考点05 数列的新定义问题(学生版)
2021届高考数学总复习:数列的新定义问题

2021届高考数学总复习:数列的新定义问题一、知识点新定义型数学试题,背景新颖、构思巧妙,主要通过定义一个新概念或约定一种新运算,或给定一个新模型来创设新的问题情境,要求我们在充分阅读题意的基础上,依据题中提供的信息,联系所学的知识和方法,实现信息的迁移,从而顺利地解决问题,这类题型能有效地区分学生的思维能力和学习能力。
【典例】定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数。
若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【解析】解法一:列表法根据题意得,必有a1=0,a8=1,则将0,1进行具体的排法一一列表如下:由上述表格可知,不同的“规范01数列”共有14个。
解法二:列举法根据题意可得,必有a1=0,a8=1,而其余的各项:a2,a3,…,a7中有三个0和三个1,并且满足对任意k≤8,a1,a2,…,a8中“0”的个数不少于“1”的个数。
可以一一列举出不同“规范01数列”,除第一项和第八项外,中间六项的排列如下:000111,001011,001101,001110,010011,010101,010110,011001,0110 10,100011,100101,100110,101001,101010,共14个。
【答案】 C可以从以下三个方面解决此类问题1.提取新定义的信息,明确新定义的名称和符号。
2.深刻理解新定义的概念、法则、性质,纵横联系探求解题方法,比较相近知识点,明确不同点。
3.对新定义中提取的知识进行等价转换,其中提取、化归与转化是解题的关键,也是解题的难点。
新定义问题的解题思路为:(1)若新定义是运算法则,直接按照运算法则计算即可;(2)若新定义是性质,要判断性质的适用性,能否利用定义外延;也可用特殊值排除等方法。
【变式训练】由n(n≥2)个不同的数构成的数列a1,a2,…,a n中,若1≤i<j≤n时,a j<a i(即后面的项a j小于前面的项a i),则称a i与a j构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数。
数列拓展——新定义、子数列、插入新数列 高考数学

由 = 可得 = ,故当 = 时,很明显 = 不成立,故
{ }不是“回旋数列,②错误”;
1
2
3
4
5
6
7
8
9
10
11
12
试卷讲评课件
③{ }是等差数列,故 = + −
因为数列{ }是“回旋数列”,所以 +
−
, = +
,
−
− =+
,即
−
−
=
+
+ ,
−
−
其中
为非负整数,所以要保证 恒为整数,
故为所有非负整数的公约数,且<,所以 = −,故③正确;
④由①可得当 = 时,{ }为“回旋数列”,
取 = �� × , = ×
对D:∵ + = − ,则+ − = −
1
2
3
4
5
6
7
8
9
,且 −
10
11
12
��
= ≠
试卷讲评课件
故数列{ − }是以首项为 ,公比为3的等比数列,
+
−
则 − = ×
= ,即 =
,
+
设 = + ⋅ − [ + + ] ⋅
× × ×⋯× ×
]
×
= × × × ⋯ × × − =
数列新定义选择题(1)

考点:数列新定义 难度:1 一、选择题1.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A.18个B.16个C.14个D.12个 答案: C解答:由题意必有10a =,81a =,则具体的排法列表如下:2.如果正整数a 的各位数字之和等于8,那么称a 为 “幸运数”(如:8,26,2015等均为“幸运数”),将所有“幸运数”从小到大排成一列1a ,2a ,3a ,……,若2015n a =,则=n ( ) A .80 B .81 C .82 D .83 答案: D . 解答:分析题意可知,1位的幸运数只有1个8;2位的幸运数:17,26,……71,80,共8个; 3位的幸运数:第1位为1:107,116,……170,共8个,第1位为2:206,215,……260,共7个,以此类推,从而可知3位的幸运数共有876136+++⋅⋅⋅+=个;4位的幸运数:第1位是1:1007,1016,……1070,有8个,1106,1115,1160,有7个,以此类推,从而可知第1位是1的4为幸运数共有876136+++⋅⋅⋅+=个,第2位是2的幸运数:2006,2015,∴183636283n =++++=,故选D .3.古希腊人常用小石子在沙滩上摆成各种形状来研究数, 例如:他们研究过图①中的1,3,6,10,...,由于这些数能表示成三角形,将其称为三角形数;类似地,将图②中的1,4,9,16,...,这样的数称为正方形数.下列数中既是三角形数又是正方形数的是A .189B .1024C .1225D .1378 答案:C 解答:正方形数的通项公式是2n an=,所以两个通项都满足的是1225,三角形数是,正方形数是35=n .4.删除正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个新数列的第2015项是( ) A .2058 B .2059 C .2060 D .2061 答案: C解答:由题意可得,这些数可以写为:21,2,3,22,5,6,7,8,23… 第k 个平方数与第k +1个平方数之间有2k 个正整数, 而数列21,2,3,22,5,6,7,8,23…245共有2025项,去掉45个平方数后,还剩余1980个数 所以去掉平方数后第2015项应在2025后的第35个数,即是原来数列的第2060项,即为2060.5.1202年,意大利数学家斐波那契在他的书中给出了一个关于兔子繁殖的递推关系:()123n n n F F F n --=+≥,其中n F 表示第n 个月的兔子的总对数,121F F ==,则8F 的值为( ) A.13. . .91. . .10631B.21C.34D.55 答案:B解答:∵,∴3122F F F=+=,∴4323F FF=+=,5345F FF=+=,6458F FF=+=,75613FF F=+=,∴86721F FF=+=,故选B6.项数为n的数列123,,,,na a a a的前k项和为(1,2,3,,)kS k n==,定义nS++为该项数列的“凯森和”,如果项系数为99项的数列12399,,,,a a a a的“凯森和”为1000,那么项数为100的数列100,12399,,,,a a a a的“凯森和”为()A.991B.1001C.1090D.1100答案:C解答:129912991001001000,109099100S S S S S S+++⨯++++=∴=,故选C.7.将石子摆成如图的梯形形状.称数列5,9,14,20,为“梯形数”.根据图形的构成,此数列的第2012项与5的差,即20125a-=()A. 2018×2012B. 2018×2011C. 1009×2012D. 1009×2011答案:D解答:由题意可得12323,234,2+3+4+5a a a=+=++=,423456a=++++121==FF数列{}n a 的第n 项n a 是通项为1n b n =+的数列的前n +1项的和。
新高考数学数列经典题型专题提升-第23讲 数列的新定义问题(解析版)

第23讲 数列的新定义问题一、单选题1.(2021·全国·高二课时练习)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为( )A .99B .131C .139D .141【答案】D 【分析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:由图可得,则.故选:D2.(2021·北京·东直门中学高二月考)在一个数列中,若每一项与它的后一项的乘积都同为一个常数(有限数列最后一项除外),则称该数列为等积数列.是等积数列,且,公积为,则的值是( )A .B .C .D .【答案】D 【分析】根据等积数列定义可推导得到数列的奇数项为,偶数项为,由此可求得结果.【详解】由等积数列定义可知:,x 341295y x y -=⎧⎨-=⎩14146x y =⎧⎨=⎩{}n a 62a =615920052009a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅5022502350325033{}n a 32122334455616n n a a a a a a a a a a a a -=====⋅⋅⋅==又,,由此推导可得:数列的奇数项为,偶数项为;设等差数列的首项为,,由得:,共有项,.故选:D.3.(2021·江苏苏州·高三月考)若数列中不超过的项数恰为,则称数列是数列的生成数列,称相应的函数是数列生成的控制函数.已知,且,数列的前项和,若,则的值为( )A .9B .11C .12D .14【答案】B 【分析】根据生成数列的定义,先求出,然后分为偶数和奇数讨论即可求解.【详解】解:由题意可知,当为偶数时,可得,则;当为奇数时,可得,则,所以,则当为偶数时,,则,因为,所以无解;当为奇数时,,所以,因为,所以,故选:B.4.(2021·宁夏·六盘山高级中学高二月考(理))对于正项数列,定义为数列的“匀称值”.已知数列的“匀称值”为,则该数列中的等于()62a =572a a ∴=={}n a 32{}n b 11b =4d =()1412009n +-=503n =1592009,,,,a a a a ∴⋅⋅⋅503503159200520093a a a a a ∴⋅⋅⋅⋅⋅⋅⋅⋅={}n a ()f m m b ()*m N ∈{}m b {}n a ()f m {}n a {}m b 2n a n =()f m m ={}m b m m S 30m S =m ()()121222m m m k b m m k -⎧=-⎪⎪=⎨⎪=⎪⎩()*k N ∈m m 2n m ≤2m m b =m 21n m ≤-12m m b -=()()121222m m m k b m m k -⎧=-⎪⎪=⎨⎪=⎪⎩()*k N ∈m ()21211122224m m m mS b b b m =++⋅⋅⋅+=++⋅⋅⋅+-⨯=2304m =*m N ∈m ()221211111424m m m m m m m S b b b S b ++++-=++⋅⋅⋅+=-==-=21304m -=*m N ∈11m ={}n a 12323nn a a a na G n++++={}n a {}n a 2n G n =+9aA .B .C .D .【答案】D 【分析】由已知得,由此推导出,从而能求出.【详解】解:,数列的“匀称值”为,,①时,,②①②,得,,,当时,满足上式,,.故选:D5.(2021·湖北黄石·高三开学考试)普林斯顿大学的康威教授发现了一类有趣的数列并命名为“外观数列”,该数列的后一项由前一项的外观产生.以1为首项的“外观数列”记作,其中为1,11,21,1211,111221,…,即第一项为1,外观上看是1个1,因此第二项为11;第二项外观上看是2个1,因此第三项为21;第三项外观上看是1个2,1个1,因此第四项为1211,…,按照相同的规则可得其它项,例如为3,13,1113,3113,132113,…若的第n 项记作,的第n 项记作,其中i ,,若,则的前n 项和为( )A .B .C .D .【答案】C 【分析】列出、的前四项,观察规律,即得.【详解】83125211019912323(2)n a a a na n n +++⋯+=+21n n a n+=9a 12323nn a a a na G n+++⋯+={}n a 2n G n =+12323(2)n a a a na n n ∴+++⋯+=+2n ∴…123123(1)(1)(1)n a a a n a n n -+++⋯+-=-+-21n na n =+21n n a n+∴=2n …1n =113a G ==21n n a n +∴=∴9199a =1A 1A 1A 3A i A n a j A n b []2,9j ∈n n n c a b =-{}n c 2||n i j -()n i j +||n i j -1||2i j -i A j A由题得,,由递推可知,随着的增大,和每一项除了最后一位不同外,其余各位数都相同,所以,∴的前n 项和为.故选:C.6.(2021·贵州威宁·高一期末)对于数列,定义为数列的“美值”,现在已知某数列的“美值”,记数列的前项和为,若对任意的恒成立,则实数的取值范围是( )A .B .C .D .【答案】C 【分析】由,可得进而求得,所以可得是等差数列,由可得,,即可求解【详解】由可得,当时,当时,又因为,两式相减可得:,所以,显然满足时,,所以,所以,可得数列是等差数列,由对任意的恒成立,1234,1,111,311,,,n a i a i a i a i a i ===== 1234,1,111,311,,n b j b j b j b j b j ===== n n a n b n n n c a b i j =-=-{}n c n i j -{}n a 11222n nn a a a Y n-+++= {}n a {}n a 12n n Y +={}n a tn -n n S 10n S S ≤*n N ∈t 1112,55⎡⎤⎢⎥⎣⎦1112,55⎛⎫ ⎪⎝⎭2411,115⎡⎤⎢⎥⎣⎦1811,115⎛⎫ ⎪⎝⎭1112222n n n n a a a Y n-+++⋅⋅⋅+==1112222n n n n a a a -+=⋅+⨯++⋅⋅22n a n =+()22n a tn t n -=-+{}n a tn -10n S S ≤10100a t -≥11110a t -≤1112222n n n n a a a Y n -+++⋅⋅⋅+==1112222n n n n a a a -+=⋅+⨯++⋅⋅1n =14a =2n ≥()21212221n n n a a a n --+⋅=⋅-+⋅+1112222n n n a a n a -+=++⋅⋅⋅+()()11122221n n n n n n n n a -+=--=+22n a n =+1n =14a =22n a n =+*n N ∈()22n a tn t n -=-+{}n a tn -10n S S ≤*n N ∈可得:,,即可求解,即且,解得:,所以实数的取值范围是,故选:C7.(2021·全国·高三专题练习(文))对任一实数列,定义,若,,则()A .1000B .2000C .2003D .4006【答案】D 【分析】根据定义,可求出的通项,从而可得,利用累加法可得,再由求出及,即可求出.【详解】由题意知,,所以是公差为的等差数列, 所以,所以,当时,,,,……,将以上各式两边对应相加,得,所以,由,得,解得,,所以.故选:D 【点睛】关键点点睛:本题的关键在于读懂题目,准确把握“”的定义.10100a t -≥11110a t -≤()21020t -⨯+≥()21120t -⨯+≤2411115t ≤≤t 2411,115⎡⎤⎢⎥⎣⎦{}n a 1Δn n n a a a +=-()ΔΔ1n a =1820170a a ==2021a =1Δn n n a a a +=-Δn a 1211n n a a a a n +-=-+-n a 1820170a a ==21a a -1a 2021a ()1ΔΔ1n n n a a a +=∆-∆=Δn a 11ΔΔ1n a a n =+-1211n n a a a a n +-=-+-2n ≥2121a a a a -=-32211a a a a -=-+43212a a a a -=-+1212n n a a a a n --=-+-121(1)(1)(1)(2)2n a a n a n a n n -=-----+21(1)(2)(1)(2)2n a n a a n n n =--+---1820170a a ==212117161360201620152016201502a a a a -+=⎧⎪⎨⨯-+=⎪⎩2=16120a 117136a =20212020201920201612020191713640062a ⨯=⨯-⨯+=Δn a8.(2021·江苏·高二单元测试)对于数列若存在常数,对任意的,恒有,则称数列为有界数列.记是数列的前项和,下列说法错误的是()A .首项为1,公比为的等比数列是有界数列B .若数列是有界数列,则数列是有界数列C .若数列是有界数列,则数列是有界数列D .若数列、都是有界数列,则数列也是有界数列【答案】B 【分析】根据有界数列的定义,利用不等式放缩,可判断A 、C 正确;设,可判断B 错误;根据数列和数列的有界性,用和来控制,即可选项D.【详解】解:对A:设满足题设的等比数列为,则,当时,,所以,即,所以首项为1,公比为的等比数列是有界数列,故A 正确;对B: 事实上,设,则,易知数列是有界数列,而此时,所以,由的任意性,知数列不是有界数列,故B 错误;对C :因为数列是有界数列,所以存正数,对任意有,即,于是,所以数列是有界数列,故C 正确;对D :若数列、都是有界数列,则存在正数,,使得对任意,有{}n x 0M >*n ∈N 1121n n n n x x x x x x M +--+-++-≤ {}n x n S {}n x n (||1)q q <{}n x {}n S {}n S {}n x {}n a {}n b {}n n a b *1,n x n =∈N {}n a {}n b 1||n n a a +-1||n n b b +-11n n n n a b a b ++-{}n a 1(||1)n n a q q -=<2n ≥1221|||||||1|n n n n n a a qq q q -----=-=-1121||||||n n n n a a a a a a +--+-++- 1|1|(1||||)n q q q -=-+++ 1|||1||1|1||1||n q q q q q --=-<--1121|1|||||||1||n n n n q a a a a a a q +---+-++-<- (||1)q q <*1,n x n =∈N 10n n x x +-={}n x n S n =1121n n n n S S S S S S n +--+-++-= n {}n S {}n S M *n ∈N 1121n n n n S S S S S S M +--+-++-≤ 11n n x x x M ++++≤ 11211121222n n n n n n n x x x x x x x x x x x +-+--+-++-≤+++++ 12M x ≤+{}n x {}n a {}n b 1M 2M *n ∈N;,又因为同理,可得,所以,所以,数列也是有界数列,故D 正确.故选:B 【点睛】关键点点睛:本题的关键在于读懂题目,准确把握“有界数列”的定义.9.(2021·湖南·长郡中学高二期中)对任一实数序列,定义序列,它的第项为.假定序列的所有项都为1,且,则( )A .1000B .2000C .2003D .4006【答案】D 【分析】是公差为的等差数列,可先设出的首项,然后表示出的通项,再用累加法表示出序列的通项,再结合求出的首项和的首项,从而求出序列的通项公式,进而获解.【详解】依题意知是公差为的等差数列,设其首项为,通项为,则,于是由于,11211n n n n a a a a a a M +--+-++-≤ 11212n n n n b b b b b b M +--+-++-≤ 112211n n n n n a a a a a a a a ---=-+-++-+ 11221111n n n n a a a a a a a M a ---≤-+-++-+≤+ 21n b M b ≤+111111n n n n n n n n n n n na b a b a b a b a b a b ++++++-=-+-()()111211111+n n n n n n n n n n b b a a a b a b M a a M b b +++++≤+--++-≤-11112211n n n n n n n n a b a b a b a b a b a b ++---+-++- ()()()()211211111121++n n n n n n n n M a a a a a a M b b b b b b b a +-+---++-+≤++--++- ()()211211M M M M b a +≤++{}n n a b ()123,,,A a a a = ()213243,,,A a a a a a a ∆=--- n 1n n a a +-()A ∆∆1820170a a ==2021a =A ∆1A ∆A ∆A 1820170a a ==A ∆A A A ∆1a n b ()111n b a n n a =+-⨯=+-()()()()()()1111111111221122n n n k k k k k n a n a n n a a a a a b a a n a --+==⎡⎤-++---⎣⎦=+-=+=+=+-+∑∑1820170aa ==即,解得.