【优化方案】2014届高考数学二轮复习_专题3第2讲数列求和及综合应用课件_新人教版
高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

+2an+1=4S
n+1+3.
可得
a2 n 1
-
an2
+2(an+1- an)=4an+1,即
2(an+1+an)=
a2 n 1
-
an2
= (an+1+an)(an+1-an).
由于 an>0,可得 an+1-an=2.
又 a12 +2a1=4a1+3, 解得 a1=-1(舍去)或 a1=3.
所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1.
第二个使用累积的方法、第三个可以使用待定系数法化为等比数列(设 an+1+λ =p(an+λ),展开比较系数得出λ);(3)周期数列,通过验证或者推理得出数列的 周期性后得出其通项公式.
热点训练 1:(1)(2018·湖南长沙雅礼中学、河南省实验中学联考)在数列{an}
中,a1=2, an1 = an +ln(1+ 1 ),则 an 等于( )
n
所以
1 =2(1- 1 + 1 - 1 +…+ 1 -
1
)
S k 1 k
223
n n1
=2(1- 1 ) n 1
= 2n . n 1
答案: 2n n 1
3.(2015·全国Ⅱ卷,理16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
解析:因为 an+1=S n+1-Sn,所以 Sn+1-Sn=Sn+1Sn,
【优化方案】2014届高考数学(文科,大纲版)一轮复习配套课件:3.4 数列求和

(2){cn}的前n项和Tn用错位相减法.
目录
【解】 (1){an}是等差数列,证明如下: ∵ a1= S1= 1,当 n≥ 2 时, an= Sn- Sn- 1=2n-1, 且 n= 1 时也适合此式,∴ an=2n- 1, ∴ an+ 1- an=2(n∈ N*),即 {an}是以 1 为首项, 2 为公差的 等差数列. (2)由 (1)可得 cn= an· bn=(2n- 1)· 2n ∴ Tn= (2×1-1)× 21+(2× 2- 1)×22+„+ (2n-1)× 2n① + ∴ 2Tn=1×22+ 3× 23+„+ (2n- 1)×2n 1② + + ①-②得- Tn= 2+ 23+24+„+2n 1-(2n- 1)× 2n 1 - 8×1- 2n 1 + = 2+ - (2n- 1)· 2n 1 1-2 + + = 2× 2n 1-6-(2n-1)· 2n 1, + ∴ Tn= (2n- 3)· 2n 1+ 6.
目录
例1 求下面数列的前 n 项和.
1 1 1 1+1, +4, 2+7,„, n-1+3n-2,„ a a a
【思路分析】 把原数列分为等差数列 1,4,7,„, 3n-2,与 1 1 1 等比数列 1, , 2,„, n-1的和的形式,分别求和. a a a
目录
【解】
前 n 项和为 1 1 1 Sn= (1+1)+ ( + 4)+ ( 2+ 7)+„+ ( n-1+ 3n- 2) a a a 1 1 1 = (1+ + 2+„+ n-1)+ [1+4+ 7+„+(3n-2)], a a a 1 1 1 设 S1=1+ + 2+„+ n-1, a a a an-1 当 a= 1 时, S1= n;当 a≠ 1 时, S1= n - , a -an 1 3n-1 n S2= 1+ 4+ 7+„+ (3n- 2)= . 2 3n-1 n 3n+1 n ∴当 a= 1 时, Sn= S1+ S2= n+ = ; 2 2 an-1 3n-1 n 当 a≠ 1 时, Sn= S1+ S2= n . - + 2 a -an 1
2014年高考数学二轮复习精品资料 难点05 数列的通项公式与求和问题学案(含解析)

2014年高考数学二轮复习精品资料难点05 数列的通项公式与求和问题学案(含解析)数列在高考中占重要地位,每年都考,应当牢记等差、等比的通项公式,前n项和公式,等差、等比数列的性质,以及常见求数列通项的方法,如累加、累乘、构造等差、等比数列法、取倒数等。
数列求和问题是数列中的重要知识,在各地的高考试题中频频出现,对于等差数列、等比数列的求和主要是运用公式;而非等差数列、非等比数列的求和问题,一般用倒序相加法、通项化归法、错位相减法、裂项相消法、分组求和法等.对数列通项公式和求和公式的应用一定要注意公式成立的前提条件,否则一出现错误.1.注意对等比数列中公比的分类讨论由于等比数列前n项和公式有两种形式,为此在求等比数列前n项和时,首先要判断公比q是否为1,再由q的情况选择求和公式的形式,当不能判断公比q是否为1时,要对q分q=1和q≠1两种情形讨论求解.等比中项:若a,A,b成等比数列,那么A叫做a与b的等比中项.值得注意的是,不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个,即为±ab.如已知两个正数a,b(a≠b)的等差中项为A,等比中项为B,则A与B的大小关系为A>B.例1 设等比数列{an}的前n项和为Sn,若S3+S6=S9,则数列的公比q是________.思路分析:注意分类,当q=1时,符合要求.很多考生在做本题时都想当然地认为q≠1.2.由数列的递推关系求通项若一个数列首项确定,其余各项用an与an-1的关系式表示(如an=2an-1+1,(n>1),则这个关系式称为数列的递推公式.由递推关系求数列的通项的基本思想是转化,常用的方法:(1)an +1-an =f (n)型,采用叠加法. (2)an +1an=f(n)型,采用叠乘法.(3)an +1=pan +q(p≠0,p≠1)型,转化为等比数列解决. 例2 根据下列条件,确定数列{an}的通项公式:(1)a1=2,an+1=an+ln(1+1n );(2) a1=12, an+1=(1)22n n na n n +-++; (3) a1=1, an+1=3an+2;(4) a1=1, an+1=22nn a a +.思路分析:(1)求an -an -1用叠加法求和,验证n =1; (2)令bn =an -1,用叠乘法求和; (3)可构造等比数列求解; (4)用倒数法,转化为等差数列求解.(4)∵a1=1,an +1=2an 2+an ,∴1an +1=1an +12.∴数列{1an }是等差数列,其首项为1,公差为12,∴1an =1+n -12,∴an =2n +1.点评:1. 本题常见的误区:(1)忽视判定an +1≠0;(2)遗漏验证n =1时,a1是否适合通项公式; 2.(1)已知a1且an -an -1=f(n),可用“叠加法”求an ;已知a1(a1≠0)且anan -1=f(n),可用“叠乘法”;求an.an +1=panp +qan(an≠0,p 、q 为非零常数),可用倒数法.(2)已知a1且an +1=qan +b ,则an +1+k =q(an +k)(其中k 可由待定系数法确定),可转化为{an +k}为等比数列.3. 忽视等比数列中的隐含条件致误在求等比数列的通项公式和前n 项和时,一定不要忽略题中的隐含条件,否则就会导致错误出现例3 各项均为实数的等比数列{an}的前n 项和为Sn ,若S10=10,S30=70,则S40=________. 思路分析:数列S10,S20-S10,S30-S20,S40-S30的公比q10>0.忽略了此隐含条件,就产生了增解.点评:若忽视r =q10>0就会产生増根,出现错解. 4.等差数列前n 项和的最值 等差数列的单调性与n S 的最大或最小的关系.(1)若0d >,则等差数列{}n a 中有10n n a a d --=>,即1nn a a ->,所以数列为单调递增; 当10a ≥时,有1(2)n n S S n ->≥,所以n S 的最小值为S . 当10a <时,有则一定存在某一自然数k,使12310k k n a a a a a a +<<<<<≤<<或12310k k n a a a a a a +<<<<≤<<<,则n S 的最小值为S .(2)若0d <,则等差数列{}n a 中有10n n a a d --=<,即1n n a a ->,所以数列为单调递减;当10a >时,有则一定存在某一自然数k ,使12310k k n a a a a a a +>>>>>≥>>或12310k k na a a a a a +>>>>≥>>>,则nS 的最大值为S.当10a ≤时,有1(2)n n S S n ->≥,所以nS的最大值为S.例4 在等差数列{an}中,已知a1=20,前n 项和为Sn ,且S10=S15,求当n 取何值时,Sn 取得最大值,并求出它的最大值.思路分析:由a1=20及S10=S15可求得d ,进而求得通项,由通项得到此数列前多少项为正,或利用等差数列的性质,判断出数列从第几项开始变号.5.忽视分类讨论或讨论不当致误例5若等差数列{an}的首项a1=21,公差d=-4,求:Sk=|a1|+|a2|+|a3|+…+|ak|. 思路分析:根据绝对值的几何意义,首先去掉绝对值符号,然后再求和.=(a1+a2+a3+…+a6)-(a7+a8+…+ak)6.裂项相消求和法利用通项变形,把数列的通项分裂成两项或几项的差,在求和过程中,中间的一些项可以相互抵消,最后只剩下有限项的和,从而求得数列的和.这种求数列和的方法叫做裂项相消求和法.