高一数学练习及答案

合集下载

高一数学试题及答案免费

高一数学试题及答案免费

高一数学试题及答案免费一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. πB. -2C. √2D. i2. 函数f(x) = x^2 + 2x + 1的最小值出现在x等于:A. -1B. 0C. 1D. 23. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}4. 以下哪个不等式是正确的?A. |-3| > |3|B. |-3| < |3|C. |-3| = |3|D. |-3| ≠ |3|5. 若a > b > 0,c < d < 0,下列哪个选项是正确的?A. ac > bdB. ac < bdC. ad > bcD. ac = bd6. 已知等差数列的首项a1 = 3,公差d = 2,求第5项a5的值:A. 9B. 11C. 13D. 157. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系:A. 相离B. 相切C. 相交D. 直线过圆心8. 函数y = sin(x) + cos(x)的最大值出现在x等于:A. 0B. π/4C. π/2D. π9. 已知三角形ABC,若∠A = 60°,∠B = 45°,求∠C的度数:A. 75°B. 120°C. 45°D. 30°10. 下列哪个是二次方程的判别式?A. b^2 - 4acB. b^2 + 4acC. a^2 - b^2D. a^2 + b^2二、填空题(每题2分,共20分)11. 若a + b = 10,且a - b = 2,则a = ______,b = ______。

12. 一个正六边形的内角和为________。

13. 一个圆的周长为44cm,其半径为________。

高一数学函数习题(练习题以及答案

高一数学函数习题(练习题以及答案

一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学试题大全及答案

高一数学试题大全及答案

高一数学试题大全及答案一、选择题(每题4分,共40分)1. 若函数f(x)=2x+3,则f(-1)的值为()A. -5B. -1C. 1D. 5答案:A2. 已知集合A={x|x<2},B={x|x>1},则A∩B为()A. {x|x<2}B. {x|x>1}C. {x|1<x<2}D. ∅答案:C3. 函数y=x^2-4x+3的顶点坐标为()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:B4. 已知向量a=(3, -1),b=(2, 2),则a·b的值为()A. 4B. 2C. -2D. -4答案:B5. 已知直线l的方程为y=2x+1,点P(1, 3)在直线l上,则直线l 的斜率为()B. 2C. 3D. 4答案:B6. 函数y=x^3-3x的极值点为()A. x=0B. x=1C. x=-1D. x=±1答案:D7. 已知等比数列{an}的首项a1=2,公比q=3,则a5的值为()A. 486B. 243D. 27答案:C8. 已知三角形ABC的三边长分别为a, b, c,且满足a^2+b^2=c^2,三角形ABC为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B9. 函数y=cos(x)在区间[0, π]上是()A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:B10. 已知复数z=1+i,则|z|的值为()A. 1B. √2C. 2D. √3答案:B二、填空题(每题4分,共20分)11. 若函数f(x)=x^2-4x+3,则f(2)的值为________。

答案:-112. 已知集合A={x|x^2-5x+6=0},则A={________}。

答案:{2, 3}13. 函数y=x^3-3x的导数为________。

答案:3x^2-314. 已知向量a=(1, 2),b=(2, 1),则|a+b|的值为________。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案高一数学集合练习题及答案(通用5篇)导读:数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。

下文应届毕业生店铺就为大家送上了高一数学集合练习题及答案,希望大家认真对待。

高一数学练习题及答案篇1一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |,3a2+4},A∩B={-1},则a的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,-1} 1或-1或016、x=-1 y=-117、解:A={0,-4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={-4}时,把x=-4代入得a=1或a=7.当a=1时,B={0,-4}≠{-4},∴a≠1.当a=7时,B={-4,-12}≠{-4},∴a≠7.(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,得32-3a+a2-19=0,解得a=5或a=-2?当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.19、解:A={x|x2-3x+2=0}={1,2},由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1-a+3a-5=0,得a=2,此时B={x|x2-2x+1=0}={1} A;若x=2,则4-2a+3a-5=0,得a=1,此时B={2,-1} A.综上所述,当2≤a<10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学试题及详细答案

