直流输电系统的分类
直流输电技术概述

直流输电技术概述直流输电技术近年来发展迅速,应用范围广阔,技术影响深远,发展潜力较大。
为了更好地将直流输电输电技术应用到工程中去,本文首先对直流输电技术的发展、分类与应用进行了介绍,再定性的对直流输电方式与交流输电方式的优缺点及适用范围进行了比较,最后对于不同直流输电技术的经济性、可靠性、适应性及可行性等方面对其进行了定性分析。
标签:直流输电; 柔性直流; 经济性; 可靠性;0 引言电力技术是从直流电开始的,早期的直流输电是直接从直流电源送往直流负荷,无需进行换流。
随着三相交流发电机、感应电动机和变压器的迅速发展,在发电和用电领域,交流电取代了直流电系统。
但是直流在远距离电缆输电,不同频率电网间联网等领域仍有重要作用。
近年来,直流输电技术发展迅速,在国内外众多大型工程得到应用,有力推动了电网发展,技术进步,保证了地区清洁能源的开发与经济发展的能源供应[1,2]。
为了更好地应用直流输电技术,本文对直流输电的发展、分类及应用情况进行了简介,对直流输电与交流输电进行对比,并对常规直流与柔性直流技术进行了分析。
1 直流输电技术发展直流输电技术的关键在于换流问题,根据换流技术的发展,直流输电可以分为三个时期。
即汞弧阀换流时期,晶闸管阀换流时期以及新型半导体换流设备时期。
1)汞弧阀换流时期1901年发明汞弧整流管,但只能用于整流,不能逆变,1928年研制成功了具有栅极控制能力的汞弧阀,既可以整流又可以实现逆变,使直流输电成为现实。
但存在制造复杂,价格昂贵,故障率高,可靠性低,维护不便等缺点。
2)晶闸管阀换流时期20世纪70年代后,大功率晶闸管问世,促进了直流输电技术的发展。
相较于汞弧阀换流器,其制造、运行维护和检修都比较简单而方便。
之后的直流工程都采用晶闸管换流阀。
3)新型半导体换流设备时期20世纪90年代后IGBT得到广泛运用。
1997年3月,世界上第一個采用IGBT 组成的电压源换流器的直流输电工业性试验工程在瑞典中部投入运行。
《高压直流输电》课件

研究高压直流输电线路和换流站对周边电磁环境的影响,制定相应的防护措施和标准,降低对环境和人体的影响。
研究高压直流输电在电网中的稳定运行机制,通过优化无功补偿、有功滤波等技术手段,提高系统的稳定性和可靠性。
高压直流输电系统的核心,负责将交流电转换为直流电或反之。
换流站
直流输电线路
接地极
用于传输直流电,通常采用架空线或海底电缆。
为系统提供参考地电位,并泄放多余的电流。
03
02
01
01
02
03
04
实现交流电与直流电相互转换的核心元件。
换流阀
用于调整电压等级,使换流站能与不同电压等级的电网连接。
变压器
用于滤除换流过程中产生的谐波,减少对周围环境的干扰。
《高压直流输电》PPT课件
目录
高压直流输电概述高压直流输电的基本原理高压直流输电系统的构成与设备高压直流输电的优缺点与关键技术问题高压直流输电的工程实例与展望
01
高压直流输电概述
Chapter
总结词
高压直流输电是一种利用高压直流电进行远距离传输的输电方式,具有输送容量大、损耗小、稳定性高等特点。
详细描述
总结词
换流技术是高压直流输电的核心技术之一,涉及到整流和逆变两个过程。
详细描述
在整流过程中,交流电源转换为直流电源,通过控制晶闸管或绝缘栅双极晶体管的开关状态实现。逆变过程则是将直流电源转换为交流电源,同样通过控制开关状态实现。换流技术的关键在于保证电流的稳定和减小谐波干扰。
VS
高压直流输电的损耗主要包括线路损耗和换流损耗,提高效率是重要目标。
高压直流输电讲解