常见拆项:111(1)1n n n n =---;1111()(21)(21)22121n n n n =--+-+;111n nn n =+-++ 1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++;n·n!=(n+1)!-n!;11(1)!!(1)!n n n n =-++;loga (1+1n)=loga(n +1)-logan ;等等例6 [2012·全国卷改编] 已知等差数列{an}的前n 项和为Sn ,a5=5,S5=15,则数列{11n n a a +}的前100项和为——.思路分析:先求数列{an}的通项公式,然后每一项分成两项,利用裂项相消求和法7.数列与不等式的综合应用数列与不等式交汇命题,不等式常作为证明或求解的一问呈现,解答时先将数列的基本问题解决,再集中解决不等式问题,注意放缩法、基本不等式、裂项、累加法的运用.例7 【2013年江西理】正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=.(1)求数列{}n a 的通项公式n a ;(2)令221(2)n n n b n a +=+,数列{}n b 的前n 项和为n T .证明:对于任意*n N ∈,都有5.64n T <思路分析:(1)由题目中的等式求出nS ,然后由nS 求an ;(2)化简nb ,观察结构特征,选取求和的方法求Tn.综上所述,等比数列中一定要注意公比q=1或q ≠1两种情况,平时往往易忽略q=1的情况,出现失误;求等差数列前n 项和的最值或前n 项和常用的方法:先求an ,再利用⎩⎪⎨⎪⎧an≥0an +1≤0或⎩⎪⎨⎪⎧an≤0an +1≥0求出其正负转折项,最后利用单调性确定最值或前n 项和. 解决非等差、等比数列的求和,主要有两种思路:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.数列与函数、不等式、解析几何、向量、三角函数等知识点交融,难度就较大,也是近几年命题的热点.。
(三轮考前体系通关)2014年高考数学二轮复习简易通 2-4 数列问题 理 新人教A版

第四辑 数列问题[通关演练 A 组] (建议用时:45分钟)1.设等比数列{a n }的前n 项和为S n ,a 4=a 1-9,a 5,a 3,a 4成等差数列.(1)求数列{a n } 的通项公式;(2)证明:对任意k ∈N *,S k +2,S k ,S k +1成等差数列. (1)解 在等比数列{a n }中,a 5,a 3,a 4成等差数列, ∴2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3,整理得:q 2+q -2=0. 解得q =1,或q =-2. 又a 4=a 1-9,即a 1q 3=a 1-9, 当q =1时,无解. 当q =-2时,解得a 1=1∴等比数列{a n }通项公式为a n =(-2)n -1n ∈N *(2)证明∵S n 为等比数列{a n }的前n 项和,∴S k =1·[1--k]1--=1--k3,S k +1=1--k +13,S k +2=1--k +23, ∵S k+1+S k+2=1--k +13+1--k +23=2--k +1--k +23=2--k +1[1+-3=2+-k +13=2·1--k3=2S k .∴S k +1,S k ,S k +2成等差数列.2.已知各项均不相等的等差数列{a n }的前5项和为S 5=35,且a 1+1,a 3+1,a 7+1成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和,问是否存在常数m ,使T n =m ⎣⎢⎡⎦⎥⎤n n +1+nn +,若存在,求m 的值;若不存在,说明理由.解 (1)设数列{a n }的公差为d ,由已知得a 3=a 1+2d =7,又a 1+1,a 3+1,a 7+1成等比,所以82=(8-2d )(8+4d ),解得a 1=3,d =2,所以a n =2n +1. (2)由(1)得S n =n (n +2) 1S n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2,所以T n =121-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2=121+12-1n +1-1n +2=12⎣⎢⎡⎦⎥⎤nn +1+n n +,故存在常数m =12. 3.已知n ∈N *,数列{d n }满足d n =3+-n2,数列{a n }满足a n =d 1+d 2+d 3+…+d 2n ,又知在数列{b n }中,b 1=2,且对任意正整数m ,n ,b mn =b nm . (1)求数列{a n }和数列{b n }的通项公式;(2)将数列{b n }中的第a 1项,第a 2项,第a 3项,…,第a n 项,…删去后,剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前2 013项和. 解 (1)d n =3+-n2,∴a n =d 1+d 2+d 3+…+d 2n =3×2n2=3n .又由题知:令m =1,则b 2=b 21=22,b 3=b 31=23,…b n =b n 1=2n ,若b n =2n ,,则b m n =2nm,b n m =2mn ,所以b m n =b n m 恒成立.若b n ≠2n ,当m =1,b m n =b n m 不成立,所以b n =2n.(2)由题意知将数列{b n }中的第3项、第6项、第9项…删去后构成的新数列{c n }中的奇数列与偶数列仍成等比数列,首项分别是b 1=2,b 2=4公比均是8. ∴T 2 013=(c 1+c 3+c 5+…+c 2 013)+(c 2+c 4+c 6+…+c 2 012)=-81 0071-8+-81 0061-8=20×81 006-67.[通关演练 B 组] (建议用时:40分钟)1.已知数列{a n }的前n 项和S n 满足S n +a n +⎝ ⎛⎭⎪⎫12n -1=2(n ∈N *),设c n =2na n .(1)求证:数列{c n }是等差数列,并求数列{a n }的通项公式. (2)按以下规律构造数列{b n },具体方法如下:b 1=c 1,b 2=c 2+c 3,b 3=c 4+c 5+c 6+c 7,…,第n 项b n 由相应的{c n }中2n -1项的和组成,求数列{b n }的通项b n .(1)证明 在S n +a n +⎝ ⎛⎭⎪⎫12n -1=2①中,令n =1,得S 1+a 1+1=2,∴a 1=12.当n ≥2时,S n -1+a n -1+⎝ ⎛⎭⎪⎫12n -2=2,②①-②得a n +a n -a n -1-⎝ ⎛⎭⎪⎫12n -1=0(n ≥2),∴2a n -a n -1=12n -1,∴2n a n -2n -1a n -1=1.又c n =2na n ,∴c n -c n -1=1(n ≥2).又c 1=2a 1=1,所以,数列{c n }是等差数列.于是c n =1+(n -1)×1=n ,又∵c n =2na n ,∴a n =n2n .(2)解 由题意得b n =c 2n -1+c 2n -1+1+c 2n -1+2+…+c 2n -1=2n -1+(2n -1+1)+(2n -1+2)+…+(2n -1),而2n-1,2n -1+1,2n -1+2,…,2n -1是首项为2n -1,公差为1的等差数列,且共有2n -1项,所以,b n =[2n -1+n-n -12=22n -2+22n -1-2n -12=3×22n -3-2n -2.2.已知{a n }为等差数列,且a 2=-1,a 5=8.(1)求数列{|a n |}的前n 项和; (2)求数列{2n·a n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,因为a 2=-1,a 5=8,所以⎩⎪⎨⎪⎧a 1+d =-1,a 1+4d =8,解得a 1=-4,d =3,所以a n =-4+3(n -1)=3n -7,因此|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3记数列{|a n |}的前n 项和为S n ,当n =1时,S 1=|a 1|=4,当n =2时,S 2=|a 1|+|a 2|=5,当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -+n -2=32n 2-112n +10. 又当n =2时满足此式, 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2(2)记数列{2na n }的前n 项和为T n则T n =2a 1+22a 2+23a 3+…+2n a n ,2T n =22a 1+23a 2+24a 3+…+2n a n -1+2n +1a n ,所以-T n =2a 1+d (22+23+…+2n )-2n +1a n由(1)知,a 1=-4,d =3,a n =3n -7,所以-T n =-8+3×41-2n -11-2-(3n -7)×2n+1=-20-(3n -10)×2n +1, 故T n =20+(3n -10)×2n +1.3.在数列{a n }中,a 1=1,{a n }的前n 项和S n 满足2S n =a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得λ≤n n +a n,求实数λ的最大值.解 (1)由题意,当n ≥2时,2S n -1=a n ,2S n =a n +1, 两式相减得2a n =a n +1-a n , 即a n +1=3a n ,又a 2=2a 1=2,可见数列{a n }从第二项起成公比为3的等比数列. 所以当n ≥2时,a n =a 2·3n -2=2·3n -2,故a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2.(2)令b n =n n +a n,当n ≥2时,b n =n n +2·3n -2当n ≥2时,b n +1-b n =n +n +2·3n -1-n n +2·3n -2=n +n +-3n ]2·3n -2=n +-n2·3n -1<0.所以当n ≥2时,b n +1<b n所以,数列{b n }从第二项起的各项成单调递减数列 而b 2=2×32·32-2=3,b 1=1×2a 1=2, 由题意,λ≤⎣⎢⎡⎦⎥⎤n n +a n max =max{2,3}=3.所求实数λ的最大值是3.。
