《仪器分析》知识点整理

合集下载

仪器分析知识点归纳

仪器分析知识点归纳

红外光谱法1.物质吸收红外光的必要条件①分子的振动必须能与红外辐射产生耦合作用,即分子振动时必须伴随瞬时偶极矩的变化。

②只有当照射分子的红外辐射光子的能量与分子振动能级跃迁所需的能量相等,才能实现振动与辐射的耦合,从而使分子吸收红外辐射能量产生振动能级的跃迁。

即△Ev=Ev2-Ev1=hυ。

2.红外光谱法的缺点:①色散型仪器的分辨率低,灵敏度低,不适于弱辐射的研究。

②不能用于水溶液及含水物质的分析。

③对某些物质不适用:如振动时无偶极矩变化的物质;左右旋光物质的IR谱相同;长链正烷烃类的IR谱近似等。

复杂化合物的光谱极复杂,难以作出准确的结构判断,往往需与其它方法配合。

3. 红外光谱的吸收峰:①泛频峰:倍频、合(组)频峰。

②倍频峰:由基态(v=0)跃迁到v=2,3,4,…激发态产生的。

③合频峰:在两个以上基频峰波数之和或差处出现的吸收峰。

4. 简正振动:把多原子分子的振动分解成许多简单的基本振动。

简正振动的特点:①振动的运动状态可以用空间自由度(空间三维坐标)来表示,体系中的每一质点(原子)都具有三个空间自由度。

②分子的质心在振动过程中保持不变,分子的整体不转动。

③每个原子都在其平衡位置上作简谐振动,其振动频率及位相都相同,即每个原子都在同一瞬间通过其平衡位置,又在同一时间到达最大的振动位移。

④分子中任何一个复杂振动都可以看成这些简正振动的线性组合。

5. 影响吸收峰强度的因素①振动能级的跃迁几率和振动过程中偶极距的变化是影响红外吸收峰强度的两个主要因素,基频吸收带一般较强,而倍频吸收带较弱。

②基频振动过程中偶极矩的变化越大,其对应的峰强度也越大;振动的对称性越高(即化学键两端连接的原子的电负性相差越小),振动中分子偶极矩变化越小,谱带强度也就越弱。

因而,一般来说极性较强的基团振动吸收强度较大,极性较弱的基团振动吸收较弱。

③一般来说,反对称伸缩振动的强度大于对称伸缩振动的强度,伸缩振动的强度大于变形振动的强度。

仪器分析复习内容

仪器分析复习内容

仪器分析复习内容
一、原理
仪器分析是指通过使用电子或物理仪器(也称检测仪器)来检测和测
量一些物质的含量,反映其中一种物质或物质的物理和化学特性,从而了
解它们的存在状况或结构,为科学研究提供参考和决策依据。

仪器分析是一个多学科的交叉领域。

它涉及的科学科目包括化学、物理、生物、地质和过程科学等。

因此,仪器分析常见的原理包括:电离质
谱法(离子质谱)、质谱法(质谱图)、光谱法、分析化学、热分析、热
工学仪器分析等。

二、电离质谱法(离子质谱)
电离质谱(离子质谱)是以电场来离开物质中的离子的一种分析技术,是以电离、电屏蔽和电流来测定分析物质中离子浓度的一种技术。

它可以
用来分析物质中的单个离子浓度,以及离子的丰度关系,进而计算化合物
的组成百分比。

电离质谱法具有高灵敏度、高准确度、操作简单方便等优点,是一种常用的仪器分析手段。

电离质谱法的过程包括离子源(Ion Source)、离子传输器(Ion Transporter)、轨道电离器(Orbital Ionizer)、检测器(Detector)、电源(Power Supply)等部分。

2023年现代仪器分析考试知识点总结

2023年现代仪器分析考试知识点总结

《现代仪器分析》考试知识点总结一、填空易考知识点1.仪器分析旳分类: 光学分析,电化学分析, 色谱分析, 其他仪器分析。

2.紫外可见分光光度计构成: 光源, 单色器, 样品室接受检测放大系统, 显示屏或记录器。

常用检测器:光电池, 光电管, 光电倍增管, 光电二极管3.吸取曲线旳特性值及整个吸取曲线旳形状是定性鉴别旳重要根据。

4.定量分析旳措施: 原则对照法, 原则曲线法。

5.原则曲线: 配置一系列不一样浓度旳原则溶液, 以被测组分旳空白溶液作参比, 测定溶液旳原则系列吸光度, 以吸光度为纵坐标, 浓度为横坐标绘制吸光度, 浓度关系曲线。

