2018年高考数学(文)复习:第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质含答案

合集下载

2018年高考文数解析几何圆锥曲线精选试题及知识点分析

2018年高考文数解析几何圆锥曲线精选试题及知识点分析

文数解析几何1.已知椭圆L:x2a2+y2b2=1(a>b>0)的一个焦点于抛物线y2=8x的焦点重合,点(2,2)在L上.(Ⅰ)求L的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,l与L有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.【答案】解:(Ⅰ)抛物线y2=8x的焦点为(2,0),由题意可得c=2,即a2−b2=4,又点(2,在L上,可得4a+2b=1,解得a=22,b=2,即有椭圆L:x28+y24=1;(Ⅱ)证明:设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),将直线y=kx+b代入椭圆方程x28+y24=1,可得(1+2k2)x2+4kbx+2b2−8=0,x1+x2=−4kb1+2k2,即有AB的中点M的横坐标为−2kb1+2k,纵坐标为−k⋅2kb1+2k+b=b1+2k,直线OM的斜率为k OM=y M xM=−12⋅1k,即有k OM⋅k=−12.则OM的斜率与直线l的斜率的乘积为定值.【解析】(Ⅰ)求得抛物线的焦点,可得c=2,再由点满足椭圆方程,结合a,b,c的关系,解方程可得椭圆的方程;(Ⅱ)设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),代入椭圆方程,运用韦达定理和中点坐标公式可得M的坐标,可得直线OM的斜率,进而得到证明.本题考查椭圆的方程的求法,注意运用点满足椭圆方程和a,b,c的关系,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,以及直线的斜率公式,考查化简整理的运算能力,属于中档题.2.设椭圆C:x2a+y2b=1(a>b>0),过点Q(2,1),右焦点F(2,0),(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=k(x−1)(k>0)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若CN=MD,求k值,并求出弦长|MN|.【答案】解:(Ⅰ)椭圆过点Q(1),可得2a+1b=1,由题意可得c=2,即a2−b2=2,解得a=2,b=2,即有椭圆C的方程为x24+y22=1;(Ⅱ)直线l:y=k(x−1)与x轴交点C(1,0),y轴交点D(0,−k),联立y=k(x−1)x2+2y2=4,消y得,(1+2k2)x2−4k2x+2k2−4=0,①设M(x1,y1),N(x2,y2),则x1+x2=4k21+2k2,CN=(x2−1,y2),MD=(−x1,−k−y1),由CN=MD,得:x1+x2=4k21+2k2=1,解得k=±22.由k>0得k=22代入①得2x2−2x−3=0,x1+x2=1,x1x2=−32,可得|MN|=2⋅(x1+x2)2−4x1x2=32⋅1+6=422.【解析】(Ⅰ)将Q的坐标代入椭圆方程,以及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)求出直线l与x,y轴的交点,代入椭圆方程,运用韦达定理,以及向量共线的坐标表示,可得k的值,运用弦长公式可得弦长|MN|.本题考查椭圆方程的求法,注意运用点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和向量相等的条件,同时考查弦长公式的运用,以及运算能力,属于中档题.3.在平面直角坐标系xOy中,已知椭圆x2a +y2b=1(a>b>0)的焦距为2,离心率为22,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(2,−2)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【答案】解:(1)由题意可知:椭圆x2a +y2b=1(a>b>0),焦点在x轴上,2c=2,c=1,椭圆的离心率e=ca =22,则a=,b2=a2−c2=1,则椭圆的标准方程:x22+y2=1;(2)证明:设P(x1,y1),Q(x2,y2),A(2,0),当直线PQ不存在时,不符合题意。

高考数学圆锥曲线知识点、题型、易误点、技巧总结

高考数学圆锥曲线知识点、题型、易误点、技巧总结

高考数学圆锥曲线概念方法题型易误点技巧总结一.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

练习:1.已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是(答:C ); A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF2.方程8表示的曲线是_____(答:双曲线的左支)3.已知点)0,22(Q 及抛物线4x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2)二.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC≠0,且A ,B ,C 同号,A ≠B )。

2018年高考数学—圆锥曲线(解答+答案)

2018年高考数学—圆锥曲线(解答+答案)

2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。

第3集圆锥曲线——2018年高考全国1卷文科数学20题

第3集圆锥曲线——2018年高考全国1卷文科数学20题

第3集圆锥曲线——2018年高考全国1卷文科数学20题圆锥曲线作为压轴题的地位正在逐步受到挑战,是的,近年来,随着课改的深入,圆锥曲线已经开始被弱化,而概率统计却在悄然被加强。