(新课标)高考数学二轮复习专题二数列第2讲数列通项与求和学案理新人教A版

(新课标)高考数学二轮复习专题二数列第2讲数列通项与求和学案理新人教A 版第2讲 数列通项与求和[做真题]题型一 a n 与S n 关系的应用1.(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析:法一:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2; 当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4; 当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8; 当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16; 当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32; 所以S 6=-1-2-4-8-16-32=-63.法二:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n =S n-S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×(1-26)1-2=-63.答案:-632.(2015·高考全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n=________.解析:因为 a n +1=S n +1-S n ,a n +1=S n S n +1, 所以S n +1-S n =S n S n +1.因为 S n ≠0,所以1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,所以{1S n}是首项为-1,公差为-1的等差数列.所以1S n =-1+(n -1)×(-1)=-n ,所以S n =-1n.答案:-1n题型二 数列求和1.(2017·高考全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=__________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意,⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,即⎩⎪⎨⎪⎧a 1+2d =3,2a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1,d =1, 所以S n =n (n +1)2,因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +12.(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解:(1)设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.3.(2016·高考全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.[明考情]1.已知数列递推关系求通项公式,主要考查利用a n 与S n 的关系求通项公式、累加法、累乘法及构造法求通项公式,主要以选择题、填空题的形式考查,有时作为解答题的第(1)问考查,难度中等.2.数列求和常与数列综合应用一起考查,常以解答题的形式考查,有时与函数不等式综合在一起考查,难度中等偏上.S n,a n关系的应用[典型例题](1)已知数列{a n}的前n项和为S n,若3S n=2a n-3n,则a2 019=( )A.-22 019-1 B.32 019-6C.⎝⎛⎭⎪⎫122 019-72D.⎝⎛⎭⎪⎫132 019-103(2)(2019·东北四市联合体模拟(一))已知数列{a n}中,a1=2,a n+1=(n+1)a nn+2a n(n∈N*),则∑k=1n ka k=________.(3)(一题多解)(2019·武汉市调研测试)已知数列{a n}的前n项和S n满足S n=3S n-1+2n-3(n≥2),a1=-1,则a4=________.【解析】(1)因为a1=S1,所以3a1=3S1=2a1-3⇒a1=-3.当n≥2时,3S n=2a n-3n,3S n-1=2a n-1-3(n-1),所以a n=-2a n-1-3,即a n+1=-2(a n -1+1),所以数列{a n+1}是以-2为首项,-2为公比的等比数列.所以a n+1=(-2)×(-2)n-1=(-2)n,则a2 019=-22 019-1.(2)由题意可知na n+1+2a n a n+1=(n+1)a n,两边同除以a n a n+1,得n+1a n+1-na n=2,又1a1=12,所以⎩⎨⎧⎭⎬⎫na n是以12为首项,2为公差的等差数列,所以∑k=1n ka k=12n+12n(n-1)×2=n2-12n.(3)法一:由S n=3S n-1+2n-3(n≥2)可得S2=3S1+1=3a1+1,即a2=2a1+1=-1.根据S n=3S n-1+2n-3(n≥2)①,知S n+1=3S n+2n+1-3②,②-①可得,a n+1=3a n+2n(n≥2).两边同时除以2n+1可得a n+12n+1=32·a n2n+12(n≥2),令b n=a n2n,可得b n+1=32·b n+12(n≥2).所以b n+1+1=32(b n+1)(n≥2),数列{b n+1}是以b2+1=34为首项,32为公比的等比数列.所以b n +1=⎝ ⎛⎭⎪⎫32n -2·34(n ≥2), 所以b n =12·⎝ ⎛⎭⎪⎫32n -1-1(n ≥2).*又b 1=-12也满足*式,所以b n =⎝ ⎛⎭⎪⎫32n -1·12-1(n ∈N *),又b n =a n2n ,所以a n =2n b n ,即a n =3n -1-2n.所以a 4=33-24=11.法二:由S n =3S n -1+2n-3(n ≥2),a 1=-1,知S 2=3S 1+4-3,所以a 2=-1.S 3=3S 2+8-3,所以a 3=1.S 4=3S 3+16-3,所以a 4=11.【答案】 (1)A (2)n 2-12n (3)11(1)给出S n 与a n 的递推关系求a n 的常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .(2)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[对点训练]1.(2019·武昌区调研考试)已知数列{a n }的前n 项和S n =n 2-1,则a 1+a 3+a 5+a 7+a 9=( )A .40B .44C .45D .49解析:选B .法一:因为S n =n 2-1,所以当n ≥2时,a n =S n -S n -1=n 2-1-(n -1)2+1=2n -1,又a 1=S 1=0,所以a n =⎩⎪⎨⎪⎧0,n =12n -1,n ≥2,所以a 1+a 3+a 5+a 7+a 9=0+5+9+13+17=44.故选B .法二:因为S n =n 2-1,所以当n ≥2时,a n =S n -S n -1=n 2-1-(n -1)2+1=2n -1,又a 1=S 1=0,所以a n =⎩⎪⎨⎪⎧0,n =12n -1,n ≥2,所以{a n }从第二项起是等差数列,a 2=3,公差d =2,所以a 1+a 3+a 5+a 7+a 9=0+4a 6=4×(2×6-1)=44,故选B .2.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,所以a n =2n -1.因为a n b n =-n 2+9n -20, 所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6}数列求和问题 [典型例题]命题角度一 公式法求和已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 为等差数列;(2)设T 2n =1a 1a 2-1a 2a 3+1a 3a 4-1a 4a 5+…+1a 2n -1a 2n -1a 2n a 2n +1,求T 2n .