高一数学试题及详细答案

高一数学试题及详细答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为()。

A. 0B. 1C. 2D. 3答案:B解析:将x=1代入函数f(x)=x^2-4x+m,得到1-4+m=-3,解得m=2。

2. 已知集合A={x|x^2-3x+2=0},B={x|x^2-4x+3=0},则A∩B 为()。

A. {1}B. {2}C. {1,2}D. {1,3}答案:C解析:解方程x^2-3x+2=0得x=1或x=2,解方程x^2-4x+3=0得x=1或x=3,因此A={1,2},B={1,3},所以A∩B={1}。

3. 若a,b∈R,且a>b,则下列不等式中一定成立的是()。

A. a^2>b^2B. a^3>b^3C. 1/a<1/bD. a/b>1答案:B解析:对于A,当a=1,b=-2时,a^2<b^2;对于C,当a=2,b=-1时,1/a>1/b;对于D,当a=2,b=-1时,a/b<1。

只有B,无论a和b的值如何,a^3>b^3恒成立。

4. 函数y=x+1/x的值域为()。

A. (-∞,-2]∪[2,+∞)B. (-∞,0)∪(0,+∞)C. (-∞,-1]∪[1,+∞)D. (-∞,-1)∪(1,+∞)答案:A解析:函数y=x+1/x可以看作是y=x和y=1/x的和,这两个函数的值域分别为(-∞,0)∪(0,+∞)和(-∞,-1]∪[1,+∞),因此y=x+1/x 的值域为(-∞,-2]∪[2,+∞)。

5. 已知等差数列{an}的首项a1=1,公差d=2,则数列的前n项和Sn为()。

A. n^2B. n(n+1)C. n^2+nD. n(n+1)/2答案:C解析:等差数列的前n项和公式为Sn=n/2[2a1+(n-1)d],代入a1=1,d=2,得到Sn=n/2[2+(n-1)2]=n^2+n。

高一数学试题库及答案

高一数学试题库及答案

高一数学试题库及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-2x+1,则f(0)的值为()。

A. 0B. 1C. 2D. 32. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()。

A. 9B. 10C. 11D. 123. 函数y=x^3-3x的导数为()。

A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+34. 已知集合A={x|x<2},B={x|x>3},则A∩B的值为()。

A. 空集B. {x|2<x<3}C. {x|x<2或x>3}D. {x|3<x<2}5. 已知向量a=(3,-2),b=(2,1),则a·b的值为()。

A. 4B. -4C. 5D. -56. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为()。

A. a>0, b>0B. a<0, b<0C. a>0, b<0D. a<0, b>07. 已知函数f(x)=x^2-4x+3,x∈[0,3],则f(x)的最大值为()。

A. 0B. 1C. 4D. 78. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,根据勾股定理的逆定理,三角形ABC为()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定9. 已知函数f(x)=|x|,x∈[-1,1],则f(x)的值域为()。