圆锥曲线已经不好意思再作为拉分题而存在,关键时刻还得靠概率统计。

事实上,弱化圆锥曲线已经是大势所趋,也符合国际潮流,国际上许多国家对圆锥曲线的要求都不高。

另外,从实用性和与大学数学接轨上来说,弱化圆锥曲线也是理所当然,有了高等方法后,圆锥曲线的很多问题都可以轻易解决。

当然,圆锥曲线所包含的思想精髓是不可否认的,相信未来也还会作为主干知识进行考查,只不过难度会降低而已。

一·套路二·脑洞1.本题考查直线与抛物线的位置关系,涉及直线方程,角平分线,韦达定理等知识点,考查设而不求,分类讨论,以及数形结合的思想,属于中档题。

2.法1,利用点斜式设直线的方程,但要注意讨论直线斜率不存在的情况,避免因不严谨而失分。

坐标轴作为角平分线等价于两直线的倾斜角互补,进而等价于两直线的斜率互为相反数,这便是法1的核心解题思路。

3.法2,反设直线方程,这样设直线方程有两个好处:一是不用讨论直线斜率不存在的情况;二是联立方程,计算更为简洁。

当然法2与法1本质上都是一样的,都是利用韦达定理转化为两直线的斜率互为相反数来求解。

4.法3,通过角平分线性质来解答,也即是角平分线上的点到角的两边的距离相等。

由于原点在角平分线上,因此,选择原点可以大大减少计算量。

直接计算得到两个距离相等似乎不太容易,因此,本题采用分析法来证明。

5.法4,由于解析几何也是几何,当然可以采用平面几何的方法来进行解答,有些题目用平面几何的方法解答甚至会受到奇效。

值得说明的是,本题第二问的结论还可以推广至一般情况,在此不作赘述。

6.最后,本题还可以借助平面向量的夹角公式来进行解答,感兴趣的可以自行尝试。

三·迁移2018年高考数学全国1卷,真的是平平无奇,所有试题几乎都没有特色和亮点。

圆锥曲线的定义与性质高考资料高考复习资料中考资料

圆锥曲线的定义与性质高考资料高考复习资料中考资料

圆锥曲线的定义与性质曲线名称圆(Circle)椭圆(Ellipse)双曲线(Hyperbola)抛物线(Parabola)标准方程x2+y2=r2(r>0)x y22221+=(a>b>0)a bx y22221-=(a,b>0)y2=2px(p>0)a bP P A抛物线的切点弦性质PF1+PF2=2a P PF1-PF2=2a抛物线的切点弦中点与极定义AF1BF2F1F2(2a>F F)12F1F2(0<2a<F F)12P M2M1B点连线的中点在抛物线上;特别地,若切点弦过抛物线体系PF1PF2=l( l>0且 l¹1)焦点三角形面积qS=b2tan△PF F122焦点三角形面积qS=b2cot△PF F122焦点 F,则ÐAPB为直角且PF^AB一P光学性质O切线方程x x+y y=r200F1F2切线方程x x y y002+2=1a bF1F2F切线方程x x y y02021-=a b切线方程y y=p x+x()00从一个焦点射出的光线的反射光线过另一个从一个焦点射出的光线的反射光线的反向延从圆心射出的光线的反射光线仍经过从焦点射出的光线的反射光线与对称轴平行焦点长线经过另一个焦点圆心P等张角线极坐标方程r=ep1-ecosq体系二对线段 AB张角相同的点的轨迹HlP PFPH=e PlHPFPH=eHlPA B PF=PH通径长F FF通径长通径长d=2p 2b2d==2epa2b2d==2epa体系BO定义1k×k=-PAPBAPAOPBk×k=-PAPBb2a2AOPBk×k=PAPBb2a2直线与圆锥曲线弦长公式!l=1+k x-x=1+m y-y=n×t-t22121212面积公式三垂径定理AMOBk×k=-1OMABAMOBba22k×k=-OM AB1AOM Bk×k=OMABb2a211212S=底×高 =水平宽×铅直高=l lsinq212位置关系椭圆的等效判别式 D=a2A2+b2B2-C2双曲线的等效判别式2(2222)D=C-a A-b B圆锥曲线的解题常见思路关键词一般情况过定点的直线弦长面积点与曲线的位置关系★引入参数控制运动,以交点坐标★弦长公式★利用共线或平行条件进行等积★将点代入圆锥曲线方程中再将定点在y轴上时用斜截式表示定点在x轴上时用倒斜横截式表示为中间变量表示其他所有几何量★两点间距离公式变换方程改写为不等式定点不在轴上时用参数方程表示★利用直线方程消去纵(横)坐标★三角形面积公式★若方程Px2+Qx+R=0的两根提示→将直线方程代入曲线方程(联立)→通过韦达定理消去另一坐标时,两根之差为x-x=12DP★四边形的面积公式12l l sinq12★四边形的对角线往往是相关的有时也直接求解坐标★注意参数的取值范围,需要保证★面积比往往转化为共线线段比直线与圆锥曲线相交关键词直线与圆锥曲线的位置关系焦点中点定比分点共线、平行、垂直★联立直线与曲线方程后通过判★两个焦点→体系一★注意取中点构造中位线★弦所在直线过焦点时,可补对应★利用斜率或向量表示别式判断★一个焦点★中点坐标公式★共线也可以利用点在另外两点准线后构造相似三角形提示★直接利用等效判别式判断→补焦点→体系一→补准线→体系二xx+x y+y=12,12y=22★利用定比分点坐标公式或利用直线的参数方程转化.所确定的直线上表示★注意利用极坐标方程★“x=a x(a¹-1)”21Û2æx+xöx x a.=ç12÷121èøa+关键词以AB为直径的圆过C垂直平分线关于直线…对称关于原点对称的两点与原点连线相互垂直★以AB为直径的圆过C★P在AB的垂直平分线上★A、B关于l对称★有关斜率的问题→体系三★利用相关直线设直线斜率ÛÐACB=90°ÛPA=PBÛl是AB的垂直平分线★注意取中点构造中位线★化齐次联立ÛMC=MA(M为AB中点)ÛPM^AB(M为AB中点)★注意对称变换下的几何不变量提示★斜率的比值计算可以平方后用★注意“姐妹圆”圆锥曲线的方程进行整理111=+r a b222R=a+b 222关键词与定点的两连线垂直向量的运算成锐角(直角、钝角)过…与…交点的曲线其他★利用相关直线设直线斜率★向量数乘→共线★转化为向量夹角★利用交点曲线系得到曲线方程★当运动由圆锥曲线上的单点驱向量和差→平行四边形法则借助向量数量积的符号判断动时注意利用圆锥曲线的参数方程★平移坐标系转化为与原点的连向量相等→形成平行四边形★极限思想,利用切线方程得到定线相互垂直的问题向量数量积→投影长度提示点或定值的具体数据★利用仿射变换★在求形如()()x-t x-t的值时,12可以将方程整理为形如改造椭圆为圆改造斜交直线为垂直直线20A(x-t)+B(x-t)+C=的形式2。