【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +23, 所以1a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为23的等差数列.(2)设b n =1a 2n -1a 2n -1a 2n a 2n +1=⎝⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n,由(1)得,数列⎩⎨⎧⎭⎬⎫1a n 是公差为23的等差数列,所以1a 2n -1-1a 2n +1=-43,即b n =⎝ ⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n =-43×1a 2n ,所以b n +1-b n =-43⎝ ⎛⎭⎪⎫1a 2n +2-1a 2n =-43×43=-169. 又b 1=-43×1a 2=-43×⎝ ⎛⎭⎪⎫1a 1+23=-209,所以数列{b n }是首项为-209,公差为-169的等差数列,所以T 2n =b 1+b 2+…+b n =-209n +n (n -1)2×⎝ ⎛⎭⎪⎫-169=-49(2n 2+3n ).求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2或S n =na 1+n (n -1)2d ;等比数列{a n }的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解.命题角度二 裂项相消法求和(2019·广东省七校联考)已知数列{a n }为公差不为0的等差数列,a 1=5,且a 2,a 9,a 30成等比数列.(1)求{a n }的通项公式;(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求数列{1b n}的前n 项和T n .【解】 (1)设等差数列{a n }的公差为d (d ≠0),依题意得(a 1+d )(a 1+29d )=(a 1+8d )2. 又a 1=5,所以d =2,所以a n =2n +3.(2)依题意得b n +1-b n =2n +3(n ∈N *),所以b n -b n -1=2n +1(n ≥2且n ∈N *),所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=(2n +1)+(2n -1)+…+5+3=n (2n +1+3)2=n 2+2n (n ≥2且n ∈N *),b 1=3,上式也成立,所以b n =n (n +2)(n ∈N *),所以1b n=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.所以T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2.(1)裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. [提醒] 常见的裂项式有:1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,1n (n +1)(n +2)=12[1n (n +1)-1(n +1)(n +2)],1n +1+n =n +1-n 等.命题角度三 错位相减法求和(2019·唐山模拟)已知数列{a n }的前n 项和为S n ,S n =3a n -12. (1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 【解】 (1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1.(2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③则3T n =0×31+1×32+2×33+…+(n -1)×3n.④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n=3-3n1-3-(n -1)×3n =(3-2n )×3n-32. 所以T n =(2n -3)×3n+34.(1)求解此类题需掌握三个技巧:一是巧分拆,即把数列的通项转化为等差数列、等比数列的通项的和,并求出等比数列的公比;二是构差式,求出前n 项和的表达式,然后乘以等比数列的公比,两式作差;三是得结论,即根据差式的特征进行准确求和.(2)运用错位相减法求和时应注意三点:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错开位置;三是相减时一定要注意最后一项的符号,学生常在此步出错,一定要小心.命题角度四 分组转化求和(2019·河北省九校第二次联考)已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.(1)求数列{a n }的通项公式; (2)令c n =4b n ·b n +1+a n ,求数列{c n }的前n 项和S n .【解】 (1)由b n =log 2a n 和b 1+b 2+b 3=12得log 2(a 1a 2a 3)=12, 所以a 1a 2a 3=212.设等比数列{a n }的公比为q .因为a 1=4,所以a 1a 2a 3=4·4q ·4q 2=26·q 3=212, 计算得q =4. 所以a n =4·4n -1=4n.(2)由(1)得b n =log 24n=2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n.设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n·41-4=43(4n-1),所以S n =nn +1+43(4n-1).(1)在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 进行讨论.最后再验证是否可以合并为一个表达式.(2)分组求和的策略:①根据等差、等比数列分组.②根据正号、负号分组. 命题角度五 并项求和数列{a n }满足a n +1=⎝ ⎛⎭⎪⎫2⎪⎪⎪⎪⎪⎪sinn π2-1a n +2n ,n ∈N *,则数列{a n }的前100项和为( )A .5 050B .5 100C .9 800D .9 850【解析】 设k ∈N *,当n =2k 时,a 2k +1=-a 2k +4k ,即a 2k +1+a 2k =4k ,① 当n =2k -1时,a 2k =a 2k -1+4k -2,② 联立①②可得,a 2k +1+a 2k -1=2, 所以数列{a n }的前100项和S n =a 1+a 2+a 3+a 4+…+a 99+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=(a 1+a 3+…+a 99)+[(-a 3+4)+(-a 5+4×2)+(-a 7+4×3)+…+(-a 101+4×50)] =25×2+[-(a 3+a 5+…+a 101)+4×(1+2+3+…+50)] =25×2-25×2+4×50(1+50)2=5 100. 故选B .【答案】 B(1)将一个数列分成若干段,然后各段分别利用等差(比)数列的前n 项和的公式及错位相减法进行求和.利用并项求和法求解问题的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”.(2)运用分类讨论法求数列的前n 项和的突破口:一是对分类讨论的“度”的把控,如本题,因为⎪⎪⎪⎪⎪⎪sinn π2可以等于1,也可以等于0,因此分类的“度”可定位到“n 分为奇数与偶数”,有些含绝对值的数列,其分类的“度”需在零点处下功夫;二是对各类分法做到不重不漏,解题的思路就能顺畅.[对点训练]1.(2019·唐山市摸底考试)已知数列{a n }是公差不为0的等差数列,a 4=3,a 2,a 3,a 5成等比数列.(1)求a n ;(2)设b n =n ·2an ,数列{b n }的前n 项和为T n ,求T n . 解:(1)设数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d . 因为a 2,a 3,a 5成等比数列, 所以(a 1+2d )2=(a 1+d )(a 1+4d ), 化简得,a 1d =0, 又d ≠0, 所以a 1=0. 又a 4=a 1+3d =3, 所以d =1. 所以a n =n -1. (2)b n =n ×2n -1,T n =1×20+2×21+3×22+…+n ×2n -1,①则2T n =1×21+2×22+3×23+…+n ×2n.② ①-②得,-T n =1+21+22+…+2n -1-n ×2n=1-2n1-2-n ×2n=(1-n )×2n-1. 所以T n =(n -1)×2n+1.2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)(4a 1+12), 解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.数列与不等式的综合问题[典型例题](2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),证明:T n <1.