故.故选:D 【点睛】本小题主要考查新定义数列的性质,考查等差数列的前项和公式以及通项公式.题目定义的数列为二阶等差数列.高阶等差数列的定义是这样的:对于对于一个给定的数列,把它的连续两项与的差记为,得到一个新数列,把数列称为原数列的一阶差数列,如果常数,则为二阶等差数列,可用累加法求得数列的通项公式.10.(2020·江苏省梁丰高级中学高二期中)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推.求满足如下条件的最小整数:且该数列的前项和为2的整数幂.那么该款软件的激活码是()A .95B .105C .115D .125【答案】A 【分析】将数列按行排列,第行和为,前和为,把第N 个数转化为,前N 和则为,进而可得结果.【详解】将数列排成行的形式11,21,2,41,2,4,8第行为: ,第行和为,111713602016201510080a a a a ++=⎧⎨++⨯=⎩11016,17136a a =-=()202120192020171362020101640062a ⨯=+⨯-+=n 1n a +n a 1n n a a +-n b n b 1n n n c b b +=-=n a ⋯020*********N 55N >N n 1(12)2112⨯-==--n nn a n 12(12)2212+⨯-=-=---nn n S n n (1)=2++n n N m 1=2221+=+--+-n m N n m T S a n n 011222,,,-L n n 1(12)2112⨯-==--n n n a前行共有行个数,前和为第行第个数共有N 个数,则前N 和为,若和为2的整数幂,则有,且为奇数,当时,无整数解当时,,此时故选:A 【点睛】关键点点睛:将数列按行排列,把第N 个数转化为,前N 和则为,进而问题变得简单.本题考查了运算求解和转化的数学思想,逻辑推理能力,属于难题.11.(2021·山东·嘉祥县第一中学高三期中)在进行的求和运算时,德国大数学家高斯提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列满足,则()A .B .C .D .【答案】B 【分析】利用倒序相加法得到,得到答案.【详解】依题意,记,则,又,两式相加可得,则.n (1)2n n +n 12(12)2212+⨯-=-=---nn n S n n1n +(11)≤≤+m m n (1)=2++n n N m 1=2221+=+--+-n mN n m T S a n 221+=-m n 55,10>∴>Q N n n =11n m =13n 4m =1314=+4=952⨯N (1)=2++n n N m 1=2221+=+--+-n m N n m T S a n 123100++++L {}n a 24042n na m =+(,*)n m ∈N 122020m a a a ++++= 5052m+5054m+505m +2505m +202022m S +=122020m S a a a +=+++ 1220192020...24042240422404224042m m S m m m m ++=++++++++2020201921...24042240422404224042m m S m m m m ++=++++++++202120212021202120202 (240422404224042240422)m m m m m S m m m m +++++=++++=++++202050544m mS +==+故选:B .二、多选题12.(2021·全国·高二课时练习)在数列中,若(,,p 为常数),则称为“等方差数列”.下列对“等方差数列”的判断,其中正确的为( )A .若是等方差数列,则是等差数列B .若是等方差数列,则是等方差数列C .数列是等方差数列D .若是等方差数列,则(,k 为常数)也是等方差数列【答案】ACD 【分析】利用等方差的定义和等差数列的定义依次判断即得.【详解】对于A ,是等方差数列,可得(,,p 为常数),即有是首项为,公差为p 的等差数列,故A 正确.对于B ,例如:数列是等方差数列,但是数列不是等方差数列,所以B 不正确.对于C ,数列中,,(,),所以数列是等方差数列,故C 正确对于D ,数列中的项列举出来是,数列中的项列举出来是,因为,所以,即,所以数列是等方差数列,故D 正确.故选:ACD.13.(2021·江苏·苏州中学高二月考)已知数列中的前项和为,若对任意的正整数,都有,则称为“和谐数列”,下列结论,正确的有( ){}n a 221n n a a p --=2n ≥*n ∈N {}n a {}n a {}2n a {}na (){}1n-{}n a {}kn a *k ∈N {}n a 221n n a a b --=2n ≥*n ∈N {}2n a 21a 14n ⎧⎫⎨⎬⎩⎭(){}1n-()()2122211][10nn n n a a --⎡⎤-=---=⎣⎦2n ≥*n ∈N (){}1n-{}n a 122,,,,,,k k a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅{}kn a 23,,,k k k a a a ⋅⋅⋅2222221121kn k kn k kn k kn k kn kn a a a a a a p ++-+-+-+-=-=⋅⋅⋅=-=()()()222222221121kn k kn kn k kn k kn k kn k kn kn a a a a a a a a kp +++-+-+-+-=-+-+⋅⋅⋅+-=()221kn k n a a kp +-={}n a {}n a n n S n 1n n a S +≤{}n aA .常数数列为“和谐数列”B .为“和谐数列”C .为“和谐数列”D .若公差为的等差数列满足:为“和谐数列”,则的最小值为-2【答案】BD 【分析】根据给定“和谐数列”的定义,对各选项中的数列逐一分析计算即可判断作答.【详解】对于A ,数列中,令(c 为常数),,当c <0时,,此时的常数数列不为“和谐数列”,A 不正确;对于B ,数列中,令,则,,即成立,B 正确;对于C ,数列中,令,,,不是“和谐数列”,C 不正确;对于D ,令,则,数列是首项为,公差为的等差数列,其前n 项和为,则,因是“和谐数列”,于是有,,即有,,从而得,又,即对恒成立,若,则有对恒成立,必有,即,,因此,,若,则对应的是开口向下的抛物线在x 取正整数时的函数值,由二次函数性质知,当正整数n 足够大时,的值是负数,12n ⎧⎫⎨⎬⎩⎭{}21n +d {}n a {}n a n +1a d +{}n a n a c =n S nc =322a c c S =>={}n a 12n n a =112n n S =-111113110222n n n n n S a +++-=--=->1n n a S +≤{}n a 21n a n =+3(21)(2)2n n n S n n ++=⋅=+2153a S =>={}21n +n n b a n =+11(1)()1n n n n b b a n a n d ++-=++-+=+{}n b 11a +1d +n T 1(1)(1)(1)n b a n d =++-+{}n b n *∈N 1n n b T +≤21b T ≤1121a d a ++≤+1d ≤-111(1)1(1)(1)(1)2n n n n b a n d T n a d +-=+++≤=+++211(1)(213)(22)0d n a d n a ++---+≥n *∈N 1d =-1(1)(1)0a n +-≥n *∈N 110a +≥11a ≥-12a d +≥-1min ()2a d +=-1d <-211(1)(213)(22)d n a d n a ++---+211(1)(213)(22)y d x a d x a =++---+211(1)(213)(22)d n a d n a ++---+不成立,从而只有,且,的最小值为-2,D 正确.故选:BD14.(2021·全国·高二单元测试)设数列的前项和为,若存在实数,使得对于任意的,都有,则称数列为“数列”.则以下数列为“数列”的是( )A .是等差数列,且,公差B .是等比数列,且公比满足C .D .,【答案】BC 【分析】求出数列的前项和,然后判断对,有无正实数,使得成立.【详解】A 中,若是等差数列,,公差,则,是关于的二次函数,当时,,对于任意的,不存在实数,使得恒成立,所以数列不是“数列”.B 中,若是等比数列,且公比满足,则,所以数列是“数列”.C 中,,所以211(1)(213)(22)0d n a d n a ++---+≥1d =-11a ≥-1a d +{}n a n n S A *n N ∈n S A <{}n a T {}n a T {}n a 10a >0d <{}n a q 1q <()1212n n n a n n ++=+11a =()210nn n a a ++-=n n S n S A n S A <{}n a 10a >0d <2122n d d S n a n ⎛⎫=+- ⎪⎝⎭n n →+∞n S →+∞*n N ∈A n S A <{}n a T {}n a q 1q <()11111112111111n n n n a q a a q a a q aS qq q q q q-==-≤+<------{}n a T ()()1121112212n n nn n a n n n n +++==-+⋅+⋅()1223111111112222232212n n n S n n +=-+-++-⨯⨯⨯⨯⋅+⋅,则数列是“数列”.D 中,在数列中,,,当是奇数时,,数列中奇数项构成常数列,且各项均为1;当是偶数时,,即任意两个连续偶数项和为0,则对于任意的,,不存在实数,使得恒成立.所以数列不是“数列”.故选:BC .15.(2021·全国·高二课时练习)记数列的前项和为,若存在实数,使得对任意的,都有,则称数列为“和有界数列”.下列说法正确的是()A .若数列是等差数列,且公差,则数列是“和有界数列”B .若数列是等差数列,且数列是“和有界数列”,则公差C .若数列是等比数列,且公比满足,则数列是“和有界数列”D .若数列是等比数列,且数列是“和有界数列”,则公比满足【答案】BC 【分析】利用给定定义结合等差数列前n 项和对选项A ,B 并借助一次、二次函数性质分析判断;结合等比数列前n 项和对选项C 并借助即可推理判断,举特例判断选项D 作答.【详解】若数列是公差为d 的等差数列,则,当时,若,则,是的一次函数,不存在符合题意的,A 错误;数列是“和有界数列”,当时,是的二次函数,不存在符合题意的,当,()11112122n n +=-<+⋅{}n a T {}n a 11a =()210nn n a a ++-=n 20n n a a +-={}n a n 20n n a a ++=*n N ∈42n S n =A n S A <{}n a T {}n a n n S H *n ∈N n S H <{}n a {}n a 0d ={}n a {}n a {}n a 0d ={}n a q 1q <{}n a {}n a {}n a q 1q <||1n q <{}n a 211(1)(222n n n d d dS na n a n -=+=+-0d =10a ≠1n S a n =⋅n S n H {}n a 0d ≠n S n H 0d =10a =时,存在符合题意的,B 正确;若数列是公比为的等比数列,则,因满足,则,即,,则存在符合题意的实数,即数列是“和有界数列”,C 正确;若等比数列是“和有界数列”,当时,若为偶数,则,若为奇数,则,即,从而存在符合题意的实数,D 错误.故选:BC16.(2021·广东天河·高三月考)在数列(,,为常数),则称数列为“开方差数列”,则下列判断正确的是()A .是开方差数列B .若是开方差数列,则是等差数列C .若是开方差数列,则也是开方差数列(,为常数)D .若既是开方差数列,又是等差数列,则该数列为常数列【答案】CD 【分析】、是否为常数即可判断A 、B 正误;C 由,即可知正误;D 令,m 为常数,易得,结合开方差数列定义求证是否为常数列.【详解】A,故不是开方差数列,错误;B :不一定为常数,错误;C,所以为常数,即H{}n a (1)≠q q 1(1)1-=-n n aq S qq 1q <||1n q <|1|2n q -<11|||||1|2||11n n a aS q q q=⋅-<--H {}na {}n a1q =-n 0n S =n1n S a=1=n S a H{}nap =2n ≥*n N ∈p {}n a {}23n{}n a {}n a {}n a {}kn a *k N ∈k {}n a 1n n a a --...p ====kp =1n n a a m --=m p ={}n a 113323n n n --=-=⋅{}23n1n n a a p --=+=...p ====...kp ++++==为开方差数列,正确;D :且,m 为常数,则,所以为常数,则为常数列,当时,,则也为常数列,正确.故选:CD17.(2021·江苏·高二专题练习)在数列中,对任意,都有(为常数),则称为“等差比数列”.下面对“等差比数列”的判断正确的是( )A .不可能为0;B .等差数列一定是等差比数列;C .等比数列一定是等差比数列;D .通项公式为的数列一定是等差比数列【答案】AD 【分析】A 选项利用反正法即可判断,B 、C 选项举出反例即可判断,D 选项按照新定义证明即可判断.【详解】A 选项:若,则数列是常数列,所以分母为0,因为不可能为0,故A 正确;B 选项:当等差数列是常数列时,分母等于0,不成立,故B 错误;C 选项:当等比数列是常数列时,分母等于0,不成立,故C 错误;D 选项:因为,所以,为常数,是等差比数列,故D 正确,故选:AD.18.(2021·江苏·高三专题练习)在数列{a n }中,若为常数),则{a n }称为“等方差数列”,下列对“等方差数列”的判断,其中正确的为( )A .若{a n }是等方差数列,则{a n 2}是等差数列B .若{a n }是等方差数列,则{a n 2}是等方差数列C .{(﹣1)n }是等方差数列D .若{a n }是等方差数列,则{a kn }(k ∈N *,k 为常数)也是等方差数列kp =p =1n n a a m --=m p =,0m p ≠{}n a ,0m p =1n n a a -={}n a {}n a *n N ∈211n n n na a k a a +++-=-k {}n a k (0,0,1)nn a a b c a b =⋅+≠≠0k ={}n a k (0,0,1)nn a a b c a b =⋅+≠≠()()()()211211111n n n n n n n n n n a b c a b c a b b a b a b b a b a b a b b a b c a b c +++++++⋅+-⋅+⋅-⋅-⋅===⋅-⋅⋅-⋅+-⋅+221(2,,n n a a p n n N p *--=≥∈【答案】ACD 【分析】利用等方差的定义和等差数列的定义逐个进行演算,能够推出B 不正确,其余的都正确.【详解】对于A 中,数列{a n }是等方差数列,可得为常数),即有是首项为,公差为d 的等差数列,故A 正确;对于B 中,例如:数列是等方差数列,但是数列不是等方差数列,所以B 不正确;对于C 中,数列中,,所以数列是等方差数列,故C 正确;对于D 中,数列{a n }中的项列举出来是:,数列中的项列举出来是,因为(a k +12﹣a k 2)=(a k +22﹣a k +12)=…=a 2k 2﹣a 2k ﹣12=p 所以(a k +12﹣a k 2)+(a k +22﹣a k +12)+…+(a 2k 2﹣a 2k ﹣12)=kp 所以a kn +12﹣a kn 2=kp ,所以,数列{a kn }是等方差数列,故D 正确.故选:ACD .【点睛】与数列的新定义有关的问题的求解策略:1、通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.三、双空题19.(2021·全国·模拟预测)定义:记满足下列两个条件的有穷数列为n 阶“期待数列”.①;②.试写出一个3阶“期待数列”___________;若2021221(2,,n n a a p n n N p *--=≥∈{}2n a 21a {}n {}(1)n -222121[(1)][(1)]0,(2,)n n n n a a n n N -*--=---=≥∈{}(1)n-122,,,,,,k k a a a a {}kn a 23,,,k k k a a a L ()12,,,2,3,4,n a a a n ⋅⋅⋅=⋅⋅⋅1230n a a a a +++=⋅⋅⋅+1231n a a a a +++⋅⋅⋅+=阶“期待数列”是递增的等差数列,则___________.【答案】,0,(答案不唯一)【分析】(1)根据新定义直接写出答案即可;(2)设出等差数列的公差,结合新定义得到数列的通项公式,然后求解即可.【详解】(1)写出一个满足条件的数列即可,如,0,或,,(答案不唯一);(2)解法一:设等差数列为阶“期待数列”,公差为d (),∵,∴,∴,即,∴(等差数列通项公式的应用), ∵,,∴(根据数列递增及而得), ∴,即,由得,即,∴,令,解得,∴,故.解法二:设等差数列的公差为d ,则,即,即.由等差数列的性质,得.因为数列为递增数列,,所以,即,将代入,解得,{}n a 2021a =1212-11011{}n a 2021a 12312301a a a a a a ++=⎧⎨++=⎩1212-1214-14-()12321,,,,1k a a a a k +⋅⋅⋅≥21k +0d >123210k a a a a ++++⋅⋅⋅+=()()1212102k k dk a +++=10a kd +=10k a +=2k a d +=0d >10k a +=232112k k k a a a +++++⋅⋅⋅+=10k a +=()1122k k d kd -+=()11d k k =+10k a +=()101ka k k +=+111a k =-+()()()1111111n n a n k k k k k k=-+-=-+++212021k +=1010k =1101010111010n n a =-⨯202120211202110111101010111010101010111011a -=-==⨯⨯{}n a 1232021120212020202102a a a a a d ⨯+++⋅⋅⋅+=+=110100a d +=10110a =12021220201011022a a a a a ++==⋅⋅⋅=={}n a 12320211a a a a +++⋅⋅⋅+=123101012a a a a +++⋅⋅⋅+=-1101010091101022a d ⨯+=-110100a d +=110111010d =⨯所以.故答案为:,0,(答案不唯一);20.(2021·全国·高二课时练习)对于数列,若任意,都有(为常数)成立,则称数列具有性质.(1)若数列的通项公式为,且具有性质,则的最大值为______;(2)若数列的通项公式为,且具有性质,则实数的取值范围是______.【答案】6【分析】(1)设,可得对任意 恒成立,即是单调递增数列,由恒成立可求;(2)由题得恒成立,即可求出.【详解】(1)由题可得对任意恒成立.不妨令,则,即对任意恒成立.令,则对任意恒成立,∴,即的最大值为6.(2)由题得对任意恒成立,即,故的取值范围为.故答案为:6;.21.