6.原子吸取分光光度法旳特点: (长处)敏捷度高, 测量精度好, 选择性好, 需样量少, 操作简便, 分析速度快, 应用广泛。

(缺陷)由于分析不一样旳元素需配置该元素旳元素灯, 因此多元素旳同步测定尚有困难;测定难熔元素, 和稀土及非金属元素还不能令人满意。

7.在一定条件下, 被测元素基态原子蒸汽旳峰值吸取与试液中待测元素旳浓度成正比, 固可通过峰值吸取来定量分析。

8.原子化器种类:火焰原子化器, 石墨炉原子化器, 低温原子化器。

9.原子吸取分光光度计构成: 空心阴极灯, 原子化系统, 光学系统, 检测与记录系统。

10.离子选择性电极旳类型: (1)PH玻璃膜电极(2)氟离子选择性电极(3)流动载体膜电极(4)气敏电极。

11.电位分析措施:直接电位法(直接比较法, 原则曲线法, 原则加入法)电位滴定法。

12.分离度定义: 相邻两色谱峰保留时间旳差值与两峰基线宽度和之间旳比值13.气象色谱仪构成:载气系统, 进样系统, 分离系统, 检测系统, 信号记录或微机数据处理系统, 温度控制系统。

14.监测器分类: 浓度型检测器(热导池检测器)质量型检测器(氢火焰离子化检测器)15.基态:原子一般处在稳定旳最低能量状态即基态激发:当原子受到外界电能, 光能或者热能等激发源旳激发时, 原子核外层电子便跃迁到较高旳能级上而处在激发态旳过程叫激发。

仪器分析复习重点

仪器分析复习重点

▪ 7.固定液选择的原理是? ▪ 8.在色谱分析法中,为什么要测定定量校
正因子 ?
▪ 9.液相色谱中正相,反相色谱的定义及研 究对象
▪ 10.色谱定量分析公式-内标法 ▪ 11.色谱分离条件选择-如何提高柱效
第三节 HPLC的主要类型及分离原理
1. 液液分配色谱
亲水性固定液常采用疏水性流动相,即流动相的极 性小于固定相的极性,称为正相液液色谱法,极性柱 也称正相柱。主要应用于分离甾醇类、类脂化合物、 磷脂类化合物、脂肪酸以及其他有机物。
cM mMVS
VS
:相比
相对保留值 r21:指组分2和组分1的调整保留值之比。
r21
t 'R2 t 'R1
V 'R2 V 'R1
相对保留值的特点是只与温度和固定相的性质有关, 与色谱柱及其它色谱操作条件无关。
相对保留值反映了色谱柱对待测两组分1和2 的选 择性,是气相色谱法中最常使用的定性参数。
例:用电解法从组成为0.01 mol/L Ag+, 2mol/L Cu2+的混合液中分离Ag+ 和Cu2+,已知铜的标 准电极电位为0.345V,银的标准电极电位为 0.779V。
问:1)首先在阴极上析出的是铜还是银?
2)电解时两者能否完全分离?
3) 外加电压应控制在什么数值上,Ag+与Cu2+ 完全分离,阳极电位等于1.23v(vs.SCE,不考 虑超电位) ?
测待测液的pH值,写出该化学电池的符号表示式?(见书 P113) 5.离子选择性系数 的定义?(见书P118) 6.盐桥是什么组成的?作用是什么? 7.干扰电流及其消除方法(见书P162) 8.什么是残余电流,它产生的原因是什么?它对极谱分析有 什么影响? (见书P162)

仪器分析全知识点

仪器分析全知识点

分子光谱的分类分子吸收光谱转动光谱(远红外光谱)振动光谱(红外光谱)电子光谱(紫外-可见光谱)分子发射光谱电子光谱(分子荧光、磷光)原子光谱的分类原子吸收光谱原子发射光谱光、电、色1色谱法分类气相色谱法高效液相色谱法电化学分析法分类电位分析法电位滴定法伏安法3紫外-可见分光光度法(紫外-可见吸收光谱法):物质分子对紫外-可见光的吸收进行定性、定量及结构分析。