A. [-1,1]B. [0,1]C. [0,2]D. [-1,2]10. 已知直线l的方程为y=2x+1,且直线l与x轴交于点A,与y轴交于点B,则|AB|的值为()。

A. √5B. √10C. √13D. √17二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(2)的值为______。

12. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为______。

高一数学练习题加答案

高一数学练习题加答案

高一数学练习题加答案在高一数学的学习中,练习题是帮助学生巩固知识点和提高解题能力的重要工具。

以下是一些高一数学的练习题,以及相应的答案,供学生参考和练习。

练习题一:集合的概念与运算1. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

2. 若集合C = {x | x > 5},D = {x | x < 10},求C∩D。

3. 集合E = {x | x^2 - 4x + 3 = 0},求E的元素。

答案一:1. A∪B = {1, 2, 3, 4}。

2. C∩D = {x | 5 < x < 10}。

3. E = {1, 3}。

练习题二:函数的基本概念1. 判断函数f(x) = x^2 - 4x + 3的单调性。

2. 求函数g(x) = 3x + 2的反函数。

3. 已知f(x) = 2x + 1,求f(-1)。

答案二:1. 函数f(x) = x^2 - 4x + 3在(-∞, 2]上单调递减,在[2, +∞)上单调递增。

2. 函数g(x) = 3x + 2的反函数为g^(-1)(x) = (x - 2) / 3。

3. f(-1) = 2*(-1) + 1 = -1。

练习题三:不等式的解法1. 解不等式:2x + 5 > 3x - 2。

2. 已知不等式组:\[ \begin{cases} x + y \geq 3 \\ 2x - y \leq 4 \end{cases} \],求其解集。

3. 解绝对值不等式:|x - 2| < 4。

答案三:1. 解得:x < 7。

2. 解集为:1 ≤ x ≤ 5,y ≥ -2。

3. 解得:-2 < x < 6。

练习题四:三角函数的基本性质1. 已知sinθ = 3/5,求cosθ(假设θ为锐角)。

2. 求值:\[ \sin(\frac{\pi}{6}) + \cos(\frac{\pi}{6}) \]。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案第一题:线性方程组已知线性方程组如下:2x + 3y = 74x - y = 11求解该方程组。

解答:首先,我们可以先观察这个线性方程组,注意到第二个方程的系数y的系数是-1,可以将整个方程乘以-1来消除y的系数。

这样得到的新方程是:2x + 3y = 7-4x + y = -11现在我们可以使用消元法来求解这个方程组。

首先,将第二个方程的3倍加到第一个方程上,消去y的系数。

2x + 3y + 3(-4x + y) = 7 + 3(-11)2x + 3y - 12x + 3y = 7 - 33得到:-10x + 6y = -26这样,我们就将该线性方程组转化成同样含有两个未知数的方程,可以继续使用消元法。

接下来,我们可以用数学方法来解这个方程组。

首先,我们可以将第二个方程的系数y的系数由正数改为负数,得到:2x + 3y = 7-4x - y = 11然后,我们可以通过消元法解这个方程组。

将第二个方程的3倍加到第一个方程上,得到:2x + 3y + 3(-4x - y) = 7 + 3(11)2x + 3y - 12x - 3y = 7 + 33化简得:-10x = 40将方程两边同时除以-10,得到:x = -4将x的值代入第一个方程,得到:2(-4) + 3y = 7-8 + 3y = 73y = 7 + 83y = 15y = 5所以,该线性方程组的解是x = -4,y = 5。