(2021·湖北·汉阳一中模拟预测)牛顿选代法又称牛顿—拉夫逊方法,它是牛顿在()20211011112021101101010101110101011a a d =+-=+⨯=⨯1212-11011{}n a ()*,n n m m ∈≠N m na a t m n-≥-t {}n a ()p t {}n a 3nn a =()p t t {}n a n a an n=-()9p a [)16,+∞m n >33m n tm tn -≥-*,N m n ∈()m n >3nn b tn =-10n n b b +-≥19m n a a am n mn-=+≥-33m n t m n-≥-()*,n n m m ∈≠N m n >33m n tm tn -≥-33m n tm tn -≥-()*,m n m n ∈>N 3nn b tn =-1230nn n b b t +=⨯-≥-*n ∈N ()min236nt ≤⨯=t 19m na a m n a a a m n m nm n mn⎛⎫--- ⎪-⎝⎭==+≥--()*,n n m m ∈≠N 882116a mn ≥≥⨯⨯=a [)16,+∞[)16,+∞17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设是函数的一个零点,任意选取作为的初始近似值,过点作曲线的切线,设与轴交点的横坐标为,并称为的次近似值;过点作曲线的切线,设与轴交点的横坐标为,称为的次近似值.一般的,过点作曲线的切线,记与轴交点的横坐标为,并称为的次近似值.设的零点为,取,则的次近似值为_____;设,数列的前项积为.若任意恒成立,则整数的最小值为_____.【答案】【分析】(1)对函数求导,依次求出切点、斜率、斜线方程,即可得出结果.(2)由(1)可得,进而可得,,即可得出结果.【详解】(1),所以当,所以当(2)因为所以,为整数, 故答案为:;2【点睛】r ()y f x =0x r ()()00,x f x ()y f x =1l 1l x 1x 1x r 1()()11x f x ,()y f x =2l 2l x 2x 2x r 2()()(),n n x f x n N ∈()y f x =1n l +1n l +x 1n x +1n x +r 1n +()31f x x x =+-(0)x ≥r 00x =r 233321n n n n x x a x +=+*,n N ∈{}n a n n T *,n n N T λ∈<λ3423122131n n n x x x ++=+11n n n x x a +=11nn T x +=<λ32()1,'()31f x x x f x x =+-=+000,()1,'(0)1x f x f ==-=1:(1)1l y x y x --=⇒=-101,(1)1,'(1)4y x f f =⇒===2:14(1)43l y x y x -=-⇒=-2304y x =⇒=32()1,'()31n n n n n f x x x f x x =+-=+33211221:(1)(3+1)()31n n n n n n n x l y x x x x x x x ++-+-=-⇒=+2132113n n n n n nx x x x x a ++∴==+1211113211·······n n n n n n n n x x x x T a a a x x x x x λ--++∴===< 11111()0,(1)011222n n f f x x ++<>⇒<<⇒<<λmin 2λ=34关键点点睛:由和,观察得出是本题的关键.本题考查了运算求解能力和逻辑推理能力,属于一般题目.22.(2021·全国·高二课时练习)数列的前项和为,定义的“优值”为,现已知的“优值”,则_____,_____.【答案】 【分析】根据列出等式,以代得到另一个等式,两式作差可求得时的,再验证即可;利用等差数列的前项和公式求解出即可.【详解】因为,所以,所以,当时,,两式作差可得:,所以,当时,,所以,符合的情况,所以;因为,所以是首项为,公差为的等差数列,所以,故答案为:;.四、填空题23.(2020·江苏·江阴市成化高级中学高二月考)对于数列,规定为数列的一阶差分数列,其中,对自然数,规定为数列的阶差分数列,其中.若,且,则数列的通项公式为_________.【答案】【分析】3122131n n n x x x ++=+33321n nnn x x a x +=+11n n n x x a +={}n a n n S {}n a 11222n n n a a a H n -+++= {}n a 2nn H =n a =n S =1n +()32n n +2nn H =1n -n 2n ≥n a 1n =n n S 2nn H =112222n n n a a a n-+++= 112222n nn a a a n -+++=⋅ 2n ≥()211212212n n n a a a n ---+++=-⋅ ()11212n n n a n --=+1n a n =+1n =1121a H ==12a =2n ≥1n a n =+1n a n =+{}n a 21()()21322n n n n n S +++==1n +()32n n +{}n a {}n a ∆{}n a ()*1n n n a a a n N +∆=-∈()2k k ≥{}kn a ∆{}n a k 111k k k n n n a a a --+∆=∆-∆11a =()2*12n n n n a a a n N +∆-∆+=-∈{}n a n a =12n n -⋅根据阶差分数列的定义,结合已知条件等式可得,写出的通项,进而可得的通项公式.【详解】由题设,知:,∴,即为首项为1,公差为1的等差数列,∴,即.故答案为:.24.(2021·河南三门峡·高三月考(理))在数列中,如果对任意,都有(为常数),则称数列为比等差数列,称为比公差.则下列结论:①等比数列一定是比等差数列;②等差数列一定不是比等差数列;③若,则是比等差数列,且比公差为;④若数列是公差不为零的等差数列,是等比数列,则数列一定不是比等差数列.其中正确的有_____________.(填序号)【答案】①③④【分析】根据数列的新定义,由比等差数列的定义:对任意,都有(为常数),对各个命题逐一分析判断即可得出答案.【详解】解:对于①,设等比数列的公比为,则,所以,所以等比数列一定是比等差数列,故①正确;对于②,若,则数列是等差数列,则,则此等差数列为比等差数列,故②错误;对于③,,则,所以,所以是比等差数列,且比公差为,故③正确;k 11122n n nn a a +--=1{}2nn a-{}n a 111()22nn n n n n n a a a a a a +++∆-∆-∆+=-=-11122n n n n a a +--=1{}2nn a -11(1)2nn a n n -=+-=()1*2n n a n n N -=⋅∈12n n -⋅{}n p ()2n n *≥∈N 11n n n n p pk p p +--=k {}n p k !n a n ={}n a 1{}n a {}n b {}n n a b ⋅()2n n *≥∈N 11n n n n p pk p p +--=k {}n a ,0q q ≠11,n n n n a a q q a a +-==110n n n n a aa a +--=1n a ={}n a 110n nn n a a a a +--=!n a n =111,n n n n a an n a a +-=+=1111n nn n a a n n a a +--=+-={}n a 1对于④,设数列的公差为,数列的公比为,则,则因为不是定值,所以数列一定不是比等差数列,故④正确.故答案为:①③④.25.(2021·江苏·高二单元测试)取出数列的任意连续四项,若其中奇数项之和,偶数项之和均为同一个常数(如连续四项,,,,满足),则称数列为错位等和数列,其中常数是公和.若表示的前项和,有如下命题:(1)若一个等差数列是错位等和数列,则;(2)若一个等比数列是错位等和数列,则;(3)若,则错位等和数列一定是最小正周期为4的周期数列;(4)在错位等和数列中,,且,若是偶数,则;其中,真命题的序号是________【答案】(1)(2)(3)(4)【分析】在(1)(2)中根据等差、等比数列的性质即可知为常数数列,即可判断正误;由有,结合已知即可判断正误;由(3)的结论及已知得、即可得,进而可知正误.【详解】{}n a ,0d d ≠{}n b ,0q q ≠()1111,n n n a a n d b b q -=+-=⋅()()()()11111111112n n n n n n n n a n d q a nd q a b a b a b a b a n d a n d++--+-⎡⎤+⋅⋅⎣⎦-=-⋅⋅+-+-()()()1111112a n d a nd q a n d a n d ⎡⎤+-+=-⎢⎥+-+-⎣⎦()()21112qd a n d a n d -=+-+-⎡⎤⎡⎤⎣⎦⎣⎦21n n qd a a --=⋅21n n qd a a --⋅{}n n a b ⋅{},(4)n a n ≥h 1a 2a 3a 4a 1324a a a a h +=+={},(4)n a n ≥h n S {}n a n 1n a a =2n nhS =12a a ≠{}n a 5h =201320146a a +=n 104,4210,4n k n k S k n k -=-⎧=⎨=⎩{}n a 43414244141n n n n n n a a a a a a ----++=+=+4242n n a a -+=126a a +=123410a a a a +++=n S(1)由得,即为常数数列,所以正确;(2)由得,所以为常数数列,,所以,正确;(3)任取四项,则,且,即有,同理,又,所以错位等和数列一定是最小正周期为4的周期数列,正确;(4)由(3)及,得,又,即,所以,且,而错位等和数列一定是最小正周期为4的周期数列,所以.故答案为:(1)(2)(3)(4)【点睛】本题考查了数列新定义,综合应用了等差、等比数列的性质,以及数列的周期性,属于中档题.26.(2021·广东·东莞市光明中学高三开学考试)若有穷数列,,…,(m 为正整数)满足条件:,,…,,则称其为“对称”数列.例如,数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列中,,,…,是以1为首项,2为公差的等差数列,则____________.【答案】19【分析】根据“对称”数列可知,再利用等差数列的通项公式即可求解.【详解】根据题意可得,,,…,是以1为首项,2为公差的等差数列,所以.故答案为:19【点睛】本题考查了等差数列的通项公式、数列的新定义,考查了基本运算求解能力,属于基础题.五、解答题1324a a a a h +=+=0d ={}n a 1n a a =1324a a a a h +=+=1q ={}n a 12n a h =2n nh S =4341424n n n n a a a a h ---+=+=4244141n n n n a a a a h --++=+=4341n n a a -+=4242n n a a -+=12a a ≠201320146a a +=126a a +=5h =13245a a a a +=+=344a a +=123410a a a a +++=104,4210,4n k n k S k n k -=-⎧=⎨=⎩1a 2a m a 1m a a =21m a a =-1m a a ={}n c 11c 12c 21c 2c =220c c =220c c =11c 12c 21c ()22012011219c c ==+-⨯=27.(2021·江苏·高二单元测试)对于数列,定义为数列的差分数列,其中.如果对任意的,都有,则称数列为差分增数列.(1)已知数列为差分增数列,求实数的取值范围;(2)已知数列为差分增数列,且,.若,求非零自然数k 的最大值;(3)已知项数为2k 的数列()是差分增数列,且所有项的和等于k ,证明:.【答案】(1);(2)65;(3)证明见解析.【分析】(1)利用差分增数列的定义可得关于的不等式组,即可求解;(2)根据△△,,,可得△△,△,△,,△,,从而可得,即可求解;(3)利用反证法推出矛盾,即可得证.【详解】(1)数列1,2,4,,16,24的差分数列为1,2,,,8,由题意可得,解得,故实数的取值范围是.(2)由题意,△,△,因为数列为差分增数列,所以对任意的,都有△△,所以△△,△,同理,△,,△,,所以当时,△△△,所以,解得,所以非零自然数的最大值为65.(3)证明:假设,由题意知,2,3,,,{}n a {}n a V {}n a 1,*n n n a a a n +=-∈N V *n ∈N 1n n a a +>V V {}n a 1,2,4,,16,24x x {}n a 121a a ==*n a ∈N 2021k a ={}3log n a 1,2,3,,2n k =L 13k k a a +<810x <<x 1n a +>n a 121a a ==*n a N ∈2a >10a =21a …32a …⋯1k a k -…*k N ∈(2)(1)202112k k --+…x 4x -16x -4162282432x x x +>⎧⎪+>⎨⎪+>⎩810x <<x (8,10)10a =n a N ∈{}n a *n N ∈1n a +>n a 2a >10a =21a …32a …⋯1k a k -…*k N ∈2k …1k a a =+1a +2a +⋯+1(2)(1)112(2)12k k k a k ---+++⋯+-=+…(2)(1)202112k k --+…65k …k 13k k a a +…0(1n a n >=⋯2)k因为项数为的数列所有项的和等于,所以,即,所以,因为数列,2,3,,是差分增数列,所以,所以,因此,所以对任意的,,都有,即,所以,所以与矛盾,故假设不成立,所以.【点睛】关键点睛:对于数列的新定义的题,解题的关键是理解清楚题意,熟练掌握数列中常见的解题方法.28.(2020·江苏·模拟预测)对数列{a n },规定{△a n }为数列{a n }的一阶差分数列,其中△a n =a n +1﹣a n (n ∈N *),规定{△2a n }为{a n }的二阶差分数列,其中△2a n =△a n +1﹣△a n (n ∈N *).(1)数列{a n }的通项公式(n ∈N *),试判断{△a n },{△2a n }是否为等差数列,请说明理由?(2)数列{b n }是公比为q 的正项等比数列,且q ≥2,对于任意的n ∈N *,都存在m ∈N *,使得△2b n =b m ,求q 所有可能的取值构成的集合;(3)各项均为正数的数列{c n }的前n 项和为S n ,且△2c n =0,对满足m +n =2k ,m ≠n 的任意正整数m 、n 、k ,都有c m ≠c n ,且不等式S m +S n >tS k 恒成立,求实数t 的最大值.【答案】(1)是,是;理由见解析;(2);(3)2.【分析】(1)推导出,从而△△,由此得到△是首项为3,公差为2的等差数列,由△△△,得到△是首项为2,公差为0的等差数列.(2)推导出,,,根据,,,进行分类讨论,能求出所有可能的取值构成的集合.2k 3{log }n a k 31323332log log log log k a a a a k +++⋯+=31232log k a a a a k ⋯=12323kk a a a a ⋯={}3log (1n a n =⋯2)k 3133231log log log log n n n n a a a a +++-<-121n n n n a a a a +++<322412321k k a a a a a a a a -<<<⋯<1m k -…*m N ∈1212m k mm k ma a a a ++--<1221m k m m k m a a a a +-+-<1222132213k k k k k a a a a a a a a --+>>>⋯>…12323k k a a a a ⋯>12323kk a a a a ⋯=13k k a a +<2n a n ={2221(1)21n n n a a a n n n +=-=+-=+V 1n a +-2n a ={}n a 2n a =1n a +-2n a ={2}n a 11n n b b q -=2(1)m n q q --=0m n -…0-=m n 1m n -=2m n -…q(3)推导出,从而是等差数列,设的公差为,则,由等差数列前项和公式可得,从而,推导出,则当时,不等式都成立;当时,令,,,,则,,进而得到,由此推导出的最大值为2【详解】(1),,△△,△,△是首项为3,公差为2的等差数列,△△△,△是首项为2,公差为0的等差数列.(2)数列是公比为的正项等比数列,,△△△,且对任意的,都存在,使得,,,,.若,则,解得(舍,或,即当时,对任意的,都有△..若,则,解得,或即当,都有△..若,则,对任意的,不存在,使得△.综上所述,所有可能的取值构成的集合为.(3)△,△△△,,是等差数列,设的公差为,则,,,211n n n n c c c c +++-=-{}n c {}n c d 1(1)n c c n d =+-n 21()22n d d S n c n =+-221()()()22n m d d S S n m c m n +=++-+22211()()()()()()22222n m k d d d m n S S n m c m n c d m n S ++=++-+>+-+=g 2t …m n k S S tS +>2t >1m k =+1n k =-*(k N ∈2)k …21(22)2()22m n d d S S k k c +=++-21()22k d d S k c k =+-m n k S S tS +<t 2n a n =∴221(1)21n n n a a a n n n +=-=+-=+V ∴1n a +-2n a = 13a ={∴}n a 2n a =1n a +-2n a ={∴2}n a {}n b q ∴11n n b b q -= 2n b =1n b +-21121()2n n n n n n n n b b b b b b b b +++++=---=-+*n N ∈*m N ∈11111112n n n n b q b q b q b q +---+=2(1)m n q q -∴-=2q …0m n ∴-…1︒0-=m n 2211q q -+=0q =)2q =2q =*n N ∈2n m b b =2︒1m n -=2310q q -+=q =)q =q =*n N ∈21n n b b +=3︒2m n -…22(1)m n q q q ->-…∴*n N ∈*m N ∈2n n b b =q {2 20n c =∴2n c =1n c +-21121()20n n n n n n n n c c c c c c c c +++++=---=-+=211n n n n c c c c +++∴-=-{}n c ∴{}n c d 1(1)n c c n d =+-0d = m n c c ∴=,当时,,与数列的各项均为正数矛盾,故,由等差数列前项和公式可得,,,,,,则当时,不等式都成立,另一方面,当时,令,,,,则,,则,,,,当时,,即,综上,的最大值为2.【点睛】本题考查等差数列的判断,考查实数的取值范围、实数的最大值求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题.29.(2020·黑龙江·哈师大附中高二开学考试(理))若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.(1)证明数列是“平方递推数列”,且数列为等比数列;(2)设(1)中“平方递推数列”的前项积为,即,求;(3)在(2)的条件下,记,求数列的前项和,并求使 的的最小值.0d < ∴11c n d>-0n c <{}n c 0d >n 21()22n d d S n c n =+-2222111()()()()()222222n m d d d d d dS S n c n m c m n m c m n ∴+=+-++-=++-+21()()(2222k d m n d m n S c ++=+-m n ≠ 222()24m n m n ++>22211()()()()()()22222n m k d d d m n S S n m c m n c d m n S +∴+=++-+>+-+=g 2t ...m n k S S tS +>2t >1m k =+1n k =-*(k N ∈2)k (222)11[(1)(1)]()2(22)2(2222m n d d d d S S k k c k k k c +=++-+-⨯=++-21()22k d dS k c k =+-2211()((22)2()2222k m n dd d d tS S S tk c tk k k c -+=+--+--21()()(2)2dt d k k t c k d =--+--02dt d ->20k k -…∴1(2)d k t c >-()0k n m tS S S -+>m n k S S tS +<t {}n A 21n n A A +={}n A {}n a 19a =1(,)n n a a +2()2f x x x =+n {}1n a +{}lg(1)n a +n n T 12(1)(1)(1)n n T a a a =+++ lg n T lg lg(1)nn n T b a =+{}n b n n S 4026n S >n。