2018届高三数学文二轮新课标专题复习课件:1.6.2圆锥曲线的概念与性质、与弦有关的计算问题 精品

2018届高三数学文二轮新课标专题复习课件:1.6.2圆锥曲线的概念与性质、与弦有关的计算问题 精品

=1(a>0,b>0)的渐近线方程为_y____ba_x_;
焦点坐标F1_(_-_c_,_0_)_,F2_(_c_,_0_)_;
a
②双曲线
y2 a2
x2 b2
=1(a>0,b>0)的渐近线方程为y____b__x,
焦点坐标F1_(_0_,_-_c_)_,F2_(_0_,_c_)_.
(3)抛物线的焦点坐标与准线方程: ①抛物线y2=±2px(p>0)的焦点坐标为_(__p2_, 0_)_,准线方 程为_x____p2_; ②抛物线x2=±2py(p>0)的焦点坐标为_(_0,__p2_)_,准线方
3
左焦点相同,所以- a =-c,所以e= 1 .
3
3
2.(2016·合肥二模)已知抛物线y2=2px(p>0)上一点M 到焦点F的距离等于2p,则直线MF的斜率为 ( )
A. 3
B. 1
C. 3 4
D. 3 3
【解析】选A.设M(x0,y0),由题意x0+p =2p,
2
则x0=3p,从而y02=3p2,
3.混淆a,b,c的关系致误:在椭圆中a2=b2+c2,在双曲线 中c2=a2+b2,在使用时谨防张冠李戴. 4.注意隐含,在涉及求最值或范围问题时可能要用到.
【考题回访】
1.(2016·全国卷Ⅰ)直线l经过椭圆的一个顶点和一个
焦点,若椭圆中心到l的距离为其短轴长的
【规范解答】(1)选B.如图所示,
因为 FP 4所FQ,以
P过Q点 Q3,作QM⊥l,垂足为M,
PF 4
则MQ∥x轴,所以MQ PQ所以3,|MQ|=3,
4 PF 4
由抛物线定义知|QF|=|QM|=3.