第二题:函数的性质已知函数f(x) = x^3 - 2x^2 + x - 3。

1. 计算f(1)的值。

2. 计算函数f(x)在x = 2处的导数。

3. 判断函数f(x)是否为偶函数、奇函数或者既非偶函数也非奇函数。

解答:1. 首先,我们需要计算f(1)的值。

将x = 1代入函数表达式中,得到:f(1) = (1)^3 - 2(1)^2 + 1 - 3= 1 - 2 + 1 - 3= -3所以,f(1)的值为-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学练习及答案一、单选题1.已知全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} ,则∁U A = ( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D .{2,5,7} 【答案】C【解析】直接利用补集的定义求解即可. 【详解】全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} , 所以∁U A ={2,4,7}. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.函数f (x )=√2x+1x的定义域为( )A .(−12,+∞) B .[−12,+∞) C .(−12,0)∪(0,+∞) D .[−12,0)∪(0,+∞) 【答案】D【解析】直接由根式内部的代数式大于等于0,分式的分母不等于0,联立不等式组求解即可. 【详解】解:由{2x +1⩾0x ≠0,解得x ⩾−12且x ≠0.∴函数f(x)=√2x+1x 的定义域为[−12,0)∪(0,+∞).故选:D . 【点睛】本题考查函数的定义域及其求法,考查不等式的解法,是基础题.3.已知函数f (x )={3−x,x >0x 2+4x+3,x≤0则f (f (5))=( ) A .0 B .−2 C .−1 D .1 【答案】C【解析】分段函数求函数值时,看清楚自变量所处阶段,分别代入不同的解析式求值即可得结果. 【详解】解:因为5>0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0得f (5)=3−5=−2,所以f(f (5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0 得f(−2)=(−2)2+4×(−2)+3=−1.故选:C . 【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,属于基础题. 4.若角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边经过点(1,-2),则tanα的值为( ) A .√55 B .−2 C .−2√55 D .−12【答案】B【解析】根据任意角的三角函数的定义即可求出. 【详解】解:由题意可得x =1,y =−2,tanα=yx =−2, 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A .y =log 3x B .y =1x C .y =x 3D .y =x 12【答案】C【解析】对选项一一判断函数的奇偶性和单调性,即可得到结论.【详解】解:A,y=log3x(x>0)在x>0递增,不具奇偶性,不满足条件;B,函数y=1x是奇函数,在(−∞,0),(0,+∞)上是减函数,在定义域内不具备单调性,不满足条件;C,y=x3,y′=3x2⩾0,函数为增函数;(−x)3=−x3,函数是奇函数,满足条件;D,y=x 12=√x,其定义域为[0,+∞),不是奇函数,不符合题意.故选:C.【点睛】本题考查函数的奇偶性和单调性的判断,掌握常见函数的单调性和奇偶性是解题的关键,属于基础题.6.函数f(x)=lnx+3x-4的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(2,4)【答案】B【解析】根据函数零点的判定定理可得函数f(x)的零点所在的区间.【详解】解:∵函数f(x)=lnx+3x−4在其定义域上单调递增,∴f(2)=ln2+2×3−4=ln2+2>0,f(1)=3−4=−1<0,∴f(2)f(1)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(1,2),故选:B.【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题.7.若a=50.3,b=0.35,c=log0.35,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【答案】A【解析】利用指数函数、对数函数的单调性直接求解.【详解】解:∵a=50.3>50=1,0<b=0.35<0.30=1,c=log0.35<log0.31=0,∴a,b,c的大小关系为a>b>c.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,是基础题.8.已知函数y=x2+2(a-1)+2在(-∞,4)上是减函数,则实数a的取值范围是()A.[3,+∞)B.