将使用已定义的模型、材料属性、边界条件和分析步骤来进行数值计算。

计算结果将显示在ABAQUS的图形界面中。

在热应力分析完成后,我们可以查看结果并进行后处理。

关于热分析法

关于热分析法的研究摘要:在药剂学领域,热分析是研究药物晶型、纯度、稳定性、固态分散系统、脂质体、药物-辅料相互作用的重要手段。

热分析法主要包括差热分析、差示扫描量热法和热重法,该篇文章主要介绍了他们的原理、应用范围及实例以及优缺点。

关键词:原理应用热分析1.差热分析(DTA)差热分析,也称差示热分析,是在温度程序控制下,测量物质与基准物(参比物)之间的温度差随温度变化的技术。

1.1原理:纵坐标表示温度差ΔT,ΔT为正表示试样放热;ΔT为负表示试样吸热。

横坐标表示温度。

ABCA所包围的面积为峰面积,A′C′为峰宽,用温度区间或时间间隔来表示。

BD 为峰高,A点对应的温度Ti为仪器检测到的试样反应开始的温度,Ti受仪器灵敏度的影响,通常不能用作物质的特征温度。

E点对应的温度Te为外延起始温度,国际热分析协会(ICTA)定为反应的起始温度。

E点是由峰的前坡(图中 AB段)上斜率最大的一点作切线与外延基线的交点,称外延起始点。

B点对应的温度Tp为峰顶温度,它受实验条件影响,通常也不能用作物质特征温度。

1.2应用范围:熔化及结晶转变、氧化还原反应、裂解反应等的分析研究、主要用于定性分析。

1.3优缺点:优点:测量物质的转变温度是比较准确方便的缺点:1)试样在产生热效应时,升温速率是非线性的,从而使校正系数K值变化,难以进行定量;2)试样产生热效应时,由于与参比物、环境的温度有较大差异,三者之间会发生热交换,降低了对热效应测量的灵敏度和精确度。

3)用于热量测量却比较麻烦,而且因受样品与参考物之间热传导的影响,定量的准确度也较差。

1.4应用实例1)含水化合物。

对于含吸附水、结晶水或者结构水的物质,在加热过程中失水时,发生吸热作用,在差热曲线上形成吸热峰。

①2)高温下有气体放出的物质。

一些化学物质,如碳酸盐、硫酸盐及硫化物等,在加热过程中由于CO2、SO2等气体的放出,而产生吸热效应,在差热曲线上表现为吸热谷。

不同类物质放出气体的温度不同,差热曲线的形态也不同,利用这种特征就可以对不同类物质进行区分鉴定。

ansysworkbench热分析教程

. . -•本章练习稳态热分析的模拟,包括:A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1•本节描述的应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural•提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:[K(T)]{T}={Q(T)}•假设:–在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。

•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(PointMass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体的轴向仍有温度变化• 唯一需要的材料特性是导热性(ThermalConductivity )• Thermal Conductivity 在Engineering Data 中输入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。

… 材料特性Training ManualB. 组件-实体接触Training Manual•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。

–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。

–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。

电子设备热分析、热设计及热测试技术综述及进展

电子设备热分析、热设计及热测试技术综述及进展一、本文概述随着电子技术的飞速发展和广泛应用,电子设备热分析、热设计及热测试技术在保障电子设备性能稳定、提升系统可靠性以及延长设备寿命等方面发挥着越来越重要的作用。

本文旨在对电子设备热分析、热设计及热测试技术的当前综述及进展进行全面探讨,以期为相关领域的研究与应用提供有益的参考。

本文将首先概述电子设备热分析、热设计及热测试技术的基本概念、原理及其在电子设备中的重要性。

随后,将详细介绍当前热分析技术的最新进展,包括数值分析、实验测量以及仿真模拟等方面的技术突破和应用实例。

在热设计方面,本文将探讨新型散热结构、材料以及优化算法的研究与应用,以提高电子设备的散热效率和可靠性。

本文将综述热测试技术的发展动态,包括新型测试方法、测试设备以及测试标准的制定与实施。

通过本文的综述,读者可以对电子设备热分析、热设计及热测试技术的现状和发展趋势有更为深入的了解,为相关领域的研究与实践提供有益的启示和借鉴。

二、电子设备热分析技术随着电子设备向高度集成化、小型化和高功率密度方向发展,热分析技术在电子设备设计中的重要性日益凸显。

电子设备热分析技术主要包括稳态热分析和瞬态热分析两大类。

稳态热分析主要关注设备在稳定工作状态下的热量分布和温度场。

通过稳态热分析,可以预测设备在长时间运行过程中的热性能,评估其散热设计的合理性。

常用的稳态热分析方法包括有限元法(FEM)、有限差分法(FDM)和边界元法(BEM)等。

这些方法可以通过建立设备的热模型,模拟其在稳定工作状态下的热传导、对流和辐射等热传递过程,从而得到设备的温度分布和热流密度等信息。

瞬态热分析则主要关注设备在启动、关机、负荷变化等瞬态过程中的热性能。

瞬态热分析对于评估设备在极端条件下的热稳定性和可靠性具有重要意义。

常用的瞬态热分析方法包括瞬态热网络法、瞬态热有限元法等。

这些方法可以模拟设备在瞬态过程中的热传递和热响应,从而得到设备在不同时间点的温度分布和热流密度等信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个简单稳态热分析的例子,供初学者参考(高手请提宝贵意见)
一个双层板。层Ⅰ中间有一半径为1cm的园孔。两层板的热传导率分别为20W/m.K和
50W/m.K;圆孔中的热流密度为100W/m2。双层板左右两侧的温度分别为200℃,50℃。
板周围流体介质的对流换热系数为150 W/m2.K,温度为25℃。求稳态条件下双层板的温
度分布。

命令流文件:
/UNITS,SI
/TITLE,Steady State slab problem
/prep7
et,1,plane55
uimp,1,kxx,,,20
uimp,2,kxx,,,50
rectng,0,0.05,0,0.05
rectng,0.05,0.15,0,0.05
cyl4,0.025,0.025,0.01
asba,1,3

aglue,2,4
smrtsize,4
amesh,all
asel,s,,,1
esla,s

mpchg,1,all
allsel,all

asel,s,,,2
esla,s
mpchg,2,all
allsel,all
finish

/solu

d,1,temp,200
d,2,temp,200
nsel,s,node,,11,19,1
d,all,temp,200
nsel,s,node,,all
d,4,temp,50
d,5,temp,50

nsel,s,node,,39,47
d,all,temp,50
nsel,all

sfl,14,conv,150,,25
sfl,7,conv,150,,25

sfl,9,hflux,100
sfl,10,hflux,100
sfl,11,hflux,100
sfl,12,hflux,100
solve

相关文档
最新文档