【解】 (1)因为2a n =a n -1+a n +1a n -1a n +1(n ≥2),所以2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, 所以1a 1=1,1a 2=32,所以1a 2-1a 1=12,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.所以1a n =1+12(n -1)=12(n +1),即a n =2n +1. (2)证明:因为4b n =a n -1a n (n ≥2), 所以b n =1n (n +1)=1n -1n +1(n ≥2),所以T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.解决与数列求和有关的不等式问题的常用方法——“放缩法” (1)如果和式能够求出,则求出结果后进行放缩,本例就是这种类型.(2)如果和式不能求出,则需要把数列的通项放缩成能够求和的形式,求和后再进行放缩,但要注意放缩的“尺度”和“位置”.[对点训练](2019·四省八校双教研联考)已知数列{a n }的前n 项和为S n ,a n +1=4S n -12n -1,a 1=1且n ∈N *.(1)求{a n }的通项公式; (2)设a n b n =1S n,数列{b n }的前n 项和为T n ,求证:T n <32(n ∈N *).解:(1)由a n +1=4S n -12n -1,得(2n -1)a n +1=4S n -1,可得(2n -3)a n =4S n -1-1(n ≥2),两式相减得(2n +1)a n =(2n -1)a n +1,即a n 2n -1=a n +12n +1(n ≥2),又由a n +1=4S n -12n -1,a 1=1,得a 2=3,所以a 12×1-1=a 22×1+1,所以⎩⎨⎧⎭⎬⎫a n 2n -1为常数列,所以a n2n -1=1,即a n =2n -1.(2)证明:由a n =2n -1,得S n =n 2,所以b n =1n (2n -1).当n =1时,T 1=1<32成立;当n ≥2时,b n =1n (2n -1)=12n ⎝ ⎛⎭⎪⎫n -12<12n (n -1)=12⎝⎛⎭⎪⎫1n-1-1n,所以T n<1+12⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝⎛⎭⎪⎫1n-1-1n=1+12⎝⎛⎭⎪⎫1-1n<32.综上,T n<32(n∈N*).[A组夯基保分专练]一、选择题1.(2019·广东省六校第一次联考)数列{a n}的前n项和为S n=n2+n+1,b n=(-1)n a n(n∈N*),则数列{b n}的前50项和为( )A.49 B.50C.99 D.100解析:选A.由题意得,当n≥2时,a n=S n-S n-1=2n,当n=1时,a1=S1=3,所以数列{b n}的前50项和为-3+4-6+8-10+…+96-98+100=1+48=49,故选A.2.(一题多解)(2019·洛阳尖子生第二次联考)已知数列{a n}的前n项和为S n,a1=1,S n =2a n+1,则S n=( )A.2n-1B.⎝⎛⎭⎪⎫32n-1C.⎝⎛⎭⎪⎫23n-1D.⎝⎛⎭⎪⎫12n-1解析:选B.法一:当n=1时,S1=a1=2a2,则a2=12.当n≥2时,S n-1=2a n,则S n-S n -1=a n=2a n+1-2a n,所以a n+1a n=32,所以当n≥2时,数列{a n}是公比为32的等比数列,所以a n=⎩⎨⎧1,n=112×⎝⎛⎭⎪⎫32n-2,n≥2,所以S n=1+12+12×32+…+12×⎝⎛⎭⎪⎫32n-2=1+12×⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫32n-11-32=⎝⎛⎭⎪⎫32n-1,当n=1时,此式也成立.故选B.法二:当n=1时,S1=a1=2a2,则a2=12,所以S2=1+12=32,结合选项可得只有B满足,故选B.3.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2 019=( ) A .1 B .-2 C .3D .-3解析:选A .因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2 019=336×6+3,所以a 2 019=a 3=a 2-a 1=3-2=1.故选A .4.若数列{a n }满足a 1=1,且对于任意的n ∈N *都有a n +1=a n +n +1,则1a 1+1a 2+…+1a 2 017+1a 2 018等于( ) A .4 0352 017 B .2 0162 017 C .4 0362 019D .4 0352 018解析:选C .由a n +1=a n +n +1,得a n +1-a n =n +1, 则a 2-a 1=1+1,a 3-a 2=2+1, a 4-a 3=3+1,…,a n -a n -1=(n -1)+1,以上等式相加,得a n -a 1=1+2+3+…+(n -1)+n -1, 把a 1=1代入上式得,a n =1+2+3+…+(n -1)+n =n (n +1)2,1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,则1a 1+1a 2+…+1a 2 017+1a 2 018=2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 017-12 018⎦⎥⎤+⎝ ⎛⎭⎪⎫12 018-12 019=2⎝ ⎛⎭⎪⎫1-12 019=4 0362 019.5.(2019·郑州市第一次质量预测)已知数列{a n }满足2a n +1+a n =3(n ≥1),且a 3=134,其前n 项和为S n ,则满足不等式|S n -n -6|<1123的最小整数n 是( )A .8B .9C .10D .11解析:选C .由2a n +1+a n =3,得2(a n +1-1)+(a n -1)=0,即a n +1-1a n -1=-12(*), 又a 3=134,所以a 3-1=94,代入(*)式,有a 2-1=-92,a 1-1=9,所以数列{a n -1}是首项为9,公比为-12的等比数列.所以|S n -n -6|=|(a 1-1)+(a 2-1)+…+(a n -1)-6|=⎪⎪⎪⎪⎪⎪⎪⎪9×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12-6=⎪⎪⎪⎪⎪⎪-6×⎝ ⎛⎭⎪⎫-12n <1123,又n ∈N *,所以n 的最小值为10.故选C . 6.(2019·江西省五校协作体试题)设S n 是数列{a n }的前n 项和,若a n +S n =2n,2bn =2a n+2-a n +1,则1b 1+12b 2+…+1100b 100=( )A .9798 B .9899 C .99100D .100101解析:选D .因为a n +S n =2n①,所以a n +1+S n +1=2n +1②,②-①得2a n +1-a n =2n,所以2a n +2-a n +1=2n +1,又2bn =2a n +2-a n +1=2n +1,所以b n =n +1,1nb n=1n (n +1)=1n -1n +1,则1b 1+12b 2+…+1100b 100=1-12+12-13+…+1100-1101=1-1101=100101,故选D . 二、填空题7.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为________.解析:设该女子第一天织布x 尺, 则x (25-1)2-1=5,解得x =531, 所以该女子前3天所织布的总尺数为531(23-1)2-1=3531.答案:35318.(一题多解)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=________.解析:法一:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,所以a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 答案:929.(2019·蓉城名校第一次联考)已知S n 是数列{a n }的前n 项和,若a n +⎪⎪⎪⎪⎪⎪cos n π2S n =2,则a 12=________.解析:当n =1,2,3,4,…时,⎪⎪⎪⎪⎪⎪cosn π2=0,1,0,1,…,所以a 1=a 3=a 5=a 7=…=2,a 2+S 2=a 4+S 4=a 6+S 6=a 8+S 8=…=a 12+S 12=…=2,S 2-S 1+S 2=S 4-S 3+S 4=S 6-S 5+S 6=S 8-S 7+S 8=…=2,所以2S 2=2+S 1⇒S 2=2;2S 4=2+S 3=4+S 2⇒S 4=2+12S 2=3,同理可得S 6=2+12S 4=2+32=72,S 8=2+12S 6=2+74=154,S 10=2+158=318,S 12=6316,又a 12+S 12=2,所以a 12=2-S 12=2-6316=-3116.答案:-3116三、解答题10.