(−∞.−3]C.[−3,+∞)D.(−∞,3]【答案】B【解析】求出函数y=x2+2(a−1)+2的对称轴,结合二次函数的性质可得1−a⩾4,可得a的取值范围.【详解】解:根据题意,函数y=x2+2(a−1)+2开口向上,且其对称轴为x=1−a,若该函数在(−∞,4)上是减函数,必有1−a⩾4,解可得:a⩽−3,即a的取值范围为(−∞,−3];故选:B.【点睛】本题考查二次函数的性质,分析该二次函数的对称轴与区间端点是解题关键,属于基础题.9.为了得到函数y=sin(2x+π3)的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D.向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】利用左加右减的原则,直接推出平移后的函数解析式即可.【详解】解:将函数y=sinx的图象向左平移π3个单位后所得到的函数图象对应的解析式为:y=sin(x+π3),再把所得各点的横坐标缩短到原来的12倍,所得到的函数图象对应的解析式为y=sin(2x+π3).故选:A.【点睛】本题考查三角函数的图象变换,平移变换中x的系数为1是解题关键,属于基础题.10.已知sinα,cosα是方程3x2-2x+a=0的两根,则实数a的值为()A.65B.−56C.43D.−34【答案】B【解析】根据韦达定理表示出sinα+cosα及sinαcosα,利用同角三角函数间的基本关系得出关系式,把表示出的sinα+cosα及sinαcosα代入得到关于a 的方程,求出方程的解可得a 的值. 【详解】解:由题意,根据韦达定理得:sinα+cosα=23,sinαcosα=a3,∵sin 2α+cos 2α=1 ∴sin 2α+cos 2α=(sinα+cosα)2−2sinαcosα=49−2a 3=1,解得:a =−56,把a =−56,代入原方程得:3x 2−2x −56=0,∵△>0, ∴a =−56符合题意. 故选:B . 【点睛】本题考查三角函数的化简求值,同角三角函数基本关系及韦达定理的应用,属于基础题.11.已知函数f (x )={log a x,x ≥1(3a−1)x+4a,x<1的值域为R ,则实数a 的取值范围为()A .(0,1)B .[17,1) C .(0,17]∪(1,+∞) D .[17,13)∪(1,+∞) 【答案】C【解析】运用一次函数和对数函数的单调性可解决此问题. 【详解】 解:根据题意得,(1)若f(x)两段在各自区间上单调递减,则: {3a −1<00<a <1(3a −1)·1+4a ≤log a 1 ; 解得0<a ≤17;(2)若f(x)两段在各自区间上单调递增,则: {3a −1>0a >1(3a −1)·1+4a ≥log a 1 ;解得a >1;∴综上得,a 的取值范围是(0,17]∪(1,+∞) 故选:C . 【点睛】本题考查一次函数、对数函数以及分段函数单调性的判断,值域的求法,属于基础题.12.设函数f (x )={3x +4,x <0x 2−2x+2,x≥0,若互不相等的实数x1,x2,x3满足f (x1)=f (x2)=f (x3),则x1+x2+x3的取值范围是( ) A .[43,+∞) B .[1,43) C .(1,43] D .(1,+∞) 【答案】C【解析】作出函数f(x)的图象,根据对称求得x 1+x 2+x 3的取值范围即可. 【详解】解:函数f(x)={x 2−2x +2,x ⩾03x +4,x <0,函数的图象如下图所示:不妨设x 1<x 2<x 3,则x 2,x 3关于直线x =1对称,故x 2+x 3=2,∵1<3x +4≤2,∴ −1<x 1⩽−23,则x 1+x 2+x 3的取值范围是:1<x 1+x 2+x 3⩽43; 即x 1+x 2+x 3∈(1,43] 故选:C .【点睛】本题考查分段函数图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力与数形结合思想,化归与转化思想,属于基础题.二、填空题13.在半径为10的圆中,30°的圆心角所对的弧长为______. 【答案】5π3【解析】根据弧长公式l =nπr 180进行计算即可.【详解】解:在半径为10的圆中,30°的圆心角所对的弧长是:30×π×10180=5π3.故答案为:5π3. 【点睛】此题主要考查了弧长公式的应用,熟记弧长公式是解题关键,属于基础题. 14.若cosα=−35,且α∈(π,3π2),则tanα= ;【答案】 【解析】略15.已知函数f (x )=ax3+bx+2,且f (π)=1,则f (-π)=______. 【答案】3【解析】根据题意,设g(x)=f(x)−2=ax 3+bx ,分析可得g(x)为奇函数,进而可得g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,计算可得f(π)的值,即可得答案. 【详解】解:根据题意,设g(x)=f(x)−2=ax 3+bx ,则g(−x)=a(−x)3+b(−x)=−(ax 3+bx)=−g(x),则g(x)为奇函数,则g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,因为f (π)=1,则有f(−π)=3; 故答案为:3 【点睛】本题考查函数的奇偶性的性质,注意构造g(x)=f(x)−2,分析g(x)的奇偶性是解题关键,属于基础题.16.