把直流功率输送给逆变站内的逆变器,逆变器姜直流功率变换成交流功率,
再经换流变压器2送入受端的交流电力系统Ⅱ。
直流输电系统接线示意图
P6 P5 P4 P3 P2 P1
ecb
eab
eac
ebc
eba
eca
ecb
eab
二、两端直流输电系统
指具有一个整流站和一个逆变站的输电系统
构成
单极 双极 无直流输电线路(也叫两侧换流器 背靠背地装设在一起
中国是一个发展中国家,中国电网无论从总体规模和技术水平方面 与发达国家相比,都有较大的差距。因此,为了中国大规模西电东 送和全国联网工程的实施,必须研究电力系统的安全、稳定和经济 性,并进而研究相应对策,防止在建成规模巨大的电力供应网络后 发生大面积停电事故。
高压直流输电具有明显的优势。直流输电是电力系统中近年来迅 速发展的一项新技术。将其与交流输电相互配合,构成了现代电 力传输系统,并随着电力系统技术经济需求的不断增长和提高, 直流输电受到广泛的注意并得到不断的发展。
据了解,目前世界上只有日本和俄罗斯两国拥有1000千伏特高 压交流电网,且都是短距离输电。正负800千伏直流输电技术国 际上尚无运行经验,关键技术和设备有待进一步研究开发。南方 电网采用特高压输电技术,可以有效缓解长距离“西电东送”输 电走廊资源紧张局面,提高电网安全稳定水平,输电能力也将明 显提高。
5、向孤立负荷点送电或从孤立电站向电网送电的直流工程
6、与交流输电并联的直流输电工电是将发电厂发出的交流电经过升压变压器后,又换流设备(整流器) 整成直流,通过直流线路送到受端,再经换流设备(逆变器)换成交流供给 交流系统。
按它与交流系统连接的节点数可分为
两端 多端
直流供电系统的组成-概述说明以及解释

直流供电系统的组成-概述说明以及解释1.引言1.1 概述直流供电系统作为一种重要的电力系统,广泛应用于各种领域,包括工业、航空航天、通信等。
直流供电系统通过将交流电转换为直流电来供给设备和系统,以确保其稳定可靠地运行。
本文将深入探讨直流供电系统的组成和工作原理,并分析其在现代社会中的重要性和发展趋势。
通过对直流供电系统进行全面的了解,可以更好地应用和优化其在各种应用场景中的性能,促进电力系统的发展和进步。
1.2 文章结构文章结构部分主要包括对整篇文章进行简要的介绍和概述,以便读者对整体内容有一个清晰的理解。
在本篇文章中,我们将首先在引言部分对直流供电系统进行概述,介绍其重要性和应用领域,接着在正文部分详细探讨直流供电系统的概念、主要组成部分和工作原理。
最后在结论部分总结直流供电系统的重要性,并展望未来的发展趋势,最终得出结论。
通过本文的结构安排,读者能够系统地了解直流供电系统的全部内容,从而更全面地认识和理解这一重要的电力系统。
1.3 目的直流供电系统是现代电力系统中的重要组成部分,其作用不仅在于为各种电气设备提供稳定可靠的电源供应,还在于实现能源的高效利用和节能环保。
本文旨在系统地介绍直流供电系统的组成和工作原理,帮助读者深入了解该系统的重要性和作用,为相关领域的专业人士提供参考和指导。
通过本文的阐述,读者将能够全面了解直流供电系统的运行机理、优势和特点,从而更好地应用和推广直流供电技术,促进能源领域的发展和进步。
在未来,随着技术的不断创新和发展,直流供电系统将在电力领域扮演越来越重要的角色,本文的目的也在于引领读者了解直流供电系统的发展趋势和未来潜力,为相关研究和应用工作提供指导和启示。
2.正文2.1 直流供电系统的概念直流供电系统是一种通过直流电源为设备或系统提供电能的电力系统。
与交流供电系统不同,直流供电系统的电流方向始终保持不变,从而为某些特定应用提供了更稳定和可靠的电力传输方式。
直流供电系统通常由直流电源、电源开关、电缆线路、保护装置等组成。
高压直流输电

总计
0.82
0.69 0.057 0.018
直流输电与交流输电的可靠性相当
*
.
28
chap.1 绪论1.2.1 高压直流输电的优点
➢ 三、从经济性看,HVDC具有如下优点:
√ 1. 线路造价低 输送同样功率条件下,直流架空线路节省1/3 的导线,1/3~1/2的钢材,造价为交流线路的 60%~70%。
· 等价距离: HVDC与HVAC总投资费用相等时,输电线路 的长度。
√ 500kV架空线路:400-600km √ 800kV架空线路:700-900km √ 电缆线路: 20-40km
*
.
34
1.3 chap.1 绪论HVDC的历史与国外发展现状
➢人类输送电力已有一百多年的历史。输电方式是 从直流输电开始的。
*
.
16
chap.1绪论1.1.2.4 背靠背直流输电系统
Back-to-back HVDCtransmission, b-tbHVDCtransmission
·背靠背直流输电系统:直流线路长度为零的
HVDC系统。又称为“背靠背换流站” ,“非同步 联络站”,或“变频站” 。
· 接线方式:单极、双极或同极方式
高压直流输电
HVDCtransmission
*
.
1
chap.1 绪论
HVDC
High Voltage Direct Current transmission
*
.
2
chap.1 绪论
主要参考书
·韩民晓,等编著.高压直流输电原理与运 行 .北京:机械工业出版社,2009.
·浙江大学发电教研组直流输电科研组.直 流输电.北京:水利电力出版社,1985.
高压直流输电系统的结构和元件

