不等式的基本性质与基本不等式
不等式的性质、解不等式

不等式的基本性质、解不等式【基础知识】一、不等式的概念及基本性质注意:①不等式的基本性质,没有减法和除法。
如果遇到减法和除法,可以转化乘加法 和乘法,如:求a b -的范围可以转化成求()a b +-的范围,求a b 的范围可以转化成求1a b⨯的范围。
②方程和不等式的两边不能随便乘除,必须先研究这个数的性质,再乘除。
三、分式不等式和高次不等式 1、分式不等式的解法 把分式不等式通过移项、通分、因式分解等化成()0()f xg x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集。
温馨提示:解分式不等式一定要考虑定义域。
2、高次整式不等式的解法(序轴标根法)先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集。
实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集。
四、绝对值不等式 1、解绝对值不等式 方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴。
方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法。
注意小分类求交大综合求并。
方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以用平方法。
2、绝对值三角不等式a b a b a b -≤±≤+绝对值三角不等式的运用主要体现在直接利用绝对值三角不等式证明不等式和求函数的最值。
【例题精讲】例1 已知不等式 的解集为 ,求 、 的值。
不等式的基本性质ppt课件

(2)能正确应用性质对不等式进行变形;
注意事项
当不等式两边都乘以(或除以)同 一个数 时,一定要看清是正数还是负数;对于未给定 范围的字母,应分情况讨论.
P9:习题2.1 第1、2、3题
1、比较a与a+2的大小;
2、比较2与2+a的大小。
1、解: ∵ 0< 2, ∴ a < a+2 2、解:若a <0,则 2+a <2; 若a > 0,则 2+a > 2; 若a = 0,则 2+a = 2;
§2.1 不等式的基本性质
读书改变命运 !刻苦成就事 业 !!态度决定一切!!!
由a+5=b+5, 能得到a=b?
由a-5=b-5, 能得到a=b? 由5a=5b, 能得到a=b?
由–8a=–8b, 能得的基本性质吗?
等式的性质1:等式的两边都加上(或减去) 同一个整式,等式仍然成立. 等式的性质2:等式的两边都乘以(或除以) 同一个不为0的数,等式仍然成立.
试比较5a与3a 的大小。 解:∵ 5 > 3 ∴ 5a 3a 想想:这种解法对吗?如果正确,说 出它根据的是不等式的哪一条基本性 质;如果不正确,请说明理由。 答:这种解法不正确,因为字母 a的取值范 围我们并不知道。如果 a 0,那么 5a 3a ; 如果 a 0 ,那么 3a 5a 。
(1)掌握不等式的三条性质,尤其是性质3; (2)能正确应用性质对不等式进行变形;
本节重点
(1)掌握不等式的三条性质,尤其是性质3; 不等式的三条性质是: ① 、不等式的两边都加上(或减去)同一 个 数或同一个整式,不等号的方向不变; ② 、不等式的两边都乘以(或除以)同一 个 正数,不等号的方向不变; ③ 、*不等式的两边都乘以(或除以)同 一个负数,不等号的方向要改变 ;
不等式的基本性质总结

不等式的基本性质是高中数学中一个重难点,下面查字典高中数学网为大家总结了不等式的基本性质知识点,希望对大家所有帮助。
1.不等式的定义:a-b0ab, a-b=0a=b, a-b0a
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1) abb
(2) ab, bcac (传递性)
(3) aba+cb+c (cR)
(4) c0时,abacbc
c0时,abac
运算性质有:
(1) ab, cda+cb+d。
(2) ab0, cd0acbd。
(3) ab0anbn (nN, n1)。
(4) ab0(nN, n1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
《不等式及其基本性质》教案

《不等式及其基本性质》教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明不等式的形式,如a > b、a ≤b 等。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。