如果定义在R 上的函数f (x )满足对任意x1≠x2都有x1f (x1)+x2f (x2)>x1f (x2)+x2f (x1),则称函数f (x )为“H 函数”,给出下列函数:①f (x )=2x-5;②f (x )=x2;③f (x )={x +2,x ≥−1−1x ,x,−1 ;④f (x )=(12)x .其中是“H 函数”的有______.(填序号) 【答案】①③【解析】根据题意,将x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0,分析可得函数f(x)为增函数;依次分析4个函数在R 上的单调性,综合即可得答案. 【详解】解:根据题意,若x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1), 变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0, 则函数f(x)为增函数;对于①,f(x)=2x −5,在R 上是增函数,是“H 函数”,对于②,f(x)=x 2,是二次函数,在R 上不是增函数,不是“H 函数”, 对于③,f(x)={x +2,x ⩾−1−1x,x <−1;是分段函数,在R 上是增函数,是“H 函数”, 对于④,f(x)=(12)x ,是指数函数,在R 上是减函数,不是“H 函数”, 故其中为“H 函数”的有①③; 故答案为:①③. 【点睛】本题考查函数的单调性的性质以及判定,关键是对x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1)的变形分析,属于基础题.三、解答题17.已知全集为R ,集合A={x|2≤x <4},B={x|2x-7≥8-3x},C={x|x <a}. (1)求A∩B ,A ∪(∁RB ); (2)若A∩C=A ,求a 的取值范围.【答案】(1)A ∩B ={x|4>x ≥3},A ∪(C R B )={x|x <4};(2)[4,+∞). 【解析】(1)根据集合的基本运算即可求A ∩B ,(∁R B)∪A ;(2)根据A ∩C =A ,可得A ⊆C ,建立条件关系即可求实数a 的取值范围. 【详解】解:(1)集合A ={x |2≤x <4},B ={x |2x -7≥8-3x }={x |x ≥3}, ∴A ∩B ={x |2≤x <4}∩{x |x ≥3}={x |4>x ≥3}; ∵∁R B ={x |x <3}, ∴A ∪(∁R B )={x |x <4};(2)集合A ={x |2≤x <4},C ={x |x <a }. ∵A ∩C =A ,可得A ⊆C , ∴a ≥4.故a 的取值范围是[4,+∞). 【点睛】本题主要考查集合的基本运算,属于基础题. 18.已知f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α).(1)化简f (α);(2)若f (α)=12,求sinα−3cosαsinα+cosα的值. 【答案】(1)−tanα;(2)−7.【解析】(1)利用诱导公式化简即可得到结果; (2)由(1)知tanα值,再弦化切,即可得出结论.【详解】解:(1)f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α)=sinα⋅(−sinα)⋅(−cosα)−cosα⋅sinα⋅cosα=-tanα;(2)由f (α)=12,得tan α=−12, ∴sinα−3cosαsinα+cosα=tanα−3tanα+1=−12−3−12+1=−7.【点睛】此题考查了诱导公式的化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键,属于基础题.19.已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上的一个最低点为M (2π3,−2 ). (1)求f (x )的解析式及单调递增区间; (2)当x ∈[0,π3]时,求f (x )的值域.【答案】(1)[kπ−π3,kπ+π6],k∈Z;; (2)[1,2].【解析】(1)由f(x)的图象与性质求出T、ω和A、φ的值,写出f(x)的解析式,再求f(x)的单调增区间;(2)求出0≤x≤π3时f(x)的最大、最小值,即可得出函数的值域. 【详解】(1)由f(x)=Asin(ωx+φ),且T=2πω=π,可得ω=2; 又f(x)的最低点为M(2π3,−2 )∴A=2,且sin(4π3+φ)=-1; ∵0<φ<π2,∴4π3<4π3+φ<11π6∴4π3+φ=3π2∴φ=π6∴f (x )=2sin (2x+π6); 令2kπ-π2≤2x+π6≤2kπ+π2,k ∈Z , 解得kπ-π3≤x≤kπ+π6,k ∈Z ,∴f(x)的单调增区间为[kπ-π3,kπ+π6],k ∈Z ; (2)0≤x≤π3,π6≤2x+π6≤5π6 ∴当2x+π6=π6或5π6,即x=0或π3时,f min (x )=2×12=1,当2x+π6=π2,即x=π6时,f max (x )=2×1=2; ∴函数f(x)在x∈[0,π3]上的值域是[1,2]. 