高考数学南京市2018届高三数学二轮专题复习资料专题12:圆锥曲线

专题12:圆锥曲线问题归类篇类型一:方程的标准形式一、前测回顾1.椭圆x 2m +y 24=1的焦距是2,则m 的值是 .2.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是 .3.若a ≠0,则抛物线y =4ax 2 的焦点坐标为 . 答案:1.3或5;2.(-12,0);3.(0,116a).二、方法联想方程的标准形式涉及方程标准形式时,必须先设(或化)为方程的标准形式,注意椭圆和双曲线区分(或讨论)焦点在哪轴上,抛物线要注意开口方向. 三、归类巩固*1.以y =±2x 为渐近线的双曲线的离心率是 .答案:3或62(已知双曲线的渐近线,讨论焦点的位置,确定基本量的关系) *2.以抛物线y 2=4x 的焦点为焦点,以y =±x 为渐近线的双曲线的标准方程为 . 答案:x 212-y 212=1 (已知两个圆锥曲线,判断焦点的位置,确定基本量的的关系)类型二:圆锥曲线定义及几何性质的应用一、前测回顾1. 已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1⊥PF 2.若△PF 1F 2的面积为9,则b 的值为__________.2.已知定点A (3,2),F 是抛物线y 2=2x 的焦点,点P 是抛物线上的动点,当P A +PF 最小时,点P 的坐标为 .3. 点F 为椭圆x 24+y 23=1的右焦点,过点F 且倾斜角为π3的直线交椭圆于A ,B 两点(AF <BF ),则AFBF = .答案: 1.3;2.(2,2); 3.35.二、方法联想1.涉及焦半径问题时,优先用定义(第一、二定义),注意焦半径范围.2.焦点三角形问题从椭圆的性质和三角形的性质两个方面考虑, 常用结论(以焦点在x 轴的方程为例):3.若点P 为椭圆或双曲线上任意一点,A,B 两点关于原点对称,且直线PA,直线PB 斜率存在,则k PA ·k PB=e 2-1 .三、归类巩固*1.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________.答案:2(几何图形与圆锥曲线联系,利用几何性质求解)**2.已知椭圆C :x 225+y 29=1,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别是A ,B ,线段MN 的中点在C 上,则AN +BN =________.答案:16(利用中位线性质,转化成椭圆的定义)*3.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点 .答案:(1,0) (考查抛物线的定义,直线与圆相切,定点问题)**4.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为 . 答案:x ±2y =0 (考查椭圆、双曲线的离心率及双曲线的渐近线方程)**5.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线22(p 0)x py =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .答案:y x =(考查抛物线的定义及抛物线与双曲线的几何性质.) **6.如图,双曲线x 2a 2-y 2b2=1(a >0,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径 的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2= .答案:2+52(何图形的面积计算)**7.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为 .答案:43(考查抛物线的方程及其几何性质,直线与抛物线相切问题)**8.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB的中点,则椭圆C 的离心率等于________. 答案:22(考查离心率的计算,点差法,中点坐标公式,或常用结论)类型三:离心率或范围的计算一、前测回顾1.椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 到过顶点A (-a , 0), B (0, b )的直线的距离等于b 7,则椭圆的离心率为 .2. 椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点为F 1、F 2,连接点F 1,F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为 .3. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是 .4.已知F 1、F 2是椭圆的两个焦点,在椭圆上存在一点M 满足MF 1→·MF 2→=0,则椭圆离心率的取值范围是 .5.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且PF 1=2PF 2,则双曲线离心率的取值范围为 .答案:1.12; 2.3-1;3. (0,32];4.[22,1);5.(1,3].二、方法联想椭圆离心率范围为(0,1).双曲线离心率范围为(1,+∞).求椭圆、双曲线的离心率,本质上是要找出关于基本量a ,b ,c 的一个齐次关系,从而求出离心率; 求椭圆、双曲线的离心率的范围,有两种情形,①题中给出的是关于基本量a ,b ,c 的齐次不等关系;②题中给出的是关于基本量a ,b ,c 与某一变化的量之间的一个等量关系,即f (P )=g (a ,b ,c ),根据g (a ,b ,c )在f (P )的值域内,可得关于基本量a ,b ,c 的齐次不等关系. 三、归类巩固*1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,则一条渐近线与实轴所成锐角的值是________.答案:π4(已知离心率,求渐近线的倾斜角)*2.