(2019·广州市综合检测(一))已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解:(1)因为lg a 1=0,lg a 4=1, 所以a 1=1,a 4=10. 设等差数列{a n }的公差为d , 则d =a 4-a 14-1=3.所以a n =a 1+3(n -1)=3n -2. (2)由(1)知a 1=1,a 6=16,因为a 1,a k ,a 6是等比数列{b n }的前3项,所以a 2k =a 1a 6=16. 又a n =3n -2>0, 所以a k =4.因为a k =3k -2, 所以3k -2=4,得k =2.所以等比数列{b n }的公比q =b 2b 1=a 2a 1=4. 所以b n =4n -1.所以a n +b n =3n -2+4n -1.所以数列{a n +b n }的前n 项和为S n =n (3n -1)2+1-4n 1-4=32n 2-12n +13(4n -1). 11.(2019·江西八所重点中学联考)设数列{a n }满足a 1=1,a n +1=44-a n(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)设b n =a 2na 2n -1-1,求数列{b n }的前n 项和T n . 解:(1)证明:因为a n +1=44-a n ,所以1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12. 又a 1=1,所以1a 1-2=-1, 所以数列⎩⎨⎧⎭⎬⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)由(1)知1a n -2=-1+(n -1)⎝ ⎛⎭⎪⎫-12=-n +12,所以a n =2-2n +1=2n n +1,所以b n =a 2n a 2n -1-1=4n2n +12(2n -1)2n -1=4n2(2n -1)(2n +1)-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =b 1+b 2+b 3+…+b n =12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1, 所以数列{b n }的前n 项和T n =n2n +1. 12.(2019·福建省质量检查)数列{a n }的前n 项和S n 满足S n =2a n -n . (1)求证数列{a n +1}是等比数列,并求a n ;(2)若数列{b n }为等差数列,且b 3=a 2,b 7=a 3,求数列{a n b n }的前n 项和. 解:(1)当n =1时,S 1=2a 1-1,所以a 1=1.因为S n =2a n -n ①,所以当n ≥2时,S n -1=2a n -1-(n -1)②, ①-②得a n =2a n -2a n -1-1,所以a n =2a n -1+1, 所以a n +1a n -1+1=2a n -1+1+1a n -1+1=2a n -1+2a n -1+1=2.所以{a n +1}是首项为2,公比为2的等比数列. 所以a n +1=2·2n -1,所以a n =2n-1.(2)由(1)知,a 2=3,a 3=7,所以b 3=a 2=3,b 7=a 3=7. 设{b n }的公差为d ,则b 7=b 3+(7-3)·d ,所以d =1. 所以b n =b 3+(n -3)·d =n . 所以a n b n =n (2n -1)=n ·2n-n .设数列{n ·2n}的前n 项和为K n ,数列{n }的前n 项和为T n , 则K n =2+2×22+3×23+…+n ·2n③, 2K n =22+2×23+3×24+…+n ·2n +1④,③-④得,-K n =2+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=(1-n )·2n +1-2,所以K n =(n -1)·2n +1+2.又T n =1+2+3+…+n =n (n +1)2, 所以K n -T n =(n -1)·2n +1-n (n +1)2+2,所以数列{a n b n }的前n 项和为(n -1)·2n +1-n (n +1)2+2.[B 组 大题增分专练]1.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.2.(2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.解:(1)由已知有S n -S n -1=1(n ≥2,n ∈N ),所以数列{}S n 为等差数列,又S 1=a 1=1,所以S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,所以a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,所以n ≥5,所以n 的最小值为5.3.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2), 又a 1=S 1=1,所以a n =n -n -1. (2)b n =(-1)na n=(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .4.(2019·高考天津卷)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n =⎩⎪⎨⎪⎧1,2k<n <2k +1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式;②求∑i =12na i c i (n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎪⎨⎪⎧6q =6+2d ,6q 2=12+4d , 解得⎩⎪⎨⎪⎧d =3,q =2,故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n. 所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n. (2)①a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n-1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n-1.②∑i =12na i c i =∑i =12n[a i +a i (c i -1)]=∑i =12na i +∑i =1na 2i (c 2i -1)=[2n×4+2n(2n-1)2×3]+∑i =1n(9×4i-1)=(3×22n -1+5×2n -1)+9×4(1-4n)1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
高考数学(文)(新课标版)考前冲刺复习讲义:第2部分专题三第2讲 数列求和及其综合应用 Word版含答案

第2讲数列求和及其综合应用错位相减法求和[学生用书P34]共研典例类题通法错位相减法适用于由一个等差数列和一个等比数列对应项的乘积构成的数列的求和,其依据是:c n =a n b n ,其中{a n }是公差为d 的等差数列,{b n }是公比为q (q ≠1)的等比数列,则qc n =qa n b n =a n b n +1,此时c n +1-qc n =(a n +1-a n )·b n +1=db n +1,这样就把对应相减的项变成了一个等比数列,从而达到求和的目的.(2016·高考山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .【解】(1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+ (2)+1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2.应用错位相减法求和需注意的问题(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列.(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证. [跟踪训练](2016·兰州模拟)等差数列{a n }中,已知a n >0,a 1+a 2+a 3=15,且a 1+2,a 2+5,a 3+13构成等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解] (1)设等差数列{a n }的公差为d ,则由已知得: a 1+a 2+a 3=3a 2=15,即a 2=5. 又(5-d +2)(5+d +13)=100, 解得d =2或d =-13(舍去),所以a 1=a 2-d =3,a n =a 1+(n -1)×d =2n +1. 又b 1=a 1+2=5,b 2=a 2+5=10,所以公比q =2, 所以b n =5×2n -1.(2)因为T n =5[3+5×2+7×22+…+(2n +1)×2n -1], 2T n =5[3×2+5×22+7×23+…+(2n +1)×2n ],两式相减得-T n =5[3+2×2+2×22+…+2×2n -1-(2n +1)×2n ]=5[(1-2n )2n -1], 则T n =5[(2n -1)2n +1].