性质2:如果a > b 且c > d,a + c > b + d。
性质3:如果a > b 且c < d,a + c < b + d。
性质4:如果a > b,a c > b c(其中c 是任意实数)。
第二章:不等式的运算2.1 加减法不等式介绍加减法不等式的运算规则,如a > b 且c > 0,a + c > b + c;a > b 且c < 0,a + c < b + c。
举例说明如何解决涉及加减法的不等式问题。
2.2 乘除法不等式介绍乘除法不等式的运算规则,如a > b 且c > 0,ac > bc;a > b 且c < 0,ac < bc。
举例说明如何解决涉及乘除法的不等式问题。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如解a > b 的问题,可将b 移至不等式右边,得到a b > 0。
举例说明如何解简单不等式。
3.2 复合不等式的解法介绍解复合不等式的方法,如解a > b 且c > 0 的问题,可将不等式两边乘以c,得到ac > bc。
举例说明如何解复合不等式。
第四章:不等式的应用4.1 实际问题中的应用举例说明如何将实际问题转化为不等式问题,如判断身高、体重等是否符合要求。
引导学生运用不等式解决实际问题。
4.2 线性不等式组的解法介绍线性不等式组的解法,如解a > b 且c > d 的问题,可先解a > b,再解c > d,求交集。
七年级数学不等式的基本性质

要 变 号
4.用不等式表示: (1)X为正数; X>0 (3)X为非负数; x≥0
(2)X为负数; x <0 (4)X为非正数. x≤0
5.若a-b<0,则下列各式中一定成立的是( D ) A. a>b B. a+3>b+3 C. a-c>b-c D. a+0.1<b+0.1
课堂小结
1)不等式的定义:用不等号“>”(或“<”、“≥”、 “≤”)连接的式子叫做不等式。
冷风机环保空调主机运行时,要打开一定面积的门或窗,以便通风换气,若没有足够的门窗时,应加装排气扇,并保证排气量为环保空调总送 风量的80%。
显赫,怕是这王府后院从此不太平了。壹想到这里,她又有点儿后悔刚才替冰凝拉了偏架。淑清壹听宋姐姐的名字被解释得这么好听,心中很 是不服气。宋格格听到自己的名字第壹次被赋予了如此的诗意,脸色终于慢慢地好了起来。第壹卷 第六十八章 新居随着吟雪回到自己的院 子,冰凝这颗心才算是轻松下来。月影早早就将房间收拾得整整齐齐,壹点儿也见不到清早出发前的那副乱七八糟样子,此刻壹见丫鬟回来了, 忙不迭奉上了茶水。待这壹口热茶下肚,冰凝的心头立即涌上壹股暖暖的感觉,这两天来的壹幕幕,不停地在她的脑海回闪。昨天累了壹天, 晚上根本没有休息,紧接着就是早上的敬茶这个重要事情,把冰凝累得浑身似散了架壹般。而且刚刚的这个敬茶,哪里是姐妹相认、和睦相处? 分明就是刀光剑影,明争暗斗!在年府里从没有经历过这些事情的她,简直就是心力交瘁,疲于应付,只有招架之功,没有还有手之力。现在 终于闲下来,才算仔细看了看这个将来要生活壹辈子的地方。院落很大,毕竟是第壹侧福晋,不似福晋院落的庄重大气,也不如李侧福晋院落 的江南风情,这里倒是更有壹番世外桃源的意境,很合冰凝的心思,可以说,这个院落,是冰凝自被赐婚以来,最合心意的壹件事情。这个院 子叫做“怡然居”。福晋的院子是两进院,叫做“霞光苑”。但那是福晋,身份地位摆在那里,自然要与众女眷有着明显的不同;而且确实也 有需要,因为府中的家宴需要设在她那里,女眷们的请安需要在她那里,连管家汇报也需要在那里,因此前厅后院的格局是必须,也是必要的。 这怡然居就不同了,只是壹进的院子。但是,院子非常大,因此壹进门的位置设了影壁墙,绕过影壁,首先是壹个花园,这与壹般院落,将花 园设在最后位置有着极大的不同。也正是这个花园,拉开了院门与正房之间的距离,形成了较大的距离感和极强的私密感,颇有曲径通幽的效 果。院子的西侧种了壹棵芙蓉树,枝叶繁茂,占据了院子上空三分之壹的空间。现在正是芙蓉花盛开的季节,粉粉的花朵落满了壹地,把整个 儿院子映得暖融融的。但是,冰凝不太喜欢粉色,见到满眼的粉红,很是刺目,略略皱了壹下眉头。不过,想想也就这几天开花,过些日子不 开花就好了,因此也就没有多说什么,只是吩咐小太监及时把落下的花朵清扫干净。东侧有壹组石桌石椅,石桌的表面刻的是壹副围棋盘,既 可以当普通桌子,也可以当棋盘桌。除此之外,从影壁开始,壹直到正屋门前,全部是壹整片的花圃,高低错落地种植着各式各样的花草,其 中有冰凝最喜欢的兰草,淡淡蓝紫色的小花,很是清新淡雅。这让她的心情略略地好了壹些。从院门走到居室,就像是漫步在花海中,随着脚 步的移动,花香就