考点1.3 数列的新定义问题(解析版)

考点1.3 数列的新定义问题数列是高考重点考查的内容之一,其命题形式多种多样,其中基于问题情境的数列问题在高考中逐步成为热点。
通过具体的问题背景或新的定义,考察数列在问题情境中的应用,以此来检验学生的核心价值,学科素养,关键能力,必备知识。
解决数列的新定义问题,常用的解题思路是:审题、建模、研究模型、解决新定义问题。
研究模型时需注意:(1) 量(多个量) ;(2) 量之间的关系(规律):等差、等比规律;递推关系;其它规律——由特殊到一般进行归纳总结;(3) 与数列通项公式有关或与前n 项和有关等.基础知识1.等差数列与等差中项 (1)定义:①文字语言:一个数列从第2项起,每一项与它的前一项的差都等于同一个常数; ②符号语言:a n +1-a n =d (n ∈N *,d 为常数).a n -a n -1=d (n 2≥ n ∈N *,d 为常数). (2)等差中项:若三个数a ,A ,b 组成等差数列,则A 叫做a ,b 的等差中项.即A=2a b+. 2.等差数列的通项公式与前n 项和公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若k +l =2m (k ,l ,m ∈N *),则a k +a l =2a m . 4.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n 是关于n 的二次函数且常数项为0. 5.等比数列的有关概念 (1)定义:①文字语言:一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(非零). ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).1n n a q a-=(n 2≥ n ∈N *,d 为常数).(2)等比中项:如果a ,A ,b 成等比数列,那么A 叫做a 与b 的等比中项.即A=6.等比数列的有关公式(1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.7.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; 8.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.9.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.数列的新定义问题 (1) 单选题1.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155C .141D .139【答案】B 【分析】画出图形分析即可列出式子求解. 【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩. 故选:B.2.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =- 【答案】B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.3.(2016•新课标Ⅲ,理12)定义“规范01数列” {}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ,1a ,2a ,⋯,k a 中0的个数不少于1的个数,若4m =,则不同的“规范01数列”共有( ) A .18个 B .16个C .14个D .12个【答案】C【解析】由题意可知,“规范01数列”有偶数项2m 项,且所含0与1的个数相等,首项为0,末项为1,若4m =,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1; 0,0,0,1,0,1,1,1; 0,0,0,1,1,0,1,1; 0,0,0,1,1,1,0,1; 0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1; 0,0,1,0,1,1,0,1; 0,0,1,1,0,1,0,1; 0,0,1,1,0,0,1,1; 0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1; 0,1,0,0,1,1,0,1; 0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个,故选C .4.(2020全国Ⅱ理12)0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足()()0,11,2,i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足),2,1(⋯==+i a a i m i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,()11()1,2,,1mi i k i C k a a k m m +===-∑是描述其性质的重要指标.下列周期为5的0-1序列中,满足()()11,2,3,45C k k ≤=的序列是 ( )A .11010B .11011C .10001D .11001【答案】C【解析】由i mi a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑.对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C5.(2017•新课标Ⅰ,理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数:100N N >且该数列的前N项和为2的整数幂.那么该款软件的激活码是( ) A .440B .330C .220D .110【解析】设该数列为{}n a ,设1(1)(1)12221n n n n n n b a a +-++=+⋯+=-,()n N +∈,则(1)211n n ni i i i b a +===∑∑,由题意可设数列{}n a 的前N 项和为N S ,数列{}n b 的前n 项和为n T ,则121121212122n n n T n ++=-+-+⋯+-=--,可知当N 为(1)2n n +时()n N +∈,数列{}n a 的前N 项和为数列{}n b 的前n 项和,即为122n n +--,容易得到100N >时,14≥n ,A 项,由29304352⨯=,4404355=+,可知305304402952292212S T b =+=--+-=,故A 项符合题意. B 项,仿上可知25263252⨯=,可知2652633025522522124S T b =+=--+-=+,显然不为2的整数幂,故B 项不符合题意.C 项,仿上可知20212102⨯=,可知2110211022020102202212223S T b =+=--+-=+-,显然不为2的整数幂,故C 项不符合题意.D 项,仿上可知14151052⨯=,可知15515110145214221215S T b =+=--+-=+,显然不为2的整数幂,故D 项不符合题意. 故选A .(2) 多选题6.若数列{}n a 满足:对任意正整数n ,{}1n n a a +-为递减数列,则称数列{}n a 为“差递减数列”.给出下列数列{}()*n a n N ∈,其中是“差递减数列”的有( )A .3n a n =B .21n a n =+C .n aD .ln1n n a n =+ 【答案】CD 【分析】分别求出四个选项中数列{}()*n a n N ∈对应的{}1n n a a +-,再进行判断.【详解】对A ,若3n a n =,则13(1)33n n a a n n +-=+-=,所以{}1n n a a +-不为递减数列,故A 错误; 对B ,若21n a n =+,则221(1)21n n a a n n n +-=+-=+,所以{}1n n a a +-为递增数列,故B 错误;对C ,若n a =1n n a a +-=={}1n n a a +-为递减数列,故C 正确;对D ,若ln1n n a n =+,则121111lnln ln ln(1)2122n n n n n n a a n n n n n n++++-=-=⋅=+++++,由函数21ln(1)2y x x=++在(0,)+∞递减,所以数{}1n n a a +-为递减数列,故D 正确.故选:CD . 【点睛】本题考查数列新定义、数列单调性及递推关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.7.在数学领域内,“数列”无疑是一个非常重要的话题.然而,中学生所学到的数列内容非常有限,除了等差、等比数列之外,其它数列涉及很少.下面向大家介绍一种有趣的数列,叫语言数列.例如第一项1123a =,对于一个对数列一窍不通的人,你怎样介绍它呢?你可以这样说,从左向右看,这里含有一个1,一个2和一个3,你再把它用数字表示出来,就得到了第二项2111213a =.再从左向右看2a ,它里面又是含有四个1,一个2和一个3,再把它用数字表示出来,就得到了第三项3411213a =,同样可得第四项414311213a =.按此规则重复下去,可以得到一个无穷数列{}n a ,你会惊奇地发现,无论11a =、12a =、13a =,还是1123a =,都有这样的结论:*0n N ∃∈,()*0n n n N ∀≥∈,都有2n n a a +=.则0n a 的可能值为( )A .23322114B .32142321C .32232114D .24312213【答案】AC 【分析】对各选项中0n a 的可能取值进行验证,结合题意可求出02n a +,并验证02n a +与0n a 是否相等,由此可得出合适的选项. 【详解】对于A 选项,若023322114n a =,从左往右看,有3个2,2个3,2个1,1个4, 则0132232114n a +=,从左往右看,有2个3,3个2,2个1,1个4,则00223312114n n a a +==,合乎题意;对于B 选项,若032142321n a =,从左往右看,有2个3,3个2,2个1,1个4, 则0123322114n a +=,从左往右看,有3个2,2个3,2个1,1个4, 则00232232114n n a a +=≠,不合乎题意;对于C 选项,若032232114n a =,从左往右看,有2个3,3个2,2个1,1个4, 则0123322114n a +=,有3个2,2个3,2个1,1个4, 则00232232114n n a a +==,合乎题意;对于D 选项,若024312213n a =,从左往右看,有3个2,1个4,2个3,2个1, 则0132142321n a +=,从左往右看,有2个3,3个2,2个1,1个4, 则00223322114n n a a +=≠,不合乎题意. 故选:AC. 【点睛】关键点点睛:本题考查数列的新定义,结合的关键就是充分利用题中定义,由0n a 的值逐步推导02n a +的值. 8.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}n f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x = B .()2xf x = C .()f x =D .()ln f x x =【答案】AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,故A 是“保等比数列函数”;对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +=== ,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a qq f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题. 9.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列【答案】AC 【分析】 由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.10.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列 【答案】BCD 【分析】根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】当0n S >时,取2111222222n d d dd d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r +->1112222da ra dr r n N d dr -+-+⇒>==.对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,11n n x x q-=,若1q >,则对任意正数r ,当11log 1q r n x ⎛⎫+>+ ⎪ ⎪⎝⎭时, 1n x r >+,所以不存在正整数N 使得定义式成立,若1q =,显然符合;若1q =-为摆动数列()111n n x x -=-,只有1x ±两个值,不会收敛于一个值,所以舍去;若()1,1q ∈-,取0a =,1log 11q rN x ⎡⎤=++⎢⎥⎣⎦, 当n N >时,11110n n rx x qx r x --=<=,故B 正确; 对于C ,()1sin cos sin 0222n x n n n πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r更大的正数,当n N>=时,110n n r S S -=<,同理0d <,所以D 正确. 故选:BCD【点睛】关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题.(3) 填空题11.意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即(1)(2)1F F ==,*()(1)(2)(3,)F n F n F n n n N =-+-≥∈,此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{}n b ,则2020b =_________.【答案】0【分析】由题设描述可得被3整除后的余数构成一个新数列{}n b,观察可知是周期数列,结合目标项下标即可求值.【详解】由题意知:“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,∴此数列被3整除后的余数:1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…,观察可知新数列是以1,1,2,0,2,2,1,0为一个周期的循环,而20208的余数为4,∴20200b=故答案为:0【点睛】本题考查了数列新定义,应用观察法找规律求项,属于简单题.12.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”频率变为原来的32,得到“徵”;“徵”经过一次“益”,频率变为原来的34,得到“商”;……依次损益交替变化,获得了“宫、徵、商、羽、角”五个音阶,设“宫”的频率为1,则“角”的频率为________.【答案】81 64【分析】根据已知条件经过一次“损”频率变为原来的32,经过一次“益”,频率变为原来的34,依次损益交替变化求概率即可.【详解】由“宫”的频率为1,“宫”经过一次“损”得到“徵”的频率变为32,“徵”经过一次“益”,得到商的频率为339 248⨯=,“商”经过一次“损”,得到“羽”的频率为9327 8216⨯=,“羽”经过一次“益”,得到“角”的频率为27381 16464⨯=,所以“角”的频率为81 64,故答案为:8164【点睛】本题主要考查了数列与文化知识结合,关键是读懂题意求出概率,属于基础题. 13.已知数列{}n a 满足:152a =,()2*1122n n n a a a n N +=-+∈,若上取整函数⎡⎤⎢⎥x 表示不小于x 的最小整数(例如:1.22=⎡⎤⎢⎥,33=⎡⎤⎢⎥),则122020111a a a ⎡⎤+++=⎢⎥⎢⎥______. 【答案】2 【分析】已知等式变形为111122n n n a a a +=---,由此可求得122020120212*********2222a a a a a a +++=-=----, 再证明{}n a 是递增数列,并通过前几项,估计出20213a >,这样再根据新定义可得. 【详解】由已知得111122n n n a a a +=---,即111122n n n a a a +=---,1220201202120211111112222a a a a a a +++=-=----, 因为21112(2)222n n n n n a a a a a +=-+=-+,且1522a =>,所以12n a +>,即数列{}n a 各项均大于2, 又()22111222022n n n n n a a a a a +-=-+=->,故{}n a 单调递增,152a =,可得2218a =,3 2.82a ≈,4 3.16a ≈,故当4n ≥时,3n a >,所以20213a >,故12202011112a a a <+++<,1220201112a a a ⎡⎤+++=⎢⎥⎢⎥. 故答案为:2. 【点睛】关键点点睛:本题考查数列新定义,考查数列的单调性与裂项相消求和法.解题关键是求得和式122020111a a a +++,通过已知式变形后可用裂项相消法求和,然后问题转化为估计数列中各项的取值范围,结合新定义只要考察数列的前几项即可得出结论.14.在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列称为等和数列,这个常数称为该数列的公和.已知数列{}n a 是等和数列,且120202,8a a =-=,则这个数列的前2020项的和为____. 【答案】6060 【分析】设等和数列的公和为m .根据12a =-,利用等和数列的定义求得通项公式,然后利用并项求和法求解. 【详解】设等和数列的公和为m . 因为12a =-,所以23452,2,2,2,...a m a a m a =+=-=+=-,所以2n 2,n a m n -⎧=⎨+⎩,为奇数为偶数,又202028a m =+=, 所以6m =,所以()()()()202012345620192020...S a a a a a a a a =++++++++,101066060=⨯=,故答案为:6060 【点睛】本题主要考查数列的新定义以及通项公式的求法和并项求和法的应用,还考查了运算求解的能力,属于中档题.15.若数列{}n a 满足111n nd a a +-=(*n N ∈,d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12201920190b b b ++⋯+=,则22018b b 的最大值是________. 【答案】100 【分析】本题首先可根据调和数列的性质得出1n n d b b +=-,从而判断出数列{}n b 是等差数列,然后根据()1220122018920192b b b b b +=++⋯+得出2201820b b +=,最后根据基本不等式求最值,即可得出结果. 【详解】 因为正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,所以1n n d b b +=-,数列{}n b 是等差数列, 则()221018220192012019209b b b b b ++==⋯++,解得2201820b b +=,故2201820b b ≤+=,即22018100b b ≤,当且仅当2201810b b ==时等号成立, 故22018b b 的最大值是100, 故答案为:100. 