紫外-可见光区分为远紫外(10~200nm)、近紫外(200~360nm)和可见部分(360~760nm);远紫外的吸收测量在真空下进行;通常研究近紫外-可见光围的光谱行为。

第2章紫外-可见分光光度法4§2-1 分子光谱概述1.分子光谱产生M+hν==M*基态激发态E1 E2分子吸收能量后,电子从一个能级跃迁到另一个能级分子部电子能级的跃迁而产生的光谱:紫外-可见光谱5吸收光谱(吸收曲线): 横坐标用波长或频率表示;物质的吸收峰位置对应于分子结构,是定性依据。

纵坐标用光强的参数表示,如透光率、吸光度、吸光系数等,是定量依据。

2.吸收光谱特征63.光吸收定律:朗伯-比尔(Lambert-Beer)定律当一束强度为I0 的平行单色光照射到均匀而非散射的溶液时,光的一部分(强度为Ia)被吸收,一部分(强度为It)透过溶液,一部分(强度为Ir)被器皿表面所反射,则I0 = Ia + It + Ir光的反射损失Ir 主要决定于器皿材料、形状、大小和溶液性质。

在相同条件下,这些因素是固定的,且反射损失的量很小,故Ir 可忽略不计,则:I0 = Ia + It散射:光通过不均匀悬浮颗粒时,部分光束将偏离原来方向而分散到各个方向去。

单色光: 单一频率(波长)的光7透光度(透光率或透射比)(T ,Transmittance ) :透过光强度与入射光强度之比 : T = I / I0吸光度(A, Absorbance ):物质对光的吸收程度,其值为透光度的负对数:注:A 、T 无单位方便起见, 透过光强度 It 用 I 表示8人们对光吸收定律认识,经历了较长历史过程。

仪器分析知识点

仪器分析知识点

一、仪器分析分类:(简答)质谱分析法、色谱分析法、光分析法、分析仪器联用技术、电化学分析法、热分析法。

二、色谱分析法:(简答)气相色谱法、液相色谱法、薄层色谱法、超临界色谱法、激光色谱法、电色谱法三、光分析法:(填空)紫外可见法、红外法、核磁法、荧光法、原子发射法、原子吸收法四、由分析对象的数量级来看五、茨维特实验——首次提出色谱法六、对称因子(Symmetry, fs):用于衡量色谱峰的对称与否,又称拖尾因子。

对称因子在0.95~1.05之间的色谱峰为对称峰;小于0.95者为前延峰;大于1.05者为拖尾峰。

《中国药典》称对称因子为拖尾因子。

对称因子可按左图由下式计算:fs = W0.05h/2A =(B+A)/2A七、色谱法按两相分类:1.气相色谱——流动相为气体:气固色谱、气液色谱2.液相色谱——流动相为液体:固液色谱、液液色谱3.超临界色谱——流动相为超临界流体八、按组份在固定相上的分离机理分:吸附色谱:不同组份在固定相的吸附作用不同。

分配色谱:不同组份在固定相上的溶解能力不同。

离子色谱:不同组份和固定相上离子的作用力不同。

凝胶色谱(分子排阻色谱):不同尺寸分子在固定相上的渗透作用。

亲合色谱:不同组份与固定相上配基的作用力不同。

手性色谱:对映异构体和不同的固定相的作用力不同。

九、色谱法的特点优点:“三高”、“一快”、“一广”高选择性——可将性质相似的组分分开高效能——反复多次利用组分性质的差异产生很好分离效果高灵敏度——10-11~10-13g,适于痕量分析分析速度快——几~几十分钟完成分离一次可以测多种样品应用范围广——气体,液体、固体物质分离、分析缺点:对未知物分析的定性专属性差需要与其他分析方法联用(GC-MS,LC-MS)十、薄层色谱的特点①设备简单,操作方便。