不等式的基本性质与解法

不等式的基本性质与解法不等式是数学中常见的一种数学关系,它描述了两个数之间的大小关系。
在解决实际问题中,经常需要研究不等式的基本性质和解法。
本文将介绍不等式的基本性质以及解决不等式的方法,并且给出一些例子来说明。
一、不等式的基本性质1. 加减性性质:对于两个不等式,如果它们的左右两边分别相加或相减,那么它们的不等关系不变。
例如:对于不等式 2x < 6 和 3x > 9,我们可以将两个不等式的左右两边分别相加得到 2x + 3x < 6 + 9,即 5x < 15。
不等式的不等关系保持不变。
2. 乘除性性质:对于不等式,如果两边都乘以一个正数,则不等关系保持不变;如果两边都乘以一个负数,则不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时乘以一个正数 3,我们得到 3 * 2x < 3 * 6,即 6x < 18,不等关系保持不变。
但如果两边同时乘以一个负数 -3,我们得到 -3 * 2x > -3 * 6,即 -6x > -18,不等关系发生改变。
3. 反号性质:对于不等式,如果两边同时取负号,不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时取负号,我们得到 -2x > -6,不等关系发生改变。
4. 绝对值性质:对于不等式,如果绝对值符号"|" 出现在不等式中,我们需要分别讨论绝对值大于零和绝对值小于零的情况。
例如:对于不等式|2x - 4| < 6,我们可以将其分为两个部分来讨论。
当 2x - 4 > 0 时,不等式简化为 2x - 4 < 6,解得 x < 5;当 2x - 4 < 0 时,不等式简化为 -(2x - 4) < 6,解得 x > -1。
二、不等式的解法1. 图像法:对于一些简单的一元不等式,我们可以使用图像法来解决。
将不等式转化为图像表示,通过观察图像来确定不等式的解集。
不等式的基本性质8条证明过程不等式的基本性质和等式的基本性质的异同

不等式的基本性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)或者说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法则。
[2]……如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。
不等式的基本性质和等式的基本性质的异同:①相同点:无论是等式还是不等式,都可以在它的两边加(或减)同一个数或同一个整式;②不同点:对于等式来说,在等式的两边乘(或除以)同一个正数(或同一个负数),等式仍然成立,但是对于不等式来说,却不大一样,在不等式的两边乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边乘(或除以)同一个负数,不等号要改变方向。
原理:①不等式F(x)< G(x)与不等式G(x)>F(x)同解。
②如果不等式F(x)< G(x)的定义域被解析式H(x )的定义域所包含,那么不等式F (x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
不等式的基本性质

不变 的方向____。 不等式的基本性质3:
的方向____。 改变
c c
不等式的两边都乘以(或除以)同一个负数,不等号
a b, c 0 a c b c , a b c c
例1、如果a>b,那么下列不等式中一定成立的是( ) A.a2>b2 B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣1 练习1、下列命题中,正确的是( ) A.若a>b,则ac2>bc2 B.若a>b,c=d则ac>bd C.若ac2>bc2,则a>b D.若a>b,c<d则 练习2、已知a>b,若c是任意实数,则下列不等式中总成立的是( ) A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc 练习3、如果a+b<0,且b>0,那么a,b,﹣a,﹣b的大小关系为( ) A.a<b<﹣a<﹣b B.﹣b<a<﹣a<b C.a<﹣b<a<b D.a<﹣b<b<﹣a
看一看
你还记得小孩玩的翘翘板吗?你想过它的工 作原理吗?其实,翘翘板就是靠不断改变两 端的重量对比来工作的.