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为 .答案:3(已知双曲线渐近线与圆的位置关系,求离心率) *3.双曲线x 24-y 2k=1的离心率e ∈(1,2),则k 的取值范围是 .答案: (0,12);(已知离心率的范围,求参数取值范围)*4.设双曲线的左准线与两条渐近线交于A ,B 两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率的取值范围为 .答案:(1,2) (考查圆、双曲线的几何性质,双曲线的准线与渐近线,离心率问题)*5.设双曲线的左准线与两条渐近线交于A ,B 两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率的取值范围为 .答案:(1,2) (考查圆、双曲线的几何性质,双曲线的准线与渐近线,离心率问题)**6.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 .答案:13 (考查椭圆的定义,离心率及椭圆的方程)**7.已知中心在坐标原点的椭圆和双曲线有公共焦点,且左右焦点分别是F 1,F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若PF 1=10,椭圆和双曲线的离心率分别是e 1,e 2,则e 1·e 2的取值范围是 .答案:(13,+∞)(已知有联系的两个圆锥曲线,求离心率的取值范围)**8.设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点且过点C 的双曲线的离心率为________.答案:3+12(三角形与圆锥曲线相结合,求离心率的取值范围)类型四:直线与圆锥曲线的综合问题一、前测回顾1.(1)点A 是椭圆x 236+y 220=1的左顶点,点F 是右焦点,若点P 在椭圆上,且位于x 轴上方,满足P A ⊥PF ,则点P 的坐标为 .(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为 .答案:(1)(32,523).(2)6.2.(1)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的上、下顶点分别为A ,B ,右焦点为F ,点P在椭圆C 上,且OP ⊥AF , 延长AF 交椭圆C 于点Q ,若直线OP 的斜率是直线BQ 的斜率的2倍,则椭圆C 的离心率为 .(2)已知椭圆的方程为x 26+y 22=1,与右焦点F 相应的准线l 与x 轴相交于点A ,过点A 的直线与椭圆相交于P 、Q 两点.设→AP =λ→AQ (λ>1),过点P 且平行于准线l 的直线与椭圆相交于另一点M , 证明:→FM =λ→QF .(3) 过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点,若M 是线段AB的中点,则椭圆C 的离心率等于________. 答案:(1)22 ;(2)略;(3) 22. 3. (1)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是 .(2)已知椭圆C :x 2+2y 2=4,O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,则线段AB 长度的最小值为 . 答案:(1)62;(2)22.二、方法联想1.椭圆上一个点问题方法1:设点. ①设点(x 0,y 0)代入方程、列式、消元;②设点(a cos θ,b sin θ)方法2:求点. 代入方程、列式、求解. 注意 考虑x 0(或y 0)的取值范围.变式:如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的上、下顶点分别为A ,B ,右焦点为F ,点P 在椭圆C 上,且OP ⊥AF .求证:存在椭圆C ,使直线AF 平分线段OP .答案:略(已知椭圆上一点,利用该点坐标满足椭圆方程,方程有解进行证明) 2.直线与椭圆相交于两点问题①已知其中一点坐标(x 0,y 0),设出直线的方程,与椭圆方程联立,可用韦达定理求出另一根;②两点均未知方法1 设两点A (x 1,y 1)、B (x 2,y 2),直线方程与椭圆方程联立,消去y 得关于x 的方程Ax 2+Bx +C =0,由韦达定理得x 1+x 2=-B A ,x 1x 2=CA ,代入已知条件所得式子消去x 1,x 2(其中y 1,y 2通过直线方程化为x 1,x 2). 有时也可以直接求出两交点.注意:(1)设直线方程时讨论垂直于x 轴情况;(2)通过△判断交点个数;(3)根据需要也可消去x 得关于y 的方程. 结论:弦长公式 |AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|.方法2 设两点A (x 1,y 1)、B (x 2,y 2),代入椭圆方程得⎩⎨⎧x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1,通过已知条件建立x 1、y 1与x 2、y 2的关系,消去x 2、y 2解关于x 1、y 1的方程组(或方程).方法3 点差法设两点A (x 1,y 1)、B (x 2,y 2),代入椭圆方程得⎩⎨⎧x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2×x 1+x 2y 1+y 2,即k AB =-b 2a 2×x 0y 0,其中AB 中点M 为(x 0,y 0).注意:点差法一般仅适用于与弦中点与弦的斜率相关的问题. 3. 圆锥曲线的最值与范围问题(1)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理.(2)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.三、归类巩固*1.由椭圆x 22+y 2=1的左焦点作倾斜角为45°的直线l 交椭圆于A 、B 两点.则OA →·OB →.答案:-13 (考查直线与椭圆的交点问题,向量的数量积)2.