【点睛】关键点点睛:本题考查学生对新定义的理解与转化,能否根据“调和数列”的定义和等差数列的定义得出数列{}n b 是等差数列是解决本题的关键,若数列{}n b 是等差数列,且c d e f ,则c d e f b b b b ,考查计算能力,是中档题.(4) 解答题16.(2020山东18)已知公比大于1的等比数列{}n a 满足2420a a +=,38a =. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间(]0,m ()m *∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2n n a =;(2)100480S =.【思路导引】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式;(2)通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【解析】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得12,2a q ==,所以2n n a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2; 8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15,则89153b b b ====,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31,则1617314b b b ====,即有42个4; 323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63,则3233635b b b ====,即有52个5; 6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100,则64651006b b b ====,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.17.(2016•新课标Ⅱ,理17)n S 为等差数列{}n a 的前n 项和,且11a =,728S =,记[]n n b lga =,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[99]1lg =. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】(Ⅰ)n S 为等差数列{}n a 的前n 项和,且11a =,728S =,4728a =.可得44a =,则公差1d =.n a n =,[]n b lgn =,则1[1]0b lg ==,11[11]1b lg ==,101[101]2b lg ==. (Ⅱ)由(Ⅰ)可知:12390b b b b ===⋯==,101112991b b b b ===⋯==.1001011021039992b b b b b ====⋯==,10,003b =.数列{}n b 的前1000项和为:90901900231893⨯+⨯+⨯+=.18.(2020江苏20)已知数列*{}()n a n N ∈的首项11a =,前n 项和为n S .设λ与k 是常数.若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“k λ-”数列.(1)若等差数列是“1λ-”数列,求λ的值;(2)若数列{}n a 2-”数列,且0n a >,求数列{}n a 的通项公式; (3)对于给定的λ,是否存在三个不同的数列{}n a 为“3λ-”数列,且0n a ≥?若存在,求出λ的取值范围;若不存在,说明理由. 【答案】见解析【解析】(1)1k =时,111n n n n a S S a λ+++=-=,∴1λ=.(2=11n n n a S S ++=-=,==11144()33n n n n S a S S +++==-.从而14n n S S +=. 又111S a ==,14n n S -=,2134n n n n a S S --=-=⋅,2n ≥.综上,21,134,2n n n a n -=⎧=⎨⋅≥⎩. (3)若存在三个不同的数列{}n a 为“3λ-”数列,则11133311n n n S S aλ++-=, 则21123333331111133()n n nn nn n n n SS S S S S a S S λλ+++++-+-==-,由11a =,0n a ≥则0n S >,令113()0n n nS p S +=>,则3323(1)33(1)0n n n p p p λλ--+--=, 1λ=时,2n n p p =,由0n p >可得1n p =,则1n n S S +=,即10n a +=,此时{}n a 唯一,不存在三个不同的数列{}n a ;1λ≠时,令331t λ=-,则3210n n n p tp tp -+-=,则2(1)[(1)1]0n n n p p t p -+-+=, ①1t ≤时2(1)10n n p t p +-+>,则1n p =同理不存在三个不同的数列{}n a ;②13t <<时,2(1)40t ∆=--<,2(1)10n n p t p +-+=无解,则1n p =,同理不存在三个不同的数列{}n a ; ③3t =时,3(1)0n p -=,则1n p =,同理不存在三个不同的数列{}n a ;④3t >即01λ<<时,2(1)40t ∆=-->,2(1)10n n p t p +-+=有两解α,β,设αβ<,12t αβ+=->,10αβ=>,则01αβ<<<,则对任意*n N ∈,11n n S S +=或31n n S S α+=或31n nSS β+=,此时1n S =,31,1,2n n S n β=⎧=⎨≥⎩,31,1,2,3n n S n β=⎧=⎨≥⎩均符合条件,对应1,10,2n n a n =⎧=⎨≥⎩,31,11,20,3n n a n n β=⎧⎪=-=⎨⎪≥⎩,31,10,21,30,4n n n a n n β=⎧⎪=⎪=⎨-=⎪⎪≥⎩,则存在三个不同的数列{}n a 为“3λ-”数列,且0n a ≥,综上,01λ<<. 19.(2019江苏20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有成立,求m 的最大值.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由,得,解得.因此数列为“M —数列”.(2)①因为,所以. 由,得,则. 由,得, 当时,由,得,整理得.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n .②由①知,b k =k ,.*()n ∈N 245324,440a a a a a a =-+=*()n ∈N 111221,n n n b S b b +==-*()n ∈N 1k k k c b c +245321440a a a a a a =⎧⎨-+=⎩244112111440a q a q a q a q a ⎧=⎨-+=⎩112a q =⎧⎨=⎩{}n a 1122n n n S b b +=-0n b ≠1111,b S b ==212211b =-22b =1122n n n S b b +=-112()n n n n n b b S b b ++=-2n ≥1n n n b S S -=-()()111122n n n nn n n n n b b b b b b b b b +-+-=---112n n n b b b +-+=()*n ∈N *k ∈N因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以,其中k =1,2,3,…,m . 当k =1时,有q ≥1;当k =2,3,…,m 时,有. 设f (x )=,则. 令,得x =e .列表如下:因为,所以. 取k =1,2,3,4,5时,,即, 经检验知也成立. 因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.20.(2014江苏)设数列的前项和为.若对任意正整数,总存在正整数,使得,则称是“H 数列”.(Ⅰ)若数列的前n 项和(N ),证明: 是“H 数列”;(Ⅱ)设 是等差数列,其首项,公差.若 是“H 数列”,求的值;(Ⅲ)证明:对任意的等差数列,总存在两个“H 数列”和,使得(N )成立.【解析】(Ⅰ)当2n ≥时,111222n n n n n n a S S ---=-=-= 当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.1k k q k q -≤≤ln ln ln 1k kq k k ≤≤-ln (1)x x x >21ln ()xf 'x x-=()0f 'x =ln 2ln 82663=<=max ln ()(3)3f k f ==q =ln ln kq kk k q ≤1k q k -≤}{n a n n S n m m n a S =}{n a }{n a n n S 2=∈n *}{n a }{n a 11=a 0<d }{n a d }{n a }{n b }{n c n n n c b a +=∈n *(Ⅱ)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-. (Ⅲ)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列”,因此命题得证.。
专题05 函数的新定义问题专练(解析版)

专题05 函数的新定义问题专练数m,n满足m3+6m2+13m=10n3+6n2+13n=―30,则m+n=()A.―4B.―3C.―2D.―1【答案】A【分析】令ℎ(x)=f′(x),由ℎ′(x)=0解得x,进而得出函数f(x)的对称中心.根据f(m)+f(n)=―20,结合函数的单调性,即可得出m+n.【详解】令f(x)=x3+6x2+13x,则f′(x)=3x2+12x+13,令ℎ(x)=3x2+12x+13ℎ′(x)=6x+12=0,解得x=―2,又f(―2)=(―2)3+6×(―2)2+13×(―2)=―10.∴函数f(x)的图象关于点(―2,―10)成中心对称.因为m3+6m2+13m=10n3+6n2+13n=―30,所以f(m)+f(n)=―20,又f′(x)=3x2+12x+13=3(x+2)2+1>0,所以函数f(x)=x3+6x2+13x在R上单调递增,所以m+n=2×(―2)=―4.故选:A.二、多选题6.(2023·全国·高三专题练习)已知定义在R上的函数f(x),对于给定集合A,若∀x1,x2∈R,当x1―x2∈A 时都有f(x1)―f(x2)∈A,则称f(x)是“A封闭”函数.则下列命题正确的是()A.f(x)=x2是“[―1,1]封闭”函数B.定义在R上的函数f(x)都是“{0}封闭”函数C.若f(x)是“{1}封闭”函数,则f(x)一定是“{k}封闭”函数(k∈N*)D.若f(x)是“[a,b]封闭”函数(a,b∈N*),则f(x)不一定是“{ab}封闭”函数【答案】BC【分析】A特殊值x1=4,x2=3判断即可;B根据定义及函数的性质即可判断;C根据定义得到∀x∈R都有f( x+1)=f(x)+1,再判断所给定区间里是否有f(x2+k)―f(x2)=k成立即可判断,D选项可判断出其逆否命题的正误,得到D选项的正误.【详解】对A:当x1=4,x2=3时,x1―x2=1∈[―1,1],而f(x1)―f(x2)=16―9=7∉[―1,1],A错误;对B:对于集合{0},∀x1,x2∈R使x1―x2=0,即x1=x2,必有f(x1)―f(x2)=0,所以定义在R上的函数f(x)都是“{0}封闭”函数,B正确;对C:对于集合{1},∀x1,x2∈R使x1―x2∈{1},则x1=x2+1,而f(x)是“{1}封闭”函数,则f(x2+1)―f(x2)=1,即∀x∈R都有f(x+1)=f(x)+1,对于集合{k},∀x1,x2∈R使x1―x2∈{k},则x1=x2+k,k∈N*,而f(x2+k)=f(x2+k―1)+1,f(x2+k―1)=f(x2+k―2)+1,...,f(x2+1)=f(x2)+1,所以f(x2+k)+f(x2+k―1)+...+f(x2+1)=f(x2+k―1)+f(x2+k―2)+...+f(x2)+k―1,即f(x2+k)=f(x2)+k,故f(x2+k)―f(x2)=k,f(x)一定是“{k}封闭”函数(k∈N*),C正确;对D,其逆否命题为,若f(x)是“{ab}封闭”函数,则f(x)不是“[a,b]封闭”函数(a,b∈N*),只需判断出其逆否命题的正误即可,∀x1,x2∈R使x1―x2=ab,则f(x1)―f(x2)=ab,若ab∈[a,b],则ab≥a ab≤ba<b,由ab≤b解得a≤1,因为a∈N*,所以a=1,即∀x1,x2∈R使x1―x2=ab=b∈[a,b],则f(x1)―f(x2)=ab=b∈[a,b],满足f(x)是“[a,b]封闭”函数(a,b∈N*),故逆否命题为假命题,故原命题也时假命题,D错误.故选:BC【点睛】关键点点睛:对于C,根据给定的条件得到∀x∈R都有f(x+1)=f(x)+1,∀x∈R有f(x+a)=f(x )+b恒成立,利用递推关系及新定义判断正误.7.(山东省济南市2023届高三二模数学试题)若定义在[0,1]上的函数f(x)同时满足:①f(1)=1;②对∀x∈[0,1],f(x)≥0成立;③对∀x1,x2,x1+x2∈[0,1],f(x1)+f(x2)≤f(x1+x2)成立;则称f(x)为“正方和谐函数”,下列说法正确的是()A.f(x)=x2,x∈[0,1]是“正方和谐函数”B.若f(x)为“正方和谐函数”,则f(0)=0C.若f(x)为“正方和谐函数”,则f(x)在[0,1]上是增函数D.若f(x)为“正方和谐函数”,则对∀x∈[0,1],f(x)≤2x成立【答案】ABD【分析】条件③f(x1+x2)―[f(x1)+f(x2)]=(x1+x2)2―x12―x22=2x1x2≥0.即可判定A,由条件①③可得f(0)≥0,f(0+0)≥f(0)+f(0)即可求得f(0)=0即可判断B,由条件③即可判断C,由迭代递推法即可判断D.【详解】对于A, 函数f(x)=x2,x∈[0,1],显然满足条件①②.对任意x2≥0,x2≥0且x1+x2≤1时,f(x1+x2)―[f(x1)+f(x2)]=(x1+x2)2―x12―x22=2x1x2≥0.∴函数f(x)=x2在区间[0,1]上是否为“正方和谐函数”.故A正确.对于B,若函数f(x)为“正方和谐函数”,则令x1=0,x2=0,得f(0)≥f(0)+f(0),即f(0)≤0,作出f n(x)的图象,可得f1(x +2),对x∈[―1,1)即可,=―(x+2)+故k≥―x2+1x+2A.函数g(x)的值域是C.函数g(x)的图象关于【答案】ABC【分析】根据cos(―x从而可求出f(x)的值域,当f(x)=2时,x=2kπ,k∈Z,此时g 当1≤f(x)<2时,x∈―π3+2kπ,2k当0≤f(x)<1时,x∈π3+2kπ,5π3+g由图可知函数g(x)是以2π为周期的周期函数,故函数g(x)的图象关于x=π对称,故C正确;对于D,方程π2⋅g(x)=x根的个数即为方程方程即为y=g(x),y=2π⋅x两个函数图象交点的个数,四、解答题20.(2023·全国·高三专题练习)对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的一个动点.设函数f(x)=x2+ax+b.(1)当a=―1,b=―3时,求f(x)的不动点;(2)若f(x)有两个相异的不动点x1,x2.①当―2<x1<0<x2<1时,求|3a+b―3|的取值范围;②若|x1|<2且|x1―x2|=2,求实数b的取值范围.【答案】(1)3或―1(2)①[0,6];②[―1,8)【分析】(1)根据定义可得x2―2x―3=0并求解,即得f(x)的不动点;(2)①由题设g(x)=x2+(a―1)x+b的两个零点为―2<x1<0<x2<1,利用根的分布列不等式组,应用线性规划画可行域,进而求目标式的范围;②Δ>0及韦达定理,结合已知得4b=(a―1)2―4、―5<a<7,进而求b的取值范围.【详解】(1)依题意x2―x―3=x,即x2―2x―3=0,解得x=3或―1,即f(x)的不动点为3或―1;(2)①g(x)=f(x)―x=x2+(a―1)x+b,由x1,x2是f(x)=x的两相异根,且―2<x1<0<x2<1,令t=3a+b―3,则经过(0,0)时t min=―3,经过(3,0)时t max=6,∴|3a+b―3|的取值范围是[0,6],②由题设Δ=(a―1)2―4b>0⇒(a―1)2>4b,且x1+x2=1―∴|x1―x2|2=(x1+x2)2―4x1x2=(1―a)2―4b=22,则4b=(a所以函数F(x)在―5π6,2π3上的零点个数等于―1的交点个数之和.当0<m―1<1,即1<m<2时,ℎ(x)数之和为9.故m的取值范围为(1,2)【点睛】函数零点问题:将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何(3)关于函数y=x4―4x2,令y当x∈(―∞,―2)与x∈(0,2)可知±2是函数y=x4―4x2极小值点,该函数与y=4x2―16的图象如图所示由y=kx+b为y=x4―4x2与y=故存在b使得b≤b且直线y=【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝28.(2023春·江苏南京·高一南京市第二十九中学校考期中)若函数。
数列中的新定义问题专题教案高三数学一轮复习

A.200B.-200C.400D.-400
答案B
题型二、数列重组问题
【例2】已知等差数列 和等比数列 满足 , , , .
(1)求 和 的通项公式;
(2)数列 和 中的所有项分别构成集合 , ,将 的所有元素按从小到大依次排列构成一个新数列 ,求数列 的前60项和 .
【解析】(1) , .
(2)当 的前60项中含有 的前6项时,令 ,
此时至多有 项(不符).
当 的前60项中含有 的前7项时,令 ,
且 , , 是 和 的公共项,则 的前60项中含有 的前7项且含有 的前56项,再减去公共的三项.
∴ .
题型三、数列中连续两项和或积的问题(an+an+1=f(n)或an·an+1=f(n))
【例3】已知数列{an}满足a1=1,an+1+an=4n.
(1)求数列{an}的前100项和S100;
(2)求数列{an}的通项公式.
解析(1)∵a1=1,an+1+an=4n,
∴S100=(a1+a2)+(a3+a4)+…+(a99+a100)
=4×1+4×3+…+4×99=4×(1+3+5+…+99)=4×502=10 000.
(2)由题意,an+1+an=4n,①,an+2+an+1=4(n+1),②
由②-①得,an+2-an=4,由a1=1,a1+a2=4,所以a2=3.
当n为奇数时,an=a1+ ×4=2n-1,当n为偶数时,an=a2+ ×4=2n-1.
综上所述,an=2n-1.
先引入简单的新定义数列问题,使学生熟悉题目,在听过考试中常见的数列重组问题,建立学生学习的信心,使学生学有所得。过程中精讲详讲相结合。
数列新定义问题,插入数字构成新数列问题,取整数列问题(解析版)