在古代,我们的祖先就懂得了翘翘板的工作 原理,根据这一原理设计出了一些简单机械 并把它们用到了生活实践当中.
由此可见,“不相等”处处可见。从今天起, 我们开始学习一类新的数学知识:不等式.
解:(1)根据不等式的基本性质1,两边都加上5,
x 1 5
x4
(2)根据不等式的基本性质3,两边都除以 -2, 得
3 x 2
1.将下列不等式化成“x>a”或“x<a”的形式: 5 1 (1) 4 x 1 2 (2) x (3) x 3 6 2 解: 解: 4 x 1 1 2 1 解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本性质与基本不等式
郭浴琼
目标: 掌握不等式的基本性质及常用的不等式性质,如自反性、传递性、可加性、
可乘性等,并能证明这些基本性质;掌握两个基本不等式,并能用于解决一
些简单问题.
重难点:
不等式的可加性、可乘性;基本不等式的应用及其证明. 一、 知识要点
1、 比较两数大小的基本方法
(1)作差法 0a b a b ->⇔>;0a b a b -<⇔<;0a b a b -=⇔=
(2)作商法 若0,0a b >>,则1a a b b >⇔>;1a a b b <⇔<;1a a b b
=⇔= 2、 不等式的基本性质
性质1:a b b a >⇔<(对称性)
性质2:若,a b b c >>,则a c >(传递性)
性质3:若a b >,则a c b c +>+
性质4:若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <
结论1:若,a b c d >>,则a c b d +>+
结论2:若0a b >>,则n n a b >()
*n N ∈ 结论3:若0a b >>,则()
*,1n n a b n N n >∈> 3、 基本不等式(均值不等式)
对任意,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号
均值不等式:若a 、b 为正数,则2
a b ab +≥,当且仅当a b =时取等号 变式:2
22
()22a b a b ab ++≥≥ 二、 例题精讲
例1、有三个条件:(1)22ac bc >;(2)c a >c
b ;(3)22a b >,其中能成为a b >的充分条件的个数有几个,是哪几个?
例2、已知三个不等式:①0ab > ②bc ad > ③a c >b
d ,以其中两个作为条件,余下一个作为结论,则可以组成多少个正确的命题?并写出这些命题.
例3、实数a 、b 满足条件ab <0,那么( ) A. a b -<b a + B. a b +>b a - C. a b +<b a - D. a b -<b a -
例4、某收购站分两个等级收购棉花,一级棉花a 元/kg ,二级棉花b 元/kg ()b a <,现有一级棉花x kg ,二级棉花y kg ()x y >,若以两种价格平均数收购,对棉农公平吗?其理由可用不等式表示为 .
例5、若12a b -<<<,则3a b -的取值范围是 .
例6、已知实数,a b 判断下列不等式中哪些一定是正确的?