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,长轴长为4.过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q .*①若直线l 的斜率为12,求APAQ的值;**②若PQ →=λAP →,求实数λ的取值范围.答案:①56;②(0,1)(已知直线与椭圆、圆分别交于两点,并且其中一点已知,求另一点)**3.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB→+AD →·CB →=8,求k 的值.答案: 863. (已知直线与椭圆交于两点及这两点的坐标的关系,求直线斜率)**4.已知椭圆C :x 26+y 22=1设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当|TF ||PQ |最小时,求点T 的坐标.答案: T 点的坐标是(-3,1)或(-3,-1). (求取最值时的条件)综合应用篇一、例题分析例1. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1→=λF 1Q →.*(1)若点P 的坐标为 (1,32),且△PQF 2的周长为8,求椭圆C 的方程;**(2)若PF 2垂直于x 轴,且椭圆C 的离心率e ∈[12,22],求实数λ的取值范围.解:(1)因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点,所以PF 1+PF 2=QF 1+QF 2=2a ,从而△PQF 2的周长为4a . 由题意,得4a =8,解得a =2.因为点P 的坐标为 (1,32),所以1a 2+94b 2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)方法一:因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1).因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P (c ,b 2a).因为F 1(-c ,0),所以PF 1→=(-2c ,-b 2a ),F 1Q →=(x 1+c ,y 1).由PF 1→=λF 1Q →,得-2c =λ(x 1+c ),-b 2a=λy 1,(第18题)解得x 1=-λ+2λc ,y 1=-b 2λa ,所以Q (-λ+2λc ,-b 2λa ).因为点Q 在椭圆上,所以(λ+2λ)2e 2+b 2λ2a 2=1,即(λ+2)2e 2+(1-e 2)=λ2,(λ2+4λ+3)e 2=λ2-1, 因为λ+1≠0,所以(λ+3)e 2=λ-1,从而λ=3e 2+11-e 2=41-e 2-3.因为e ∈[12,22],所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为[73,5].方法二:因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P (c ,b 2a).因为F 1(-c ,0),故直线PF 1的方程为y =b 22ac (x +c ).由⎩⎨⎧y =b 22ac(x +c ),x 2a 2+y2b 2=1,得(4c 2+b 2)x 2+2b 2cx +c 2(b 2-4a 2)=0.因为直线PF 1与椭圆有一个交点为P (c ,b 2a ).设Q (x 1,y 1),则x 1+c =-2b 2c 4c 2+b 2,即-c -x 1=2b 2c4c 2+b 2.因为PF 1→=λF 1Q →,所以λ=2c -c -x 1=4c 2+b 2b 2=3c 2+a 2a 2-c 2==3e 2+11-e 2=41-e 2-3.因为e ∈[12,22],所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为[73,5].〖教学建议〗(1)问题归类与方法:本题离心率与参数值有等量关系,求参数范围本质上等价于求离心率范围.求椭圆、双曲线的离心率的范围,有两种情形,①题中给出的是关于基本量a ,b ,c 的齐次不等关系;②题中给出的是关于基本量a ,b ,c 与某一变化的量之间的一个等量关系,即f (P )=g (a ,b ,c ),根据g (a ,b ,c )在f (P )的值域内,可得关于基本量a ,b ,c 的齐次不等关系.(2)方法选择与优化:本题既可以从向量式选择坐标形式代入椭圆方程求函数关系式,也可以从P 点坐标已知选择联立椭圆的方法求另一点,再求函数关系;最后也可以用λ表示离心率e ,解不等式求出λ的范围. 例2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),右顶点为A ,点E 的坐标为(0,c ),△EF A 的面积为b 22. *(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=32c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . **(i )求直线FP 的斜率; ***(ii )求椭圆的方程.解:(1)设椭圆的离心率为e .由已知,可得12(c +a )c =b 22.又由b 2=a 2-c 2,可得2c 2+ac -a 2=0,即2e 2+e -1=0.又因为0<e <1,解得e =12.所以,椭圆的离心率为12.(2)(ⅰ)方法一:依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m.由(Ⅰ)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0,与直线FP 的方程联立,可解得x=(2m -2)c m +2,y =3c m +2,即点Q 的坐标为((2m -2)c m +2,3cm +2). 由已知|FQ |=3c 2,有[(2m -2)c m +2+c ]2+(3c m +2)2=(3c 2)2,整理得3m 2-4m =0,所以m =43,即直线FP 的斜率为34.