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题. 20.已知f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817. (1)求f (x )的解析式;(2)用单调性的定义证明:f (x )在[-1,1]上是减函数. 【答案】(1)f (x )=−2xx 2+1;(2)详见解析.【解析】(1)由奇函数的性质f(0)=0,即得n 值,又由f(−14),解可得m 的值,将m 、n 的值代入f(x)的解析式,计算可得答案; (2)根据题意,由作差法证明即可得结论. 【详解】解:(1)根据题意,f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817,则f (0)=n 1=0,即n =0,则f (x )=mxx 2+1, 又由f (-14)=817,则f (-14)=−m 4116+1=817,解可得m =-2,则f (x )=−2xx 2+1;(2)函数f (x )在[-1,1]上为减函数, 证明:设-1≤x 1<x 2≤1,f (x 1)-f (x 2)=−2x 1x 12+1-−2x 2x 22+1=2x 2x 22+1-2x1x 12+1=2×(x 1−x 2)(x 1x 2−1)(x 12+1)(x 22+1),又由-1≤x 1<x 2≤1,则(x 1-x 2)<0,x 1-x 2-1<0,(x 12+1)>0,(x 22+1)>0, 则f (x 1)-f (x 2)>0,则函数f (x )在[-1,1]上是减函数. 【点睛】本题考查函数的奇偶性单调性的性质以及应用,关键是求出函数的解析式,属于基础题.21.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=,1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ?(2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位? (3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【答案】(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =.试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-=故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位. (3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 210011.5log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得:13211log 2x x =,于是129x x =.故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 【考点】1.函数代入求值;2.解方程;3.对数运算. 22.已知函数f (x )=-sin2x+mcosx-1,x ∈[−π3,2π3].(1)若f (x )的最小值为-4,求m 的值; (2)当m=2时,若对任意x1,x2∈[-π3,2π3]都有|f (x1)-f (x2)|≤2a −1恒成立,求实数a 的取值范围.【答案】(1)m =4.5或m =−3;(2)[2,+∞).【解析】(1)利用函数的公式化简后换元,转化为二次函数问题求解最小值,可得m 的值;(2)根据|f(x 1)−f(x 2)|⩽2a −14恒成立,转化为函数f(x)=|f(x 1)−f(x 2)|的最值问题求解; 【详解】解:(1)函数f (x )=-sin 2x +m cos x -1=cos 2x +m cos x -2=(cos x +m2)2-2-m 24.当cos x =−m2时,则2+m 24=4,解得:m =±2√2那么cos x =±√2显然不成立. x ∈[−π3,2π3].∴−12≤cos x ≤1. 令cos x =t . ∴−12≤t ≤1.①当−12>−m 2时,即m >1,f (x )转化为g (t )min =(−12+m2)2-2-m 24=-4解得:m =4.5,满足题意;②当1<−m2时,即m <-2,f (x )转化为g (t )min =(1+m2)2-2-m 24=-4解得:m =-3,满足题意;故得f (x )的最小值为-4,m 的值4.5或-3; (2)当m =2时,f (x )=(cos x +1)2-3, 令cos x =t . ∴−12≤t ≤1.∴f (x )转化为h (t )=(t +1)2-3,其对称轴t =-1,∴t ∈[−12,1]上是递增函数. h (t )∈[−114,1]. 对任意x 1,x 2∈[-π3,2π3]都有|f (x 1)-f (x 2)|≤2a −14恒成立, |f (x 1)-f (x 2)|max =1−(−114)≤2a −14 可得:a ≥2.故得实数a 的取值范围是[2,+∞). 【点睛】本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力,属于中档题.。

相关文档
最新文档