(1)ab b a ≥+2
; (2)ab b a 222-≥+; (3)ab b a ≥+22; (4)2≥+b a a b (5)21≥+
a a ; (6) 2≥+a
b b a (7)222)(2b a b a +≥+)(
例7、(1)若a R b ∈,,且221a b +=,则a b +的最大值是 ,最小值是
(2)设0,0,x y >>且21x y +=,则11x y
+的最小值为 (3)若01,x <<则491y x x
=+-的最小值为 (4)若+
∈R x ,则x x 212+有最 值,且值为 (5)若13,3
a a a >+-有最 值,是 ,此时a = (6)若1x <,则2231
x x x -+-有最 值,值为
例8、(1)若a ,b R +∈,且2222a b +=,则2
1a b +的最大值是
(2)设1a >,1b >,且()1ab a b -+=,那么( )
A 、a b +有最小值)12(2+
B 、a b +有最大值2)12(+
C 、ab 有最大值12+
D 、ab 有最小值)12(2+
例9、一批救灾物资随26辆汽车从某市以/v km h 的速度直达灾区,已知两地公路长400km ,为了安全起见,两车的间距不得小于220v km ⎛⎫ ⎪⎝⎭
,求这批物资全部运到灾区至少要多少小时?(不计车身长度)
三、 课堂练习
1、,x y R ∈,且112,144x y -<-<,则x y
的取值范围是 . 2、若()2f x a x c =
-,且()()411,125f f -≤≤--≤≤,则()3f 的取值范围是 . 3、若22221,1,a b c d a b c d R +=+=∈、、、,则abcd 的最大值是 .
4、函数()()log 310,1a y x a a =+->≠的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n
+的最小值为 . 5、设x R ∈,[]x 表示不大于x 的最大整数,如[]3π=,[]1.22-=-,102⎡⎤=⎢⎥⎣⎦,则使213x ⎡⎤-=⎣⎦
成立的x 的取值范围是 . 四、课后作业
一、填空题
1、已知,22π
π
απβπ<<<<,则αβ-的取值范围是 ,2βα-的取值范
围是 .
2、已知三个不等式:①0ab >;②c d a b
-<-;③bc ad >,以其中两个作条件,余下一个作结论,则可以组成 个正确命题.
3、已知,x y R +∈,2312x y +=,则lg lg x y +的最大值为 .
4、已知0a b >>,2c a b
=+且1ab =,若log ,log ,log c c c l a m d n ab ===,则将l m n 、、按从小到大的顺序用不等号连接可得 .
5、已知222sin sin sin 1αβγ++=(,,αβγ均为锐角),那么cos cos cos αβγ的最大值等于 .
6、三个同学对问题“关于x 的不等式232255x x x ax ++-≥在[]1,12上恒成立,求实数a
的取值范围”提出各自的解题思路.
甲说:“只需不等式左边的最小值不小于右边的最大值”;
乙说:“把不等式变形为左边含变量x ,右边仅含常数,求函数的最值”;
丙说:“把不等式两边看成关于x 的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 .
二、选择题
7、已知不等式()19a x y x y ⎛⎫++≥
⎪⎝⎭对任意正实数,x y 恒成立,则正实数a 的最小值为( )
A 、2
B 、4
C 、6
D 、8 8、若正数,a b 满足3ab a b =++,则a b +的取值范围是( )
A 、[)9,+∞
B 、[)6,+∞
C 、(]0,9
D 、()0,6
9、已知,a b 为非零实数,且a b <,则下列命题成立的是( )
A 、22a b <
B 、22a b ab <
C 、2211ab a b <
D 、b a a b
< 三、解答题
10、当1x >-时,求2311
x x y x -+=+的最小值; 11、(1)设集合()(){}()11,|0,,|M a b ab a b N a b a b ⎧⎫=
->=<⎨⎬⎩⎭,试讨论M 与N 的关系;
(2)求实数a 的取值范围,使不等式()22lg lg lg lg xy x y a ≤
+⋅对一切满足1,1x y >>的
实数恒成立.
12、某商场预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台(x 是正整数),且每批均需付运费400元.储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运费和保管费用43600元.现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论,并说明理由.。