裂项相消法求和[学生用书P35]共研典例类题通法 1.常见的裂项类型 (1)1n (n +1)=1n -1n +1; (2)1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;(3)1n 2-1=12⎝⎛⎭⎫1n -1-1n +1;(4)14n 2-1=12⎝⎛⎭⎫12n -1-12n +1;(5)n +1n (n -1)·2n =2n -(n -1)n (n -1)·2n =1(n -1)2n -1-1n ·2n. 2.裂项相消法求和的基本思想是把数列的通项公式a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.(2016·海口调研测试)在等差数列{a n }中,公差d ≠0,a 1=7,且a 2,a 5,a 10成等比数列.(1)求数列{a n }的通项公式及其前n 项和S n ; (2)若b n =5a n ·a n +1,求数列{b n }的前n 项和T n .【解】(1)因为a 2,a 5,a 10成等比数列, 所以(7+d )(7+9d )=(7+4d )2, 又因为d ≠0,所以d =2,所以a n =2n +5,S n =(7+2n +5)n 2=n 2+6n .(2)由(1)可得b n =5(2n +5)(2n +7)=52⎝ ⎛⎭⎪⎫12n +5-12n +7, 所以T n =52⎝ ⎛⎭⎪⎫17-19+19-111+…+12n +5-12n +7=5n14n +49.裂项相消法的技巧在裂项时要注意把数列的通项分拆成的两项一定是某个数列中的相邻的两项,或者是等距离间隔的两项,只有这样才能实现逐项相消,只剩余有限的几项,从而求出其和.[跟踪训练](2016·石家庄模拟)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.[解] (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12×⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-13+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.分组转化求和[学生用书P35]共研典例类题通法 分组转化求和的三种类型分组转化求和是把数列之和分为几组,每组中的各项是可以利用公式(或其他方法)求和的,求出各组之和即得整体之和,这类试题一般有如下三种类型:(1)数列是周期数列,先求出每个周期内的各项之和,然后把整体之和按照周期进行划分,再得出整体之和;(2)奇偶项分别有相同的特征的数列(如奇数项组成等差数列、偶数项组成等比数列),按照奇数项和偶数项分组求和;(3)通项中含有(-1)n 的数列,按照奇数项、偶数项分组,或者按照n 为奇数、偶数分类求和.(2016·呼和浩特模拟)在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *). (1)证明:数列{a n +n }是等比数列,并求{a n }的通项公式; (2)求数列{a n }的前n 项和S n .【解】(1)因为a n +n =2[a n -1+(n -1)],a n +n ≠0, 所以{a n +n }是首项为4,公比为2的等比数列,所以a n +n =4×2n -1=2n +1. 所以a n =2n +1-n .(2)S n =(22+23+24+…+2n +1)-(1+2+3+…+n )=2n +2-n 2+n +82.分组求和的常见方法 (1)根据等差、等比数列分组. (2)根据正号、负号分组.(3)根据数列的周期性分组.[题组通关]1.已知数列{a n }的通项公式是a n =(-1)n -1(n +1),则a 1+a 2+a 3+…+a 2017=( )A .1009B .1010C .-1009D .-1010B [解析] 因为a n =(-1)n -1(n +1),所以a 1+a 2+a 3+…+a 2017=(2-3)+(4-5)+…+(2016-2017)+2018=1008×(-1)+2018=1010.2.设数列{a n }的前n 项和为S n (n ∈N *),数列{a 2n -1}是首项为1的等差数列,数列{a 2n }是首项为2的等比数列,且满足S 3=a 4,a 3+a 5=a 4+2.(1)求数列{a n }的通项公式; (2)求S 2n .[解] (1)设等差数列的公差为d ,等比数列的公比为q ,则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d ,所以⎩⎪⎨⎪⎧4+d =2q ,(1+d )+(1+2d )=2+2q ,解得d =2,q =3.所以a n =⎩⎪⎨⎪⎧n ,n =2k -1,2·3n 2-1,n =2k ,(k ∈N *).(2)S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+5+…+2n -1)+(2×30+2×31+…+2×3n -1) =(1+2n -1)n 2+2(1-3n )1-3=n 2-1+3n .等差、等比数列的综合问题[学生用书P36]共研典例类题通法解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解.已知数列{a n }满足a 1=12,a n +1a n +1-1-1a n -1=0,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =a n +1a n -1,数列{b n }的前n 项和为S n ,证明:S n <34.【解】(1)由已知a n +1a n +1-1-1a n -1=0,n ∈N *,得(a n +1-1)+1a n +1-1-1a n -1=0,即1+1a n +1-1-1a n -1=0,亦即1a n +1-1-1a n -1=-1(常数).所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是以1a 1-1=-2为首项, -1为公差的等差数列.可得1a n -1=-2+(n -1)×(-1)=-(n +1),所以a n =nn +1.(2)证明:因为b n =a n +1a n -1=(n +1)2n (n +2)-1=1n (n +2)=12⎝⎛⎭⎪⎫1n -1n +2,所以S n =b 1+b 2+…+b n=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫12-14+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -1-1n +1+12⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<12×⎝⎛⎭⎫1+12=34.解决数列综合问题的方法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解. [跟踪训练](2016·武汉模拟)已知S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52.(1)求数列{a n }的通项公式;(2)设b n =1(2n +1)a n ,求数列{b n }的前n 项和T n .[解] (1)设{a n }的公差为d (d ≠0), 因为S 1,S 2,S 4成等比数列,所以S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ),化简得d 2=2a 1d .因为d ≠0,所以d =2a 1.① 因为a 3=-52,所以a 1+2d =-52.②联立①②,解得⎩⎪⎨⎪⎧a 1=-12d =-1,所以a n =-12+(n -1)×(-1)=-n +12.(2)因为b n =1(2n +1)a n =1(2n +1)⎝⎛⎭⎫-n +12=-2(2n +1)(2n -1)=12n +1-12n -1,所以T n =⎝⎛⎭⎫13-1+⎝⎛⎭⎫15-13+⎝⎛⎭⎫17-15+…+⎝ ⎛⎭⎪⎫12n +1-12n -1=-1+12n +1=-2n 2n +1. 课时作业[学生用书P120(独立成册)]1.设各项均为正数的等差数列{a n }的前n 项和为S n ,且a 4a 8=32,则S 11的最小值为( ) A .22 2B .442C .22D .44B [解析] 因为数列{a n }为各项均为正数的等差数列,所以a 4+a 8≥2a 4a 8=82,S 11=(a 1+a 11)×112=112(a 4+a 8)≥112×82=442,故S 11的最小值为442,当且仅当a 4=a 8=42时取等号.2.已知在数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( ) A .445 B .765 C .1080D .3105B [解析] 因为a n +1=a n +3,所以a n +1-a n =3. 所以{a n }是以-60为首项,3为公差的等差数列. 所以a n =-60+3(n -1)=3n -63. 令a n ≤0,得n ≤21. 所以前20项都为负值. 所以|a 1|+|a 2|+|a 3|+…+|a 30| =-(a 1+a 2+…+a 20)+a 21+…+a 30 =-2S 20+S 30.