方法二:由(Ⅰ)知a =2c ,可得直线AE 的方程为x 2c +y c =1,即x +2y -2c =0,又|FQ |=32c设Q (x 0,y 0) ,则⎩⎪⎨⎪⎧x 0+2y 0-2c =0(x 0+c )2+y 02=94c 2 消y 0 得5x 20+4cx 0-c 2=0, x 0=-c (舍)或c 5 ,所以Q (c 5,910c ) ,直线FP 的斜率为34.(ii )方法一:由(i )得直线FP 的方程为3x -4y +3c =0 ,与椭圆x 24c 2+y 23c 2=1 联立得7x 2+6cx -13c 2=0,x =-137c (舍)或c ,所以P (c ,32c ) 由(i )得Q (c 5,910c ),由题直线QN,直线PM 的斜率一定存在,设为k 0 , 设PM :k 0x -y -k 0c +32c =0 ,QN :k 0x -y -k 05c +910c =0,两平行线距离为|-k 0c +32c +k 0c 5-910c |k 02+1=c ,解得k 0=-43 ,所以M (178c ,0),N (78c ,0) ,四边形PQNM 的面积为S ΔPFM -S ΔFQN =12(178c +c )×32c-12(78c +c )×910c =3c ,解得c =2 ,所以椭圆的方程为 x 216+y 212=1 . 方法二:同方法一求出k 0=-43,所以FP ⊥QN ,FP ⊥PM , 又P (c ,32c ),Q (c 5,910c ),直线FP 的斜率为34.即tan ∠PFM =34 ,|FQ |=32c ,|FP |=52c ,所以四边形PQNM 的面积为 12(QN +PM )·c =12(34×32c +34×52c )·c=3c ,解得c =2 ,所以椭圆的方程为 x 216+y 212=1 .方法三:可利用|F Q |=32c ,|FP |=52c 得FP -FQ =c 即直线PM 与直线QN 间的距离,直接得FP ⊥QN ,FP ⊥PM ,避免求k 0的值简化运算过程.〖教学建议〗(1)问题归类与方法:1.求椭圆、双曲线的离心率,本质上是要找出关于基本量a ,b ,c 的一个齐次关系,从而求出离心率; 2.直线与椭圆相交于两点问题①已知其中一点坐标(x 0,y 0),设出直线的方程,与椭圆方程联立,可用韦达定理求出另一根;②两点均未知方法1 设两点A (x 1,y 1)、B (x 2,y 2),直线方程与椭圆方程联立,消去y 得关于x 的方程Ax 2+Bx +C =0,由韦达定理得x 1+x 2=-B A ,x 1x 2=CA ,代入已知条件所得式子消去x 1,x 2(其中y 1,y 2通过直线方程化为x 1,x 2). 有时也可以直接求出两交点.(2)方法选择与优化:本题对考生计算能力要求较高,是一道难题重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用a,b,c,e 的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再求解过程逐步发现四边形PQNM 的几何关系,从而求解面积,计算结果,本题计算量比较大.二、反馈巩固*1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B两点.若△AF 1B 的周长为43,则C 的方程为 . 答案:x 23+y 22=1 (考查椭圆的定义,离心率及椭圆的方程)*2.在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.答案:22(利用双曲线与渐近线的几何性质求解)*3.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C两点,且∠BFC =90°,则该椭圆的离心率是 .答案:63(考查椭圆的定义,离心率及椭圆的方程) *4.已知方程x 2m 2+n -y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 .答案:(–1,3) (考查双曲线的标准方程及几何性质)*5.椭圆C :x 24+y 23=1的左右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围为[-2,-1],那么直线PA 1的斜率的取值范围是 .答案:[38,34] (考查椭圆的几何性质,定值问题,函数的值域)**6.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若AF 1=3F 1B ,AF 2⊥x 轴,则椭圆E 的方程为________.答案:x 2+32y 2=1 (考查用待定系数法求椭圆方程,利用向量法研究点坐标之间的关系)***7.点M 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若ΔPQM 是钝角三角形,则椭圆离心率的取值范围是 . 答案:(0,6-22) (考查直线与圆相切,圆的几何性质,椭圆的方程及离心率的计算) **8.如图,点A 是椭圆 x 2a 2 + y 2b 2 =1(a >b >0)的下顶点.过A 作斜率为1的直线交椭圆于另一点P ,点B 在y 轴上, 且BP ∥x 轴,AB →·AP →=9,若B 点坐标为(0,1),则椭圆 方程是 .答案:x 212+y 24=1 (**9.已知椭圆x 24+y 22=1上有一点P ,F 1,F 2是椭圆的左、右焦点,若△F 1PF 2为直角三角形,则这样的点P 有________个.答案:6 (考查椭圆的几何性质,焦点三角形)**10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .答案:(13,12)∪(12,1) (考查椭圆的定义,焦点三角形,标准方程和简单几何性质)**11.在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x (x >0)图象上一动点,若点P A 之间的最短距离为22,则满足条件的实数a 的所有值为_______. 答案:-1或10 (考查两点距离,函数的最值问题)12.