消耗溶剂和吸附剂小,是一种经济的分离方法。

②分离操作时间短。

一个薄板展开只需十几分钟,而且可以多个样品或不同条件的薄板同时展开,工作效率高。

仪器分析考点整理资料

仪器分析考点整理资料

仪器分析考点整理资料1.可见光区的波长为380-780nm,紫外光区10-380nm(其中10-200nm真空紫外光区,200-380nm近紫外光区)2.原子光谱法是由原子的外层或内层电子能级的变化产生的,表现形式为线状光谱。

原子发射光谱法(用于金属元素的定性及定量分析)、原子吸收光谱法(定量)、原子荧光光谱法、x射线荧光光谱法3.分子光谱法是由分子中电子能级、振动和转动能级产生的,表现形式为带状光谱。

紫外可见分光光度法、红外光谱法、分子荧光光谱法、分子磷光光谱法4.光源:强度足够,输出稳定。

连续光源用于分子吸收光谱法,线光源用于荧光、原子吸收和Raman光谱法5.振动弛豫:在凝聚相体系中,被激发到激发态的分子通过与溶剂分子的碰撞,迅速以热的形式把多余的振动能量传递给周围分子,而自身返回该电子能级最低振动能级的过程称为振动弛豫6.系间跨越:不同多重态之间的一种无辐射跃迁7.荧光与磷光的根本区别:荧光是由激发单重态最低振动能级至基态个振动能级间跃迁产生的(不涉及电子自旋改变,寿命短,能量高,波长短);磷光是由激发三重态的最低振动能级至基态各能级间跃迁产生的(涉及电子自旋改变,寿命长,能量低,波长长)8.荧光与磷光相同点:发射波长与激发光的波长无关9.荧光寿命:停止激发后,荧光强度降到最大强度的1/e所需要的时间10.荧光效率高:一般具有强荧光的分子都具有大的共轭π键结构,给电子基团(-OH、-CN、-OR、-NH2、-NR2等),刚性的平面结构11.重原子效应使荧光减弱,使磷光增强。

吸电子基团(-COOH、-NO、-C=0、卤素等)会减弱甚至猝灭荧光12.低温条件下,荧光强度显著增强13.荧光猝灭:荧光分子与溶剂或其它溶质分子之间相互作用,使荧光强度较弱的现象14.荧光光谱与分光光度仪的区别:光源,样品池、检测器成直角排列;有两个独立的波长选择系统15.谱线强度的主要因素:激发电位越高,谱线强度越低;跃迁概率越小,谱线强度越低;统计权重,正比;激发温度,复杂;原子密度,正比16.等离子体:具有一定电离度的气体,其中正负电荷粒子数基本相等,整体呈中性17.灵敏线:各种元素谱线中最容易激发或激发电位较低的谱线,通常是该元素光谱中最强的谱线(只有在元素含量较低,自吸效应很小时,最后线才是灵敏线)18.最后线:随元素含量的减少,最后消失的谱线19.分析线:用于鉴定元素的存在及测定元素含量的谱线20.自吸现象:当光源中心某元素发射的特征谱线向外辐射经过温度较低的边缘部分时,就会被处于低能级的同种原子吸收,使谱线中心发射强度减弱的现象21.内标法的原理:首先在被测元素的谱线中选择一条作为分析线,然后再内标元素谱线中选一条与分析线匀称的谱线组成分析线对22.内标元素与分析线对的选择原则:①内标元素与被测元素有相近的物理化学性质;②有相近的激发能;③若内标元素是外加的,则样品中不应含有内标元素;④内标元素的含量必须适量且固定;⑤分析线和内标线无自吸或自吸很小,且不受其他谱线干扰;⑥若用照相法测量谱线强度,则要求两条谱线的波长应尽量靠近23.原子吸收光谱法利用原子吸收现象进行分析;原子发射光谱分析是基于原子的发射现象进行分析,两者是相互联系的两种相反的过程。

仪器分析知识点总结

仪器分析知识点总结

仪器分析知识点总结一、仪器分析的基本原理1.1 光谱学光谱学是仪器分析中的一种常用分析方法,主要包括紫外-可见吸收光谱、红外光谱、荧光光谱、原子吸收光谱等。

它通过物质在特定波长的光线下产生的吸收、发射、散射等现象来分析物质的成分或性质。

在实际应用中,紫外-可见吸收光谱常用于药物、食品、环境样品的分析;红外光谱常用于有机物的鉴定;荧光光谱常用于生物分子的定量分析;原子吸收光谱常用于金属离子的测定等。