因为S n =a 1+a n 2n =-123+3n 2×n ,所以|a 1|+|a 2|+|a 3|+…+|a 30|=765.3.已知数列{a n }满足a 1=1,a 2=3,a n +1a n -1=a n (n ≥2),则数列{a n }的前40项和S 40等于( )A .20B .40C .60D .80C [解析] 由a n +1=a na n -1(n ≥2),a 1=1,a 2=3,可得a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…,这是一个周期为6的数列,一个周期内的6项之和为263,又40=6×6+4,所以S 40=6×263+1+3+3+1=60.4.(2016·郑州模拟)设等比数列{a n }的各项均为正数,且a 1=12,a 24=4a 2a 8,若1b n=log 2a 1+log 2a 2+…+log 2a n ,则数列{b n }的前10项和为( )A .-2011B.2011C .-95D.95A [解析] 设等比数列{a n }的公比为q ,因为a 24=4a 2a 8,所以(a 1q 3)2=4a 1q ·a 1q 7,即4q 2=1,所以q =12或q =-12(舍),所以a n =⎝⎛⎭⎫12n =2-n ,所以log 2a n =log 22-n =-n ,所以1b n =-(1+2+3+…+n )=-n (1+n )2,所以b n =-2n (1+n )=-2⎝ ⎛⎭⎪⎫1n -1n +1,所以数列{b n }的前10项和为-2⎣⎡⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13⎦⎤+…+⎝⎛⎭⎫110-111=-2·⎝⎛⎭⎫1-111=-2011. 5.设b n =a n (a n +1)(a n +1+1)(其中a n =2n -1),数列{b n }的前n 项和为T n ,则T 5=( )A.3133B.3233C.3166D.1633C [解析] 由题意得,b n =2n -1(2n -1+1)(2n +1)=12n -1+1-12n +1,所以T n =⎝ ⎛⎭⎪⎫120+1-121+1+⎝ ⎛⎭⎪⎫121+1-122+1+…+ ⎝ ⎛⎭⎪⎫12n -1+1-12n +1=12-12n +1,所以T 5=12-133=3166.6.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a>0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和大于62,则n 的最小值为( )A .8B .7C .6D .9C [解析] 由⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,知f (x )g (x )在R 上是增函数,即f (x )g (x )=a x 为增函数,所以a >1.又因为a +1a =52,所以a =2或a =12(舍).数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n =21+22+…+2n =2(1-2n)1-2=2n +1-2>62.即2n >32,所以n >5.7.(2016·海口调研测试)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.[解析] 依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. [答案]43⎝⎛⎭⎫1-14n +28.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为________.[解析] 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92,两式相除得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2. [答案]29.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 2017=________.[解析] 因为a n +a n +1=12(n ∈N *),所以a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2,所以S 2017=1009a 1+1008a 2=1009×⎝⎛⎭⎫12-2+1008×2=10052. [答案]1005210.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.[解析]因为⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,所以a n +2+a n =2a n +1,所以数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,所以a 3=a 2+2=4,所以S 10=1+2+4+6+…+18=1+9(2+18)2=91. [答案]9111.(2016·东北四市联考)已知数列{a n }满足a 1=511,a 6=-12,且数列{a n }的每一项加上1后成为等比数列.(1)求a n ;(2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和T n .[解] (1)由题意数列{a n +1}是等比数列,设公比为q ,a 1+1=512,a 6+1=12=512×q 5, 解得q =14. 则数列{a n +1}是以512为首项,14为公比的等比数列, 所以a n +1=211-2n ,a n =211-2n -1.(2)由(1)知b n =|11-2n |,当n ≤5时,T n =10n -n 2,当n ≥6时,T n =n 2-10n +50,所以T n =⎩⎪⎨⎪⎧10n -n 2,n ≤5n 2-10n +50,n ≥6. 12.(2016·哈尔滨模拟)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n .[解] (1)设数列{a n }的公比为q ,因为a 2=4,所以a 3=4q ,a 4=4q 2.因为a 3+2是a 2和a 4的等差中项,所以2(a 3+2)=a 2+a 4.即2(4q +2)=4+4q 2,化简得q 2-2q =0.因为公比q ≠0,所以q =2.所以a n =a 2q n -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n ,所以b n =2log 2a n -1=2n -1,所以a n b n =(2n -1)2n ,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n ,①2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +1,②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×4(1-2n -1)1-2-(2n -1)2n +1 =-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.13.数列{a n }满足a n +1=a n 2a n +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >n n +1. [解] (1)证明:因为a n +1=a n 2a n +1,所以1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)由(1)知1a n =2n -1,所以S n =n (1+2n -1)2=n 2. 1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(选做题)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝⎛⎭⎫π12,-2,⎝⎛⎭⎫7π12,2,且在区间⎝⎛⎭⎫π12,7π12上为单调函数. (1)求ω,φ的值;(2)设a n =nf ⎝⎛⎭⎫n π3(n ∈N *),求数列{a n }的前30项和S 30. [解] (1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z , 解得ω=2,φ=2k π-2π3,k ∈Z , 因为|φ|<π,所以φ=-2π3. (2)因为a n =2n sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *)的周期为3,前三项依次为0,3,-3,所以a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), 所以S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.。
高考数学第二轮专题复习数列教案
高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。
〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。