高压直流输电系统的结构和元件1.3.1 高压直流联络线的分类高压直流联络线大致可分以下几类:(1)单极联络线;(2)双极联络线;(3)同极联络线。
单极联络线的基本结构如图1.1所示,通常采用一根负极性的导线,而由大地或水提供回路。
出于对造价的考虑,常采用这类系统,对电缆传输来说尤其如此。
这类结构也是建立双极系统的第一步。
当大地电阻率过高,或不允许对地下(水下)金属结构产生干扰时,可用金属回路代替大地作回路,形成金属性回路的导体处于低电压。
图1.1 单极HVDC联络线双极联络线结构如图1.2所示,有两根导线,一正一负,每端有两个为额定电压的换流器串联再直流侧,两个换流器间的连接点接地。
正常时,两级电流相等,无接地电流,两级可独立运行。
若因一条线路故障而导致一级隔离,另一级可通过大地运行,能承担一半的额定负荷,或利用换流器及线路的过载能力,承担更多的负荷。
图1.2 双极HVDC联络线从雷电性能方面看.一条双极HVDC线路能有效地等同于两回交流传输线路。
正常情况下,它对邻近设备的谐波干扰远小于单极联络线。
通过控制(不需要机械开关)改变两极的极性来实现潮流反向。
当接地电流不可接受时,或接地电阻高而接地电极不可行时,用第三根导线作为金属性中性点。
在一极退出运行或双极运行失去平衡时,此导线充当回路。
第三条导线的绝缘要求低,还可作为架空线的屏蔽线。
如果它完全绝缘,可作为一条备用线路。
同极联络线结构如图1.3所示,导线数不少于两根,所有导线同极性。
通常最好为负极性,因为它由电晕引起的无线电干扰较小。
这样的系统采用大地作为回路,当一条线路发生故障时,换流器可为余下的线路供电,这些导线有一定的过载能力,能承受比正常情况更大的功率。
相反,对双极系统来说,重新将整个换流器连接到线路的一极上要复杂得多,通常本文由直流高压发生器–/110/index.html整理提供,转载需注明是不可行的。
在考虑连续的地电流是可接受的情况下,同极联络线具有突出的优点。
直流输电系统概述培训课件

双极金属中线方式
Id
Id
特点:三根导线构成直流侧回路,其中一根为低绝缘水平的 中性线,相当于两个单独运行的单极金属回线系统,共用一 条低绝缘水平的金属返回线。
优点:运行中无地电流,可避免电腐蚀和变压器磁饱和问题 ;对接地极要求低,降低成本;运行可靠性高;
缺点:成本高,损耗大。
我国直流输电的发展
一、研究阶段:
1963年 中国电科院,闸流管6脉动物理模拟 ,1kV、5A ; 1974年 西高所,BTB 6脉动晶闸管换流站,8.5kV、 200A、 1.7MW; 1977年 杨树浦电厂 - 九龙变, 23kV旧 AC电缆改6脉动 直流输电试验工程,31kV、 150A、4.65MW、8.6km;
二、工程阶段:
1987年舟山直流工程。
17
锦屏-江苏 向家坝-上海
截止2012年已投运的高压直流输电工程
高岭 华北
东北
西藏
西北 德阳-宝鸡
灵宝 灵宝2
华中
云广1
南方
华东
三常
葛南
溗泗
三沪
舟山
贵广1
贵广2
天广
三广
台湾
规划中的直流工程
2020年之前,我国还将兴建一系列高压直流输电工程(约 30个,包括500kV 、 660kV 、 800kV 、 1000kV直流 输电工程)。
换流站鸟瞰图
交流滤波 场
交流场
常规换流站设备组成
一
二
辅
次
次
助
设
设
设
备
备
备
三个部分
交流进线(含进线设备)
换流变(含进线设备)
直流输电技术及其应用论文