1.2 色谱法色谱法是利用物质在固定相和移动相之间的分配行为,通过在固定相上的运动速度差异分离物质的一种分析方法。

包括气相色谱、液相色谱、超高效液相色谱等。

这些方法在化学、食品、生物等领域广泛应用,如气相色谱常用于有机物的分析;液相色谱常用于生物样品的分离等。

1.3 电化学分析电化学分析是利用电化学原理进行分析的一种方法,主要包括电位法、伏安法、极谱法等。

它通过观察物质在电场中的行为来分析物质的成分或性质。

在实际应用中,电化学分析常用于金属腐蚀、电解制备等领域。

1.4 质谱法质谱法是利用物质在电场中的运动轨迹差异来对物质进行分析的一种方法,主要包括质谱仪、质子共振仪等。

在实际应用中,质谱法常用于有机物的结构鉴定、药物代谢产物的分析等。

1.5 分光光度法分光光度法是利用物质对光的吸收、散射、发射等现象来分析物质的成分或性质的一种方法。

它广泛应用于药物浓度测定、气体成分分析、紫外-可见吸收光谱仪、荧光光谱仪、原子吸收光谱仪等。

1.6 元素分析元素分析是对物质中元素成分进行定量或半定量分析的一种方法。

它主要包括原子吸收光谱、荧光光谱、质谱等。

在实际应用中,元素分析常用于环境、食品、医药等领域的元素含量分析。

1.7 样品前处理技术样品前处理技术是仪器分析中的一种重要过程,它通过溶解、萃取、浓缩、净化等手段对样品进行处理,使之适合于仪器分析。

在实际应用中,样品前处理技术广泛应用于环境样品、生物样品、食品样品等的准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《仪器分析》知识点整理
一、仪器分类
1.按测量原理分类:光学仪器、电子仪器、热力学仪器等;
2.按测量对象分类:物理性质测量仪器、化学性质测量仪器、生物性质测量仪器等;
3.按测量方法分类:分光法仪器、电化学法仪器、色谱法仪器等。

二、分析方法
1.光谱法:包括紫外可见光谱、红外光谱、原子吸收光谱等,用于物质的结构分析和定量测定;
2.色谱法:包括气相色谱、液相色谱等,用于物质分离和定性定量分析;
3.电化学法:包括电位滴定法、电解析法等,用于物质的电化学性质测定;
4.波谱法:包括质谱、核磁共振等,用于物质的分子结构和成分的测定;
5.色度法:用于物质颜色的测定。

三、仪器操作与调试
1.仪器的安装:包括设备摆放、电源接线和设备连接等操作;
2.仪器的调零:如光谱仪进行零点调整,使其读数归零,保证测量的准确性;
3.分析曲线的绘制:通过构建标准曲线来进行定量分析,提高测量精度;
4.仪器的正确使用:如熟练掌握仪器的各个功能键和参数设定方法,避免误操作;
5.仪器的维护与保养:包括定期清洁、维修和更换零部件,延长仪器寿命。

四、仪器的应用领域
1.化学分析:如水质分析、土壤分析、食品质量检测、药物分析等;
2.聚合物材料:如塑料、合成树脂等材料的成分分析和性能表征;
3.环境监测:包括大气污染、水质污染、土壤污染等环境问题的分析与监测;
4.制药工业:用于药物质量控制和药物成分分析等;
5.生命科学:如生物材料分析、基因测序、蛋白质组学研究等。

五、仪器的发展趋势
1.近红外光谱技术的应用与发展;
2.微纳技术和生物芯片技术的应用;
3.便携式仪器设备的发展;
4.互联网和大数据技术在仪器分析中的应用;
5.仪器的自动化和智能化发展。

通过对以上知识点的整理,可以更好地理解《仪器分析》的基本概念、分类和应用领域,了解仪器的操作和调试方法,了解仪器分析领域的未来
发展趋势。

同时,了解《仪器分析》的知识也有助于提高我们在实验室工
作中的科学素养和操作技能。

相关文档
最新文档