数列新定义,插入数字构成新数列,取整数列问题2021新高考2卷T121(2023·全国·高三专题练习)设正整数n=a0⋅20+a1⋅2+⋯+a k-1⋅2k-1+a k⋅2k,其中a i∈0,1,记ωn = a0+a1+⋯+a k.则()A.ω2n=ωn B.ω2n+3=ωn +1C.ω8n+5=ω4n+3D.ω2n-1=n【答案】ACD【分析】利用ωn的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.【详解】对于A选项,ωn=a0+a1+⋯+a k,2n=a0⋅21+a1⋅22+⋯+a k-1⋅2k+a k⋅2k+1,所以,ω2n=a0+a1+⋯+a k=ωn ,A选项正确;对于B选项,取n=2,2n+3=7=1⋅20+1⋅21+1⋅22,∴ω7 =3,而2=0⋅20+1⋅21,则ω2 =1,即ω7 ≠ω2 +1,B选项错误;对于C选项,8n+5=a0⋅23+a1⋅24+⋯+a k⋅2k+3+5=1⋅20+1⋅22+a0⋅23+a1⋅24+⋯+a k⋅2k+3,所以,ω8n+5=2+a0+a1+⋯+a k,4n+3=a0⋅22+a1⋅23+⋯+a k⋅2k+2+3=1⋅20+1⋅21+a0⋅22+a1⋅23+⋯+a k⋅2k+2,所以,ω4n+3=2+a0+a1+⋯+a k,因此,ω8n+5=ω4n+3,C选项正确;对于D选项,2n-1=20+21+⋯+2n-1,故ω2n-1=n,D选项正确.题型一数列新定义1有一个非常有趣的数列1n叫做调和数列,此数列的前n项和已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式,只是得到它的近似公式:当n很大时,1+12+13+⋯+1n≈ln n+γ,其中γ称为欧拉-马歇罗尼常数,γ≈0.577215664901⋯,至今为止都还不确定γ是有理数还是无理数.由于上式在n很大时才成立,故当n较小时计算出的结果与实际值之间是存在一定误差的,已知ln2≈0.693,ln10≈2.303.用上式估算出的ln5与实际的ln5的误差绝对值近似为()A.0.003B.0.096C.0.121D.0.216【答案】B【分析】直接通过两种方法求出ln5,作差取绝对值即可求出结果.【详解】1+12+13+14+15≈ln5+γ⇒ln5≈13760-γ,又ln5=ln10-ln2≈2.303-0.693=1.610ln5与实际的ln5的误差绝对值近似为13760-0.577-1.610≈0.0962(多选)若数列a n 满足:对∀i ,j ∈N *,若i <j ,则a i <a j ,称数列a n 为“鲤鱼跃龙门数列”.下列数列a n 是“鲤鱼跃龙门数列”的有()A.a n =n 2-4n +1B.a n =n +1n +2C.a n =sin n πD.a n =lnn n +1【答案】BD【分析】举特例i =1<j =3,a 1=-2=a 3可说明A 不符合题意,同理可说明C 不符合题意;依据“鲤鱼跃龙门数列”的定义,可说明B ,D .【详解】对于A ,不妨取i =1<j =3,但a 1=-2=a 3,不满足a i <a j ,故A 错误;对于B , a n =n +1n +2=1-1n +2,对∀i ,j ∈N *,若i <j ,则1i +2>1j +2,则1-1i +2<1-1j +2,即a i <a j ,故B 正确;对于C ,不妨取i =2<j =4,但a 2=0=a 4,不满足a i <a j ,故C 错误;对于D , a n =ln n n +1=ln 1-1n +1 ,对∀i ,j ∈N *,若i <j ,则1i +1>1j +1,则1-1i +1<1-1j +1,故ln 1-1i +1 <ln 1-1j +1,即a i <a j ,故D 正确3意大利数学家斐波那契以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,⋯,该数列从第三项起,每一项都等于前两项的和,即递推关系式为a n +2=a n +1+a n ,n ∈N *,故此数列称为斐波那契数列,又称“兔子数列”.已知满足上述递推关系式的数列a n 的通项公式为a n =A ⋅1+52n+B ⋅1-52n,其中A ,B 的值可由a 1和a 2得到,比如兔子数列中a 1=1,a 2=1代入解得A =15,B =-15.利用以上信息计算5+125= .(x 表示不超过x 的最大整数)()A.10B.11C.12D.13【答案】B【分析】根据题不妨设A =B =1,求出a 1,a 2,进而得到a 5,通过a n 的第五项,即可得到1+525,1-525之间的关系,根据1-525的范围可大致判断5+125的范围,进而选出选项.【详解】解:由题意可令A =B =1,所以将数列a n 逐个列举可得:a 1=1,a 2=3,a 3=a 1+a 2=4,a 4=a 3+a 2=7,a 5=a 4+a 3=11,故a 5=1+525+1-525=11,因为1-525∈-1,0 ,所以1+52 5∈11,12 ,故1+525=11.4十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间0,1 均分为三段,去掉中间的区间段13,23,记为第1次操作;再将剩下的两个区间0,13 ,23,1分别均分为三段,并各自去掉中间的区间段,记为第2次操作;⋯;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段;操作过程不断地进行下去,剩下的区间集合即是“康托三分集”.设第n 次操作去掉的区间长度为a n ,数列b n 满足:b n =n 2a n ,则数列b n 中的取值最大的项为()A.第3项B.第4项C.第5项D.第6项【答案】C【分析】由已知可得a n =1223n,则b n =12n 223n,然后由b n +1-b n =1623n-n 2+4n +2 =0,得n =2+6,而n 为正整数,从而可求得答案.【详解】由题可知a 1=13,a 2=2×13×13,a 3=22×13×13×13,a 4=23×13×13×13×13,由此可知a n =2n -113n=1223n,所以b n =n 2a n =12n 223n,因为b n +1-b n =12(n +1)223n +1-12n 223n=1223n23(n +1)2-n 2 =1623n-n 2+4n +2 ,令-n 2+4n +2=0,解得n 1=2+6,n 2=2-6(舍),由此可知n ≤4时b n +1-b n >0;n ≥5时b n +1-b n <0,故b 5的取值最大5(多选)设正整数n =a 0⋅90+a 1⋅91+⋯+a k -1⋅9k -1+a k ⋅9k ,其中a i ∈0,1,2,3,4,5,6,7,8 i =0,1,2,⋯,k .记ωn =a 0+a 1+⋯+a k ,当n ≤8时,S n =ω1 +ω2 +⋯+ω9n ,则()A.S n -S n-1=9n+28n≥2B.ω9n+10=ωn +1C.数列S nn为等差数列 D.ω9n-18=n【答案】ACD【分析】分别表示出ω9n-8=n,ω9n-7=n+1,⋯⋯ω9n=n即可求解A,再求出ω9n+10可求解B,利用等差数列的定义可求解C,根据9n-18=1×1-9n1-9=90+91+92+93+⋯+9n-1可求解D.【详解】当n≥2时,S n-S n-1=ω9n-8+ω9n-7+ω9n-6+ω9n-5+ω9n-4+ω9n-3+ω9n-2+ω9n-1+ω9n,又9n-8=1⋅90+n-1⋅91,所以ω9n-8=1+n-1= n,同理9n-7=2⋅90+n-1⋅91,所以ω9n-7=2+n-1=n+1,⋯,9n-1=8⋅90+n-1⋅91,所以ω9n-1=8+n-1=n+7,9n=0⋅90+n⋅9,所以ω9n=n,所以S n-S n-1=9n+28,A项正确;9n+10=0⋅90+a0⋅91+a1⋅92+⋯+a k-1⋅9k +a k⋅9k+1+9+1,ω9n+10=1+1+a0+a1+a2+⋯+a k=ωn +2,B项错误;当n=1时,S1 =ω1 +ω2 +⋯+ω9 =1+2+⋯+8+1=37,当n≥2时,S n=S n-S n-1+S n-1-S n-2+⋯+S2 -S1 +S1=9n+28+9n-1+28+⋯+9×2+28+9×1+28=n9n+652=9n2+65n2,当n=1时也符合,所以S n=9n2+65n2,所以S nn=9n+652,所以S nn-S n-1n-1=9n+652-9n+562=92,所以数列S nn为等差数列,C项正确;9n-18=1×1-9n1-9=90+91+92+93+⋯+9n-1,ω9n-18=1+1+⋯+1=n,D项正确6(多选)在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列2,4进行构造,第1次得到数列2,6,4;第2次得到数列2,8,6,10,4;⋯;第n n∈N*次得到数列2,x1,x2,x3,⋯,x k,4.记a n=2+x1+x2+x3+⋅⋅⋅+x k+4,则()A.a3=84B.a n2为偶数 C.k=2n-1 D.a n+1=3a n-6【答案】ACD【分析】通过计算求出a1,a2,a3,的值,并且归纳出每一项与前一项的关系,以及k的变化,从而运用归纳法得到a n,a n-1之间的关系,以及k,n之间的关系,利用累加法可得a n,逐项判断即可得答案.【详解】由题意得:a1=2+6+4=12,此时k=1=21-1a 2=12+8+10=30=a 1+18=a 1+6×31,此时k =3=22-1,则a 22=15,不为偶数,故B 不正确;a 3=30+10+14+16+14=84=a 2+54=a 2+6×32,此时k =7=23-1,故A 正确;a 4=a 3+162=a 3+6×33,此时k =15=24-1归纳可得a n =a n -1+6×3n -1,此时k =2n -1,故C 正确;则a n -a n -1=6×3n -1,a n -1-a n -2=6×3n -2,a n -2-a n -3=6×3n -3,⋯⋯,a 2-a 1=6×31累加可得a n -a 1=6×3n -1+6×3n -2+6×3n -3+⋯+6×31=6×31-3n1-3=3n +1-9所以a n =3n +1+3,则a n +1=3n +2+3=3×3n +1+3 -6,即a n +1=3a n -6,故D 正确7对于一个给定的数列a n ,把它的连续两项a n +1与a n 的差a n +1-a n 记为b n ,得到一个新数列b n ,把数列b n 称为原数列a n 的一阶差数列.若数列b n 为原数列a n 的一阶差数列,数列c n 为原数列b n 的一阶差数列,则称数列c n 为原数列a n 的二阶差数列.已知数列a n 的二阶差数列是等比数列,且a 1=2,a 2=3,a 3=6,a 4=13,则数列a n 的通项公式a n =.【答案】2n -n +1【分析】运用等比数列通项公式及累加法可求得结果.【详解】设数列b n 为原数列a n 的一阶差数列,c n 为原数列a n 的二阶差数列.则由题意可知b 1=a 2-a 1=1,b 2=a 3-a 2=3,b 3=a 4-a 3=7,c 1=b 2-b 1=2,c 2=b 3-b 2=4.又c n 为等比数列,故公比q =c 2c 1=2,所以c n =2n ,即b n +1-b n =2n .当n ≥2时,b n =b n -b n -1 +b n -1-b n -2 +⋯+b 2-b 1 +b 1=2n -1+2n -2+⋯+21+1=2n -1,将n =1代入b n =2n -1得b 1=21-1=1,符合,所以b n =2n -1,n ∈N ∗.所以a n +1-a n =2n -1,当n ≥2时,a n =a n -a n -1 +a n -1-a n -2 +⋯+a 2-a 1 +a 1=2n -1-1 +2n -2-1 +⋯+21-1 +2=2n -1+2n -2+⋯+21-(n -1)+2=2n -n +1,将n =1代入a n =2n -n +1得a 1=21-1+1=2,符合,所以a n =2n -n +1,n ∈N ∗.8(2023·广西苍梧中学校考)数列{a n }中,a n =log n +1(n +2)(n ∈N ∗),定义:使a 1⋅a 2⋅⋯⋅a k 为整数的数k (k ∈N ∗)叫做期盼数,则区间[1,2023]内的所有期盼数的和等于()A.2023 B.2024C.2025D.2026【答案】D【分析】利用换底公式与累乘法把a 1⋅a 2⋅a 3⋅⋯⋅a k 化为log 2(k +2),然后根据a 1⋅a 2⋅a 3⋅⋯⋅a k 为整数,可得k=2n -2,最后由等比数列前n 项和公式求解.【详解】解:∵a n =log n +1(n +2)=lg n +2lg n +1,(n ∈N *),∴a 1⋅a 2⋅a 3⋅⋯⋅a k =lg3lg2⋅lg4lg3⋅lg5lg4⋅⋯⋅lg k +2 lg k +1=log 2(k +2),又∵a 1⋅a 2⋅a 3⋅⋯⋅a k 为整数,∴k +2必须是2的n 次幂(n ∈N *),即k =2n -2.k ∈[1,2023]内所有的“幸运数”的和:S =22-2 +23-2 +24-2 +⋯+210-2 =2(1-210)1-2-20=20269数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由31<π<41,取3为弱率,4为强率,得a 1=3+41+1=72,故a 1为强率,与上一次的弱率3计算得a 2=3+71+2=103,故a 2为强率,继续计算,⋯⋯.若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推,已知a m =227,则m =;a 8=.【答案】64715【分析】根据题意不断计算即可解出.【详解】因为a 2为强率,由31<π<103可得,a 3=3+101+3=134>3.1415927,即a 3为强率;由31<π<134可得,a 4=3+131+4=165>3.1415927,即a 4为强率;由31<π<165可得,a 5=3+161+5=196>3.1415927,即a 5为强率;由31<π<196可得,a 6=3+191+6=227>3.1415927,即a 6为强率,所以m =6;由31<π<227可得,a 7=3+221+7=258=3.125<3.1415926,即a 7为弱率;由258<π<227可得,a 8=25+228+7=4715.10在数列a n 中,若a n +1-a 1a 2a 3⋅⋅⋅a n =d n ∈N * ,则称数列a n 为“泛等差数列”,常数d 称为“泛差”.已知数列a n 是一个“泛等差数列”,数列b n 满足a 21+a 22+⋅⋅⋅+a 2n =a 1a 2a 3⋅⋅⋅a n -b n .(1)若数列a n 的“泛差”d =1,且a 1,a 2,a 3成等差数列,求a 1;(2)若数列a n的“泛差”d=-1,且a1=12,求数列b n的通项b n.【答案】(1)a1=-1或a1=1,(2)b n=54-n【分析】(1)根据“泛差”d=1,联立得a1+a3=2a2a2-a1=1a3-a1a2=1,解出a1即可.(2)由题a21+a22+⋯+a2n=a1a2⋯a n-b n,升次作差得a2n+1=a1a2⋯a n a n+1-1-b n+1+b n,结合a n+1+1=a1a2 a3⋯a n,整体代入可得b n+1-b n=-1,即可写出其通项.【详解】(1)∵“泛差”d=1,∴a n+1-a1a2a3⋯a n=1,∵a1+a3=2a2,a2-a1=1,a3-a1a2=1,联立三式得a1+2-a1a1+1=1,化简得a21=1,解得a1=±1.(2)a n+1-a1a2a3⋯a n=-1,则a n+1+1=a1a2a3⋯a n,由a21+a22+⋯+a2n=a1a2⋯a n-b n,①∴a21+a22+⋯+a2n+1=a1a2⋯a n+1-b n+1,②②-①得a2n+1=a1a2⋯a n a n+1-1-b n+1+b n,即a2n+1=a n+1+1a n+1-1-b n+1+b n =a2n+1-1-b n+1+b n,∴b n+1-b n=-1且b1=a1-a21=12-14=14.所以b n为等差数列,首项为14,公差为-1,∴b n=14+(n-1)⋅(-1)=-n+54.11若数列A n满足A n+1=A2n,则称数列A n为“平方递推数列”.已知数列a n中,a1=9,点a n,a n+1在函数f(x)=x2+2x的图象上,其中n为正整数,(1)证明:数列a n+1是“平方递推数列”,且数列lg a n+1为等比数列;(2)设b n=lg a n+1,c n=2n+4,定义a*b=a,a≤b,b,a>b,,且记dn=b n*c n,求数列d n的前n项和S n.【答案】(1)证明见解析(2)S n=2n-1,n≤4且n∈N*,n2+5n-21,n>4且n∈N*.【详解】(1)∵点a n,a n+1在函数f(x)=x2+2x的图象上,∴a n+1=a2n+2a n,∴a n+1+1=a n+12,∴a n+1是“平方递推数列”.因为lg a1+1=lg(9+1)=1>0,对a n+1+1=a n+12两边同时取对数得lg a n+1+1=2lg a n+1,∴数列lg a n+1是以1为首项,2为公比的等比数列.(2)由(1)知b n=lg a n+1=1×2n-1=2n-1, 由数列b n、c n的通项公式得,当n≤4时,b n<c n;当n>4时,b n>c n.又由a*b=a,a≤b,b,a>b,dn=b n*c n,得d n=2n-1,n≤4,n∈N*,2n+4,n>4,n∈N*当n≤4且n∈N*时,S n=b1+⋯+b n=1-2n1-2=2n-1;当n>4且n∈N*时,S n=b1+b2+b3+b4+c5+c6+⋯+c n=24-1+(n-4)(14+2n+4)2=n2+5n-21,综上,S n=2n-1,n≤4且n∈N*,n2+5n-21,n>4且n∈N*.12已知a n=3n+1,b n=2n,数列a n和b n中的所有项分别构成集合A,B,将A∪B的所有元素按从小到大依次排列构成一个新数列c n,求数列c n的前60项和S60.【答案】5014.【详解】当c n的前60项中含有b n的前6项时,令3n+1<27=128⇒n<127 3,此时至多有41+7=48项(不符).当c n的前60项中含有b n的前7项时,令3n+1<28=256⇒n<85,且22,24,26是a n和b n的公共项,则c n的前60项中含有b n的前7项且含有a n的前56项,再减去公共的三项.∴S60=56×4+56×552×3+2+23+25+27=4844+170=5014.13已知a n=4n-1,若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.【答案】20190【分析】由已知可得集合A∪B中的所有元素的最小值为3,且3,27,243三个元素是{b n}中前102项中的元素,同时也是A∩B中的元素,从而可求T102.【详解】集合A={x|x=4n-1,n∈N*},B={x|x=3n,n∈N*},所以集合A∪B中的所有元素的最小值为3,且3,27,243三个元素是{b n}中前102项中的元素,且是A∩B中的元素,所以T102=(a1+a2+a3+...+a100)+9+81=12×100×(3+400-1)+90=20190.题型二取整数列14已知数列a n满足a1=-1,n a n+1-a n=2n+1,记‹a n›为不小于a n的最小整数,b n=‹a n›,则数列b n的前2023项和为()A.2020B.2021C.2022D.2023【答案】A【分析】利用裂项相消求和可得答案.【详解】由题意得a n+1-a n=21n-1n+1 ,则当n≥2时,a n=a n-a n-1+a n-1-a n-2+⋯+a2-a1 +a1=21n-1-1n+21n-2-1n-1+⋯+21-12-1=1-2n,当n=1时也满足上式,所以a n=1-2nn∈N*,所以b1=‹-1›=-1,b2=‹0›=0,b3=‹1-23›=1,b4=‹1-24›=1,b5=b6=⋯=1,故b n的前2023项和为-1+0+1+1+⋯+1=202015高斯函数y=x 也称为取整函数,其中x 表示不超过x的最大整数,例如 3.4=3.已知数列a n满足a1=1,a n+1=a2n+a n,设数列a n1+a n的前n项和为Sn,则S2022=.【答案】2021【分析】首先利用裂项得到1a n+1=1a n-1a n+1,再化简a n1+a n=1-11+a n=1+1a n+1-1a n,利用裂项相消求和,再利用高斯函数的定义,即可求解.【详解】因为a n+1=a2n+a n,所以1a n+1=1a2n+a n=1a n-1a n+1,a n1+a n=1-11+a n=1+1a n+1-1a n,所以S2022=2022+1a2-1a1+1a3-1a2+⋅⋅⋅+1a2023-1a2022=2022-1a1+1a2023=2021+1a2023.因为a1=1,所以a n+1=a2n+a n>a n,所以a2023>1,所以2021<2021+1a2023<2022,故S2022=2021.16在数列a n中,a1=2,a2=4,且a n+2-2a n+1+a n-2=0.x 表示不超过x的最大整数,若b n=a n n 2 ,数列b n 的前n 项和为T n ,则T 2023=()A.2 B.3C.2022D.2023【答案】B【分析】利用累加法求得a n ,进而求得b n ,找到规律后求得T 2023.