直流输电技术及其应用The Feature Development and Application of Direct CurrentTransmission Techniques山东农业大学电气工程及其自动化10级摘要本文介绍了直流输电技术在电力系统联网应用中的必要性,直流输电系统的结构,直流控制保护技术以及直流输电的特点和应用发展方向;同时认为直流输电技术是新能源发电并网的最佳解决方式。
电力工程是21世纪对人类社会生活影响最大的工程之一,电力技术的发展对城乡人民的生产和生活具有重大的关系,电力工业是关系国计民生的基础产业。
电力的广泛应用和电力需求的不断增加,推动着电力技术向高电压、大机组、大电网发展,向电力规模经济发展。
电力工业按生产和消费过程可分为发电、输电、配电和用电四个环节。
输电通常指的是将发电厂发出的电力输送到消费电能的负荷中心,或者将一个电网的电力输送到另一个电网,实现电网互联。
随着电网技术的不断进步,输电容量和输电距离的不断增加,电网电压等级不断提高。
电网电压从最初的交流13.8KV,逐步发展到高压35KV、66KV、110KV、220KV、500KV、1000KV。
电网发展的经验表明,相邻两个电压等级的级差在一倍以上才是经济合理的。
这样输电容量可以提高四倍以上,不仅可与现有电网电压配合,而且为今后新的更高级别电压的发展留有合理的配合空间。
我国从20世纪80年代末开始对特高压电网的规划和设备的制造进行研究;进入21世纪后,加快了特高压输电设备、电网研究和工程建设。
2005年9月26日,第一条750KV输电实验线路(官亭——兰州东)示范工程投运;2006年12月,云南——广东±800KV特高压直流输电工程开工建设,并于2010年6月18日,通过验收正式投运,该工程输电距离1373KM,额定电压±800KV,额定容量500万KW,和2010年7月8日投运的向家坝——上海±800KV特高压直流示范工程一样,是当今世界电压等级最高的直流输电项目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流输电系统的分类
直流输电系统是一种通过直流电流传输电能的电力输电系统。
与交流输电系统相比,直流输电系统具有更高的输电效率、更远的传输距离和更好的稳定性。
根据不同的分类标准,直流输电系统可以分为多个不同的类型。
一、按输电电压级别分类:
1. 高压直流输电(HVDC):高压直流输电是指输电电压在100 kV及以上的直流输电系统。
其具有输电损耗低、传输距离远、占地面积小等优点,广泛应用于电力长距离输送、交叉海峡输电和大容量风电、太阳能输电等领域。
2. 中压直流输电:中压直流输电是指输电电压在10 kV至100 kV之间的直流输电系统。
它适用于地区性输电、山区输电和
远程农村电化等场景,可提供电力供应的可靠性和稳定性。
3. 低压直流输电:低压直流输电是指输电电压低于10 kV的直流输电系统。
这种输电系统主要用于城市地下电缆输电、短距离输电和建筑物内部电力输送等场景,如公共交通系统、电动车充电桩等。
二、按架设方式分类:
1. 架空线路直流输电:该方式是通过架空的电力线路进行输电,其中导线悬挂于输电塔之间。
这种方式具有传输距离远、占地面积小、抗风能力强等优点,但受天气、环境和动力线的限制较大。
2. 地下电缆直流输电:该方式是通过埋设在地下的电缆进行输电,可有效解决架空线路受环境影响和视觉污染等问题。
然而,该方式的造价较高、施工复杂,且线路容量限制较大。
三、按输电距离分类:
1. 远距离直流输电:适用于大型电站和负荷中心之间的长距离输电,如跨国、跨海、跨大陆输电等。
远距离直流输电系统一般采用高压直流输电,能够有效减小输电损耗和电力传输容量限制。
2. 局部直流输电:用于区域性输电或临近负荷中心的输电。
局部直流输电系统通常由中压或低压直流输电组成,能够更好地满足周边地区的电力需求。
四、按使用场景分类:
1. 电力长距离输送:通过高压直流输电技术,实现电力长距离输送,特别是远距离或负荷中心较远的地区,以满足不同地区的电力需求,并提高电力的可靠性和稳定性。
2. 可再生能源输电:直流输电系统能够有效地接纳可再生能源,如大型风电场、太阳能光伏电站等的电力输出,实现可再生能源与传统能源的互补与平衡。
3. 短距离输电:直流输电系统也可以用于短距离输电场景,例如城市内部的电力输送、地铁和有轨电车的供电等。
总结:
直流输电系统的分类可以按照输电电压级别、架设方式、输电距离和使用场景等多个方面进行划分。
根据具体的场景需求,选择适合的直流输电系统可以提高输电效率、降低能源损耗、提供稳定可靠的电力供应,促进能源的清洁可持续发展。