【详解】由a n +2-2a n +1+a n -2=0可得a n +2-a n +1=a n +1-a n +2,故a n +1-a n 是首项为a 2-a 1=2,公差为2的等差数列,则a n +1-a n =2+2(n -1)=2n ,所以当n ≥2时,a n =a n -a n -1 +a n -1- a n -2 +⋯+a 2-a 1 +a 1=2n -1 +2n -2 +⋯+2+2=2+2n -2 n -12+2=n 2-n +2,故a n =n 2-n +2(n ≥2),当n =1时,a 1=2也满足上式,所以a n =n 2-n +2,故b n =a n n 2=1-n -2n 2.易得b 1=1-1-21=2,b 2=1-2-24=1,当n >2时,n -2>0,n 2>0,n 2-(n -2)=n 2-n +2=n -122+74>0,即n 2>n -2,故0<n -2n 2<1,故当n >2时,b n=1-n -2n 2=0,故T 2023=b 1+b 2=317已知n ∈N *,设x n 是关于x 的方程nx 3+2x -n =0的实数根,记a n =(n +1)x n ,(n =2,3,4,⋯).(符号[x ]表示不超过x 的最大整数).则a 1+a 2+a 3+⋯+a 20212020=.【答案】20232【分析】构造函数f (y )=n (n +1)3y 3+2n +1y -n ,利用导数求解单调性,结合零点存在性定理即可得n <y n <n +1(n ≥2),进而得a n =y n =n ,(n ≥2),由等差数列求和公式即可求解.【详解】令y n =(n +1)x n , 则x n =y nn +1,于是方程化为n (n +1)3y 3n+2y n n +1-n =0.记f (y )=n (n +1)3y 3+2n +1y -n , f (y )=3n (n +1)3y 2+2n +1>0,故f (y )在(0,+∞)上为增函数,且f (n )=n 4(n +1)3+2nn +1-n =-n n 2-n -1 (n +1)3,∵n ∈N ∗,当n ≥2时,g n =n 2-n -1单调递增,g n ≥g 2 =1>0,因此f (n )<0,f (n +1)=2>0,则n <y n <n +1(n ≥2).则a n =y n =n ,(n ≥2)又a 1=0,则a 1+a 2+a 3+⋯+a 20212020=2+3+4+⋯+20212020=1011.518已知数列a n 、b n ,a n +1=a n 2,b n +1=b n 2,n ∈N +其中x 为不大于x 的最大整数.若a 1=b 1=m ,m ≤1000,m ∈N +,有且仅有4个不同的t ,使得a t ≠b t ,则m 一共有( )个不同的取值.A.120 B.126C.210D.252【答案】C【分析】将m 表示为c 020+c 121+c 222+c 323+⋅⋅⋅+c 929,其中c 0,c 1,⋅⋅⋅,c 9∈0,1 ,且c 0,c 1,⋅⋅⋅,c 9不全为0,m ≤1000,分析a t ≠b t 与c 0,c 1,⋅⋅⋅,c 9的取值的关系,由此确定满足条件的m 的取值的个数.【详解】设m =c 020+c 121+c 222+c 323+⋅⋅⋅+c 929,其中c 0,c 1,⋅⋅⋅,c 9∈0,1 ,且c 0,c 1,⋅⋅⋅,c 9不全为0,m ≤1000,若c 0=1,则m =1+c 121+c 222+c 323+⋅⋅⋅+c 929,a 1=b 1=m ,a 2=m -12=1+c 221+c 322+c 423+⋅⋅⋅+c 829,b 2=m2,若c 0=0,则m =c 121+c 222+c 323+⋅⋅⋅+c 929,a 1=b 1=m ,a 2=m 2,b 2=m 2,所以若c 0=1则,a 2≠b 2,若c 0=0,则a 2=b 2,若c 0=0,c 1=0,则m =c 222+c 323+⋅⋅⋅+c 929,a 1=b 1=m ,a 2=m 2,b 2=m 2,a 3=m 4,b 3=m 4,若c 0=0,c 1=1,则m =2+c 222+c 323+⋅⋅⋅+c 929,a 1=b 1=m ,a 2=m 2,b 2=m 2,a 3=m -24,b 3=m 4,若c 0=1,c 1=0,则m =1+c 222+c 323+⋅⋅⋅+c 929,a 1=b 1=m ,a 2=m -12,b 2=m 2,a 3=m -14,b 3=m -14,若c 0=1,c 1=1,则m =1+2+c 222+c 323+⋅⋅⋅+c 929,a 1=b 1=m ,a 2=m -12,b 2=m 2,a 3=m -34,b 3=m -14,所以c 1=0时,a 3=b 3,c 1=1时,a 3≠b 3,同理可以证明c k =0时,a k +2=b k +2,c k =1,a k +2≠b k +2,因为有且仅有4个不同的t ,使得a t ≠b t ,即c 0,c 1,c 2,⋅⋅⋅,c 9中有且仅有4个变量取值为1,其余变量取值为0,又从c 0,c 1,c 2,⋅⋅⋅,c 9中任选4个变量有C 410种取法,故满足条件的m 的个数为C 410,即210个19符号x 表示不超过实数x 的最大整数,如 2.3 =2,-1.9 =-2.已知数列a n 满足a 1=1,a 2=5,a n +2+4a n =5a n +1.若b n =log 2a n +1 ,S n 为数列8100b n b n +1 的前n 项和,则S 2025 =()A.2023B.2024C.2025D.2026【答案】B【分析】由a n +2+4a n =5a n +1变形可推出数列a n +1-a n 为等比数列、a n +1-4a n 为常数列,求出这两个数列的通项公式,可求出数列a n 的通项公式,求得b n =log 2a n +1 =2n ,利用裂项相消法可求出S 2025,结合题中定义可求得S 2025 的值.【详解】因为a n +2+4a n =5a n +1,则a n +2-a n +1=4a n +1-a n ,且a 2-a 1=4,所以,数列a n +1-a n 是首项为4,公比也为4的等比数列,所以,a n +1-a n =4×4n -1=4n ,①由a n +2+4a n =5a n +1可得a n +2-4a n +1=a n +1-4a n ,且a 2-4a 1=1,所以,数列a n +1-4a n 为常数列,且a n +1-4a n =1,②由①②可得a n =4n -13,因为4n +1-13-4n=4⋅4n -1-3⋅4n 3=4n -13>0,4n +1-13-2⋅4n =4⋅4n -1-6⋅4n 3=-2⋅4n +13<0,则4n <a n +1=4n +1-13<2⋅4n ,所以,2n <log 2a n +1<2n +1,所以,b n =log 2a n +1 =2n ,所以,8100b n b n +1=81002n ⋅2n +1 =2025n n +1 =20251n -1n +1 ,所以,S 2025=20251-12+12-13+13-14+⋯+12025-12026=20251-12026 =2025-12026∈2024,2025 ,因此,S 2025 =202420已知a n =n ,定义x 为不大于x 的最大整数,求数列log 2a n 的前2m -1m ∈N * 项和.【答案】(m -2)2m +2【分析】根据x 的定义可得当n =2m -1,2m -1+1,2m -1+2,⋅⋅⋅,2m -1时,log 2n =m -1,从而表示出log 2a n 的前2m -1m ∈N *项和,再利用错位相减可求得结果.【详解】log 2a 2m -1=log 22m -1=m -1,所以log 2a 2m -1=log 22m -1 =m -1,当n =1时,log 2n =0,当n =2时,log 2n =1,当n =3时,log 2n =log 23 =1,当n =4,5,6,7时,log 2n =2,当n =8,9,10,11,12,13,14,15时,log 2n =3,当n =24,24+1,⋅⋅⋅,25-1时,log 2n =4,⋯⋯当n =2m -1,2m -1+1,2m -1+2,⋅⋅⋅,2m -1时,log 2n =m -1,所以数列log 2a n 的前2m -1m ∈N * 项和为0+1×21+2×22+3×23+⋅⋅⋅+(m -1)2m -1,令S =1×21+2×22+3×23+⋅⋅⋅+(m -1)2m -1,则2S =1×22+2×23+3×24+⋅⋅⋅+(m -2)⋅2m -1+(m -1)⋅2m ,所以-S =2+22+23+24+⋅⋅⋅+2m -1-(m -1)⋅2m =2(1-2m -1)1-2-(m -1)2m=-(m -2)2m -2,所以S =(m -2)2m +221已知数列a n 满足a 1=12,2a n +1+a n =3,数列b n 满足b 1=1,nb n +1-n +1 b n =n 2+n .(1)求数列a n 与b n 的通项公式;(2)若c n =b n +1-b n a n ,求使c 1 +c 2 +c 3 +⋯+c n ≤2023成立的整数n 的最大值.(c n 表示不超过c n 的最大整数)【答案】(1)a n =1+-12n,b n =n 2,(2)44【分析】(1)对2a n +1+a n =3变形后可得数列a n -1 是以-12为公比的等比数列,从而可求出a n ,对nb n +1-n +1 b n =n 2+n 变形后可得数列b nn是以1为公差的等差数列,从而可求出b n ,(2)由(1)得c n =2n +1+2n +1-2 n,通过比较2n和2n +1的大小,可得c n =1,n =16,n =22n ,n ≥3,n 为奇数2n +1,n ≥3,n 为偶数,然后分n 为奇数和n 为偶数两种情况求解.【详解】(1)因为2a n +1+a n =3,所以a n +1-1=-12a n-1 ,所以数列a n -1 是以-12为公比的等比数列,所以a n -1=-12n -1a 1-1 ,因为a 1=12,所以数列a n 的通项公式为a n =1+-12n.因为nb n +1-n +1 b n =n 2+n =n n +1 ,所以b n +1n +1-bn n=1,所以数列b nn是以1为公差的等差数列,所以b nn =b 11+n -1 ,因为b 1=1,所以数列b n 的通项公式为b n =n 2.(2)因为c n =b n +1-b n a n ,所以c n =2n +1+2n +1-2n,因为当n ≥3时,2n +1-2n +1 -1-2n -2n -1 =2n -2>0,所以数列2n -2n -1 n ≥3 是递增数列,又23-2×3-1=1,所以2n -2n -1>0n ≥3 ,即0<2n +12n<1n ≥3 .又c 1=32,c 2=254,所以c n =1,n =16,n =22n ,n ≥3,n 为奇数2n +1,n ≥3,n 为偶数,当n ≥3且n 为奇数时,c 1 +c 2 +c 3 +⋯+c n =7+6+10+⋯+2n +9+13+⋯+2n -1 =7+6+2n 2×n +12-1 +2n +82×n -12-1 =2n 2+3n -12,又c 1 +c 2 +c 3 +⋯+c n ≤2023,即2n 2+3n -12≤2023,所以2n 2+3n -4047≤0,又2×432+3×43-4047=-220<0,2×452+3×45-4047=138>0,所以n 的最大值为43.当n ≥3且n 为偶数时,n -1为奇数,所以c 1 +c 2 +c 3 +⋯+c n =2n -1 2+3n -1 -12+2n +1=2n 2+3n 2,又c 1 +c 2 +c 3 +⋯+c n ≤2023,即2n 2+3n2≤2023,所以2n 2+3n -4046≤0,又2×442+3×44-4046=-42<0,2×462+3×46-4046=324>0,所以n 的最大值为44.综上所述,使c 1 +c 2 +c 3 +⋯+c n ≤2023成立的整数n 的最大值为44题型三插入数字构成新数列22已知等差数列a n 的首项a 1=1,公差d =10,在a n 中每相邻两项之间都插入4个数,使它们和原数列的数一起构成一个新的等差数列b n ,则b 2023=()A.4043B.4044C.4045D.4046【答案】C【分析】根据等差数列的性质求出b n =2n -1,再代入即可.【详解】设数列b n 的公差为d 1,由题意可知,b 1=a 1,b 6=a 2,b 6-b 1=a 2-a 1=10=5d 1,故d1=2,故b n=1+2n-1=2n-1,则b2023=2023×2-1=404523已知a n=3n-1对所有正整数m,若a k<2m<a k+1,则在a k和a k+1两项中插入2m,由此得到一个新数列{b n},求{b n}的前40项和.【答案】1809【分析】考虑到26<a40<27,a34=99>26,从而确定{b n}的前40项中有34项来自{a n},其他6项由2k组成,由此分组求和.【详解】由a40=117.所以26<a40<27,又a34=99>26,所以b n前40项中有34项来自a n.故b1+b2+⋯+b40=a1+a2+⋯+a34+21+22+⋯+26=34a1+a342+226-12-1=1683+126=180924已知数列a n的通项公式a n=5n+15,在数列a n的任意相邻两项a k与a k+1k=1,2,⋅⋅⋅之间插入2k个4,使它们和原数列的项构成一个新的数列b n,记新数列b n的前n项和为S n,则S60的值为.【答案】370【分析】依题意,确定前60项所包含数列a n的项,以及中间插入4的数量即可求和.【详解】因为a k与a k+1k=1,2,⋅⋅⋅之间插入2k个4,a1=20,a2=25,a3=30,a4=35,a5=40,其中a1,a2之间插入2个4,a2,a3之间插入4个4,a3,a4之间插入8个4,a4,a5之间插入16个4,a5,a6之间插入32个4,由于6+2+4+8+16=36<60,6+2+4+8+16+32=68>60,故数列b n的前60项含有a n的前5项和55个4,故S60=20+25+30+35+40+4×55=37025在x和y两个实数之间插入n个实数a1,a2,a3,⋯,a n,使数列x,a1,a2,a3,⋯,a n,y为等差数列,那么这个数列的公差为()A.y-xnB.y-xn+1C.x-yn+1D.y-xn+2【答案】B【分析】根据等差数列通项公式计算可得.【详解】依题意等差数列x,a1,a2,a3,⋯,a n,y中共有n+2项,设公差为d,则y=x+n+2-1d,所以d=y-xn+2-1=y-xn+1.26在数列的每相邻两项之间插入这两项的和,组成一个新的数列,这样的操作叫做这个数列的一次“拓展”.先将数列1,3进行拓展,第一次拓展得到1,4,3,第二次拓展得到数列1,5,4,7,3;⋯⋯;第n 次拓展得到数列1,x1,x2,⋯⋯,x i,3,设a n=1+x1+x2+⋯+x t+3,则t=,a n=.【答案】2n-123n+1【分析】拓展规则可知拓展后的项数的递推式b n+1=2b n-1和a n的递推式a n+1=3a n-4,通过构造等比数列可求通项.【详解】(1)设数列1,3第n次拓展后的项数为b n,则b1=3,b2=5,根据拓展规则可知,b n+1=2b n-1,即b n+1-1=2b n-1,∴数列b n-1是等比数列,首项为2,公比为2,∴b n-1=2n,即b n=2n+1,所以t=b n-2=2n-1;(2)根据拓展规则可知,a n+1=a n+2a n-4=3a n-4,∴a n+1-2=3a n-2,又a1-2=6,∴数列a n-2是等比数列,首项为6,公比为3,∴a n-2=6×3n-1=2×3n,所以a n=23n+127若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,2进行构造,第一次得到数列1,3,2;第二次得到数列1,4,3,5,2;依次构造,第n n∈N*次得到的数列的所有项之和记为a n.(1)求a n+1与a n满足的关系式;(2)求数列a n的通项公式a n;【答案】(1)a n+1=3a n-3;(2)a n=3n+1+3 2;【分析】(1)根据题干给出的规则,得到第n次构造后数列的和与第n+1次构造后数列和的关系;(2)已知相邻两项关系构造等比数列,进而得到数列a n的通项公式;【详解】(1)设第n次构造后得的数列为1,x1,x2,⋯,x k,2,则a n=3+x1+x2+⋯+x k,则第n+1次构造后得到的数列为1,1+x1,x1,x1+x2,x2,⋯,x k-1+x k,x k,2+x k,2,则a n+1=6+3x1+x2+⋯x k=6+3a n-3=3a n-3,即a n+1与a n满足的关系式为a n+1=3a n-3;(2)由a n+1=3a n-3,可得a n+1-32=3a n-32,且a1=6,则a1-32=92所以数列a n-3 2是以92为首项,3为公比的等比数列,所以a n -32=92×3n -1,即a n =3n +1+3228(多选)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;⋯;第n n ∈N * 次得到数列1,x 1,x 2,x 3,⋯,x k ,2;⋯记a n =1+x 1+x 2+⋯+x k +2,数列a n 的前n 项为S n ,则()A.k +1=2nB.a n +1=3a n -3C.a n =32n 2+3n D.S n =343n +1+2n -3 【答案】ABD【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时k =1第2次得到数列1,4,3,5,2,此时k =3第3次得到数列1, 5,4,7,3,8,5,7,2,此时k =7第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k =15第n 次得到数列1,x 1,x 2,x 3,⋯,x k ,2此时k =2n -1所以k +1=2n ,故A 项正确;结合A 项中列出的数列可得:a 1=3+3a 2=3+3+9a 3=3+3+9+27a 4=3+3+9+27+81 ⇒a n =3+31+32+⋯+3n (n ∈N *)用等比数列求和可得a n =3+33n -12则a n +1=3+33n +1-1 2=3+3n +2-32=3n +22+32又3a n -3=33+33n -1 2-3=9+3n +22-92-3=3n +22+32所以a n +1=3a n -3,故B 项正确;由B 项分析可知a n =3+33n -1 2=323n +1即a n ≠32n 2+3n ,故C 项错误.S n =a 1+a 2+a 3+⋯+a n=322+332+⋯+3n +12 +32n =321-3n 1-32+32n =3n +24+3n 2-94=343n +1+2n -3 ,故D 项正确29已知a n=3n-1(n∈N*),在a n相邻两项中间插入这两项的等差中项,求所得新数列b n的前2n 项和T2n.【答案】T2n=32(3n-1)【分析】设数列c n满足c n=a n+a n+12=2×3n-1,a n的前n项和为S n,{c n}的前n项和为R n,则T2n=R n+S n,根据等比数列求和公式,代入计算,即可得答案.【详解】设数列c n满足c n=a n+a n+12=2×3n-1.记a n的前n项和为S n,c n的前n项和为R n,则T2n=R n+S n.由等比数列的求和公式得:S n=1-3n1-3=12(3n-1),R n=2S n=3n-1.所以T2n=R n+S n=32(3n-1).即新数列{b n}的前2n项和T2n=32(3n-1)30已知a n=2n+1-1,b n=2n-1,将数列b n中的项按从小到大的顺序依次插入数列a n中,在任意的a k,a k+1之间插入2k-1项,从而构成一个新数列c n,求数列c n的前100项的和.【答案】12182【详解】设100项中,来自于数列a n中的有m项.若第100项来自于a n,则应有m+2×1-1+2×2-1+⋯+2m-1-1=100,整理可得,m2-m-99=0,该方程没有正整数解,不满足题意;若第100项来自于b n,则应有m+2×1-1+2×2-1+⋯+2m-1≥100,整理可得,m2+m-100≥0.当m=9时,有92+9-100=-10<0不满足,102+10-100=10>0,故m=10,所以,数列c n中含有10项数列a n中的项,含有90项数列b n中的项.所以,c1+c2+⋯+c100=a1+a2+⋯+a10+b1+b2+⋯+b90=22-1+23-1+⋯+210-1+1+3+5+⋯+2×90-1=22+23+⋯+210-10+1+3+5+⋯+179=41-2101-2-10+902×1+179=1218231已知数列a n的前n项和为S n,且S n=2n+1.(1)求a n的通项公式;(2)保持a n中各项先后顺序不变,在a k与a k+1之间插入k个1,使它们和原数列的项构成一个新的数列b n,记b n的前n项和为T n,求T100的值(用数字作答).【答案】(1)a n=3,n=12n-1,n≥2;(2)8280【分析】(1)由S n=2n+1,得到S n-1=2n-1+1,n≥2,求得a n=S n-S n-1=2n-1,结合n=1时,求得a1=3,进而得到数列a n的通项公式;(2)根据题意,得到新数列b n的前100项,结合等差、等比数列的求和公式,即可求解.【详解】(1)解:由数列a n的前n项和为S n,且S n=2n+1,当n≥2时,S n-1=2n-1+1,所以a n=S n-S n-1=2n-2n-1=2n-1,n≥2,当n=1时,a1=S1=21+1=3,不符合上式,所以数列a n的通项公式为a n=3,n=1 2n-1,n≥2 .(2)解:保持数列a n中各项先后顺序不变,在a k与a k+1k=1,2,⋯之间插入k个1,则新数列b n的前100项为3,1,21,1,1,22,1,1,1,23,1,1,1,1,24,⋯,212,1,1,1,1,1,1,1,1,1,1,则T100=3+21+22+⋯+212+1+2+3+⋯+12+9=90+213-2=88+213=8192+88=8280.32已知正项数列a n的前n项和为S n,且a1=1,S2n+1-S2n=8n.(1)求S n;(2)在数列a n的每相邻两项a k、a k+1之间依次插入a1、a2、⋯、a k,得到数列b n:a1、a1、a2、a1、a2、a3、a1、a2、a3、a4、⋯,求b n的前20项和T20.【答案】(1)S n=2n-1,n∈Ν∗;(2)T20=34【分析】(1)当n≥2时,利用累加法可求得S2n的表达式,结合S n>0可得出S n的表达式,再检验n=1的情形,综合可得出S n的通项公式;(2)由a n=S1,n=1S n-S n-1,n≥2求出数列a n 的通项公式,列举出数列b n 的前20项,即可求得T20的值.【详解】(1)解:对任意的n∈N∗,因为S2n+1-S2n=8n,当n≥2时,S2n=S2n-S2n-1+⋅⋅⋅+S22-S21+S21=8n-1+⋅⋅⋅+8×1+1=81+2+3+⋅⋅⋅+n-1+1=8×n n-12+1=2n-12,因为a n>0,所以S n>0,故S n=2n-1.当n=1时,S1=a1=1适合S n=2n-1,所以S n=2n-1,n∈Ν∗.(2)解:因为S n=2n-1,n∈Ν∗,所以当n≥2时,a n=S n-S n-1=2n-1-2n-1-1=2,所以,a n=1,n=1 2,n≥2 ,所以,数列b n的前20项分别为:1、1、2、1、2、2、1、2、2、2、1、2、2、2、2、1、2、2、2、2,所以b n的前20项是由6个1与14个2组成.所以T20=6×1+14×2=3433(2023秋·湖北高三联考)已知a n=12n,在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,在数列d n中是否存在三项d m,d k,d t(其中m,k,t成等差数列)成等比数列?若存在,求出这三项;若不存在,请说明理由.【答案】不存在,理由见解析【分析】由题意可得d n=-1n+112n+1,假设存在这样的三项d m,d k,d t成等比数列,则d2k=d m d t,结合已知化简可得结论.【详解】d n=a n+1-a nn+1=12n+1-12 nn+1=-1n+112n+1假设存在这样的三项d m,d k,d t成等比数列,∵d n为递增数列,不妨设m<k<t,则d m<d k<d t,∴d2k=d m d t⇔1(k+1)2122k+2=1m+112 m+11t+112 t+1则1(k+1)2122k+2=1m+1t+112m+t+2,∵m,k,t成等差数列,∴2k=m+t,∴(k+1)2=m+1t+1⇒k2=mt,由2k=m+tk2=mt,得(m-t)2=0,所以m=t=k,与题设矛盾∴不存在这样的三项d m,d k,d t(其中m,k,t成等差数列)成等比数列.34已知数列a n的前n项和为S n,S n=2n-1,且a1=1,在数列a n的每相邻两项a k,a k+1之间依次插入a1,a2,⋯,a k,得到数列b n:a1,a1,a2,a1,a2,a3,a1,a2,a3,a4,⋯⋯,求b n的前100项和.【答案】186【分析】根据b n的形成规律,分组即可求解.【详解】(方法1)因为S n=2n-1,n∈N∗,所以当n≥2时,a n=S n-S n-1=2n-1-2n-3=2.所以a n =1,n =1,2,n ≥2.所以数列b n :1,1,2,1,2,2,1,2,2,2,⋯⋯,设1+2+⋯+n =n (n +1)2≤100,则n 2+n -200≤0,因为n ∈N *,所以n ≤13.所以b n 的前100项是由14个1与86个2组成.所以T 100=14×1+86×2=186.(方法2)设1+2+⋯+n =n (n +1)2≤100,则n 2+n -200≤0,因为n ∈N ∗,所以n ≤13.根据数列b n 的定义,知T 100=a 1+a 1+a 2 +a 1+a 2+a 3 +⋯+a 1+a 2+⋯+a 13 +a 1+a 2+⋯+a 9=S 1+S 2+S 3⋯+S 13+S 9=1+3+5⋯+25 +17=13×(1+25)2+17=18635已知等差数列a n 的前n 项和记为S n (n ∈N *),满足3a 2+2a 3=S 5+6,若a 1=1,在数列a n 的第n 项与第n +1项之间插入首项为1,公比为2的等比数列的前n 项,形成新数列b n ,记数列b n 的前n 项和为T n ,求T 95.【答案】T 95=8050【详解】若a 1=1,则a n =1+n -1 ×-2 =-2n +3,根据题意数列b n 为:第一组为:1,20;第二组为:-1,20,21;第三组为:-3,20,21,22;⋯⋯第k 组为:-2k +3,20,21,22,⋯,2k -1;则前k 组一共有2+3+4+⋯+k +1 =k +3 k2项,当k =12时,项数为90.故T 95相当于是前12组的和再加上-23,20,21,22,23这五项,即:T 95=1+-1 +⋯+-21 +20+20+21 +⋯+20+21+⋯+211 +-23+20+21+22+23设c n =2n -1,则20+20+21 +⋯+20+21+⋯+211 可看成是数列c n 的前12项和所以T 95=1-21 ×122+2×1-212 1-2-12-23+1+2+4+8=213-142=805036设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.【答案】(1)a n =2n -1;(2)T 27=84【分析】(1)由条件证明数列a n +1-a n 为等比数列,利用累加法求数列a n 的通项公式;(2)数列b n 中在a k +1之前共有k +(1+2+3+⋯+k )=k 2+3k 2项,由此确定前27项的值,再分组,结合等比求和公式可求得答案.【详解】(1)因为a n +1=3a n -2a n -1n ≥2 ,所以a n +1-a n =2a n -2a n -1,又a 1=1,a 2=2,所以数列a n +1-a n 为首项为1,公比为2的等比数列,所以a n +1-a n =2n -1,所以当n ≥2,n ∈N ∗时,a 2-a 1=1,a 3-a 2=2,⋅⋅⋅,a n -a n -1=2n -2,所以a n -a 1=1+2+⋅⋅⋅+2n -2=1-2n -11-2=2n -1-1,所以当n ≥2,n ∈N ∗时,a n =2n -1,又a 1=1也满足该关系,所以数列a n 的通项公式为a n =2n -1n ∈N ∗ ;(2)数列b n 中在a k +1之前共有k +1+2+⋯+k =k +1+k k 2=k 2+3k 2项,当k =5时,k 2+3k 2=20<27,当k =6时k 2+3k 2=27则T 27=1+2+22+⋯+25 +-12+22-32+42-52+62=1-261-2+3+7+11 =26-1+21=8437在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“和扩充”.如数列1,2第1次“和扩充”后得到数列1,3,2,第2次“和扩充”后得到数列1,4,3,5,2.设数列a ,b ,c 经过第n 次“和扩充”后所得数列的项数记为P n ,所有项的和记为S n .(1)若a =1,b =2,c =3,求P 2,S 2;(2)设满足P n ≥2023的n 的最小值为n 0,求n 0及S n 03 (其中[x ]是指不超过x 的最大整数,如1.2 =1,-2.6 =-3);【答案】(1)P 2=9,S 2=38;(2)n 0=10,S n 03 =14a +27b +14c ;【分析】(1)根据数列的一次“和扩充”,即可列举出数列求解.(2)根据第n +1次“和扩充”后增加的项数P n -1,与经“和扩充”后的项数为P n ,构造等比数列即可求解n 03=3,结合“和扩充”,即可列举出数列求解.【详解】(1)数列1,2,3,经第1次“和扩充”后得到数列为1,3,2,5,3,数列1,2,3,经第2次“和扩充”后得到数列为1,4,3,5,2,7,5,8,3,所以P 2=5+4=9,S 2=1+4+3+5+2+7+5+8+3=38;(2)数列经每1次“和扩充”后是在原数列的相邻两项中增加一项,由数列经“和扩充”后的项数为P n ,则经第n +1次“和扩充”后增加的项数为P n -1,所以P n +1=P n +P n -1 =2P n -1,所以P n +1-1=2P n -2=2P n -1 ,由(1)得P 1-1=4,P n -1 是首项为4,公比为2的等比数列,所以P n -1=4⋅2n -1=2n +1,所以P n =2n +1+1,由P n =2n +1+1≥2023,即2n +1≥2022,解得n ≥10,所以满足P n ≥2023的n 的最小值为10,故n 0=10,所以n 03=3,数列a ,b ,c 经过第1次“和扩充”后得到数列a ,a +b ,b ,b +c ,c ,且S 1=2a +3b +2c ,数列a ,b ,c 经过第2次“和扩充”后得到数列a ,2a +b ,a +b ,a +2b ,b ,2b +c ,b +c ,b +2c ,c ,且S 2=S 1+3a +6b +3c ,数列a ,b ,c 经过第3次“和扩充”后得到数列a ,3a +b ,2a +b ,3a +2b ,a +b ,2a +3b ,a +2b ,a +3b ,b ,3b +c ,2b +c ,3b +2c ,b +c ,2b +3c ,b +2c ,b +3c ,c,且S 3=S 2+9a +18b +9c ,即S n 03 =S 3=14a +27b +14c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点05 数列的新定义问题数列的新定义问题,是近几年高考的新题型,主要北京卷考查比较多。
例如:2020年北京高考[21],2020年江苏高考[20],2021年北京高考[21],2022年北京高考[21]等都对数列的新定义问题进行了考查。
〔1〕新定义数列问题的特点:通过给出一个新的数列的概论,或约定一种新运算,或给出几个新模型来创设全新的问题情境,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的。
〔2〕新定义问题的解题思路:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,逐条分析、运算、验证,使问题得以解决。
例1.(2022·北京·高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈,在Q中存在12,,,,(0)i i i i j a a a a j +++≥,使得12i i i i j a a a a n +++++++=,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++<,求证:7k ≥.例2.(2021·北京·高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列: ①10a p +≥,且20a p +=; ①414,1,2,n n a a n -<=⋅⋅⋅();①{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,-2,-2,-1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.1.设n *∈N ,若无穷数列{}n a 满足以下性质,则称{}n a 为k C 数列:①()()110n n n n a a a a +--->,(n *∈N 且2n ≥).①1n n a a +-的最大值为k .(1)若数列{}n a 为公比为q 的等比数列,求q 的取值范围,使得{}n a 为k C 数列. (2)若k C 数列{}n a 满足:n *∀∈N ,使得21,,n n n a a a ++成等差数列, ①数列{}n a 是否可能为等比数列?并说明理由;①记数列{}n b 满足21n n b a -=,数列{}n c 满足2n n c a =,且12a a >,判断{}n b 与{}n c 的单调性,并求出1n n a a k +-=时,n 的值.2.已知等比数列{}n a 为递增数列,11a =,12a +是2a 与3a 的等差中项. (1)求数列{}n a 的通项公式;(2)若项数为n 的数列{}n b 满足:1i n i b b +-=(1i =,2,3,…,n )我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列{}n c 为()212k k -≥项的“对称数列”,其中1c ,2c ,3c ,…,n c 是公差为2的等差数列,数列{}n c 的最大项等于4a .记数列{}n c 的前21k -项和为21k S -,若2132k S -=,求k . 3.已知集合(Z 是整数集,m 是大于3的正整数).若含有m 项的数列{}n a 满足:任意的,i j M ∈,都有i a M ∈,且当i j ≠时有i j a a ≠,当i m <时有12i i a a +-=或13i i a a +-=,则称该数列为P 数列. (1)写出所有满足5m =且11a =的P 数列;(2)若数列{}n a 为P 数列,证明:{}n a 不可能是等差数列; (3)已知含有100项的P 数列{}n a 满足5105100,,,,,(1,2,3,,20)k a a a a k =是公差为(0)d d >等差数列,求d 所有可能的值4.定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.5.已知无穷数列12:A a a ,,满足:①*N (12)i a i ∈=,,;①1i j i j i j a a a a a ++≤≤++(12i =,,;12j =,,;3i j +≥).设*i a 为(12)i a i =,,所能取到的最大值,并记数列***12:A a a ,,.(1)若11a =,写出一个符合条件的数列A 的通项公式;(2)若121a a ==,求*4a 的值;(3)若1212a a ==,,求数列*A 的前100项和. 6.已知数列{}n a 为无穷递增数列,且11a =.定义: 数列{}k b :k b 表示满足i a k ≤的所有i 中最大的一个.数列{}k B :k B 表示满足i a k ≥的所有i 中最小的一个(1i =,2,3…)(1)若数列{}n a 是斐波那契数列,即121a a ==,21n n n a a a ++=+,(1n =,2,3,…),请直接写出10b ,10B 的值; (2)若数列{}n a 是公比为整数的等比数列,且满足345b b b <=且34B B =,求公比q ,并求出此时3b ,4b 的值; (3)若数列{}n a 是公差为d 的等差数列,求所有可能的d ,使得{}n b ,{}n B 都是等差数列. 7.已知数列{}n a ,给出两个性质:①对于任意的*i N ∈,存在i k R ∈,当*,j i j >∈N 时,都有()j i i a a k j i -≥-成立;①对于任意的*,2i i ∈≥N ,存在i k R ∈,当*,j i j <∈N 时,都有()j i i a a k j i -≥-成立.(1)已知数列{}n a 满足性质①,且()*2i k i N =∈,141,7a a ==,试写出23,a a 的值; (2)已知数列{}n b 的通项公式为132n n b -=⨯,证明:数列{}n b 满足性质①;(3)若数列{}n c 满足性质①①,且当*,2i N i ∈≥时,同时满足性质①①的i k 存在且唯一.证明:数列{}n c 是等差数列. 8.设数列()12:,,,2n A a a a n ≥.如果{}()1,2,,1,2,,i a n i n ∈=,且当i j ≠时,()1,i j a a i j n ≠≤≤,则称数列A 具有性质P .对于具有性质P 的数列A ,定义数列()121:,,,n T A t t t -,其中()111,,1,2,,10,k k k k k a a t k n a a ++⎧==-⎨⎩<>.(1)对():0,1,1T A ,写出所有具有性质P 的数列A ; (2)对数列()121:,,,2n E e e e n -≥,其中{}()0,11,2,,1i e i n ∈=-,证明:存在具有性质P 的数列A ,使得()T A 与E 为同一个数列;(3)对具有性质P 的数列A ,若()115n a a n -=≥且数列()T A 满足()0,,1,2,,11,i i t i n i ⎧==-⎨⎩为奇数为偶数,证明:这样的数列A 有偶数个.9.如果无穷数列{}n a 是等差数列,且满足:①i ∀、*j ∈N ,*k ∃∈N ,使得i j k a a a =;①*k ∀∈N ,i ∃、*j ∈N ,使得i j k a a a =,则称数列{}n a 是“H 数列”.(1)下列无穷等差数列中,是“H 数列”的为___________;(直接写出结论){}:1n a 、3、5、{}:0n b 、2、4、{}:0n c 、0、0、{}:1n d -、0、1、(2)证明:若数列{}n a 是“H 数列”,则1a ∈Z 且公差d ∈N ;(3)若数列{}n a 是“H 数列”且其公差*d ∈N 为常数,求{}n a 的所有通项公式.10.给定数列{}n a ,若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.(1)已知数列{}n a 的通项公式为3nn a =,试判断{}n a 是否为封闭数列,并说明理由;(2)已知数列{}n a 满足212n n n a a a +++=且212a a -=,设n S 是该数列{}n a 的前n 项和,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*n ∈N 都有0n S ≠,且12111111818n S S S <+++<,若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由;(3)证明等差数列{}n a 成为“封闭数列”的充要条件是:存在整数1m ≥-,使1a md =. 12.若数列{}n a 同时满足下列两个条件,则称数列{}n a 具有“性质A ”. ①212n n n a a a +++>(n *∈N );①存在实数A ,使得对任意*n ∈N ,有n a A ≥成立. (1)设245,sin4n n n a n n b π=-+=,试判断{},{}n n a b 是否具有“性质A ”;(2)设递增的等比数列{}n c 的前n 项和为n S ,若2371,2c S =-=-,证明:数列{}n S 具有“性质A ”,并求出A 的取值范围;(3)设数列{}n d 的通项公式()122*222n n nt n nt t d n ++++=∈N ,若数列{}n d 具有“性质A ”,其满足条件的A 的最大值010A =,求t 的值.。