如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a>b >0)的左、右焦点,顶点B 的坐标为(0,b ),连结BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结F 1C .*(1)若点C 的坐标为(43,13),且BF 2=2,求椭圆的方程;** (2)若F 1C ⊥AB ,求椭圆离心率e 的值.答案:(1) x 22+y 2=1;(2)55.(考查求椭圆的标准方程,离心率问题)13. 已知椭圆C : x 2a 2+y 2b 2=1(a >b >0)的长轴长为22,且椭圆C 与圆M : (x -1)2+y 2=12的公共弦长为2.*(1)求椭圆C 的方程.**(2)经过原点作直线l (不与坐标轴重合)交椭圆于A , B 两点, AD ⊥x 轴于点D ,点E 在椭圆C 上,且(AB →-EB →)·(DB →+AD →)=0,求证: B , D , E 三点共线.. 解:(1)由题意得2a =22,则a =2.由椭圆C 与圆M : (x -1)2+y 2=12的公共弦长为2,其长度等于圆M 的直径,可得椭圆C 经过点(1,±22),所以12+12b 2=1,解得b =1.所以椭圆C 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1), E (x 2,y 2),则B (-x 1,-y 1), D (x 1,0).因为点A , E 都在椭圆C 上,所以⎩⎪⎨⎪⎧x 21+2y 21=2,x 22+2y 22=2,所以(x 1-x 2)(x 1+x 2)+ 2(y 1-y 2)(y 1+y 2)=0, 即y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2).又(AB →-EB →)·(DB →+AD →) =AE →·AB →=0, 所以k AB ·k AE =-1,即y 1x 1·y 1-y 2x 1-x 2=-1,所以y 1x 1·x 1+x 22(y 1+y 2)=1所以y 1x 1=2(y 1+y 2)x 1+x 2又k BE -k BD =y 1+y 2x 1+x 2-y 12x 1= y 1+y 2x 1+x 2-y 1+y 2x 1+x 2=0,所以k BE =k BD ,所以B , D , E 三点共线. (记住常见的结论可以更快获取思路,避免联立方法的繁琐计算)14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2(3,0),离心率为e .*(1)若e =32,求椭圆的方程; **(2)设直线y =kx 与椭圆相交于A ,B 两点,M ,N 分别为线段AF 2,BF 2的中点,若坐标原点O 在以MN 为直径的圆上,且22<e ≤32,求k 的取值范围. 答案:(1)x 212+y 23=1 ;(2)(-∞,-24]∪[24,+∞) .(本题可以利用平面几何知识得F 2A ⊥F 2B 简化运算,考查函数值域问题)15.如图,已知动直线:l y kx m =+与椭圆2214x y +=交于,A B 两个不同点. *(1)若动直线:l y kx m =+又与圆22(y 2)1x +-=相切,求m 的取值范围.**(2)若动直线:l y kx m =+与y 轴交于点P ,满足2PB AP =,点O 为坐标原点.求AOB ∆面积的最大值,并指出此时k 的值.解:把y kx m =+代入椭圆方程22440x y +-=得: 222(41)8440,(1)k x kmx m +++-=(Ⅰ)222(8)4(41)(44)0km k m ∆=-+->即22410(2)k m -+>直线l 与圆22(2)1x y +-=相切,22221,43(3)1m k m m k -∴=∴=-++把(3)代入(2)得:2316130m m -+>解得:133m >或1m < (Ⅱ)(0,),P m 设 1122(,),(,)A x y B x y ,122,20PB AP x x =∴+=由(1)式得:121122288,()4141km kmx x x x x k k -+=∴=-+=++ 又1x 是方程(1)的根,2222222226464(41)440(41)41k m k m k m k k ∴+++-=++ 22241361k m k +∴=+,依题意得0≠k ,显然满足222(8)4(41)(44)0km k m ∆=-+-> 1212243,41kmx x x k -==+2122212121,241361AOB m k k S x x m k k ∆∴=-==++31194k k=≤+ ∴当且仅当194k k =即1.6k =±(符合题意), ∴当16k =±时,AOB ∆的面积取最大值为1.(考查直线与圆位置关系,直线与椭圆的位置关系,函数最值问题)16.如图,在平面直角坐标系xOy 中,已知点F 1、F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1、F 2分别作倾斜角都为α(α≠0)的两条直线AB 、DC ,分别交椭圆E 于点A 、B 和D 、C .当α=π4时,点B 坐标为(0,1). *(1) 求椭圆E 的方程;** (2) 当α变化时,讨论线段AD 与BC 长度之间的关系,并给出证明; *** (3) 当α变化时,求四边形ABCD 面积的最大值及对应的α值.答案:(1) x 22+y 2=1;(2) AD =BC ;(3)α=π2.(考查椭圆方程,直线被椭圆截得弦长及四边形面积的范围、最值)第15题17.如图,圆O 与离心率为32的椭圆T :x 2a 2+y 2b2=1(a >b >0)相切于点M (0,1).*⑴求椭圆T 与圆O 的方程;⑵过点M 引两条互相垂直的两直线l 1,l 2与两曲线分别交于点A ,C 与点B ,D (均不重合).**①若P 为椭圆上任一点,记点P 到两直线的距离分别为d 1,d 2,求d 21+d 22的最大值; ***②若3MA →·MC →=4MB →·MD →,求l 1与l 2的方程. 解: (1)x 24+y 2=1,x 2+y 2=1.(2)①163,此时P (±423,-13).②l 1:y =2x +1,l 2:y =-22x +1 或l 1:y =-2x +1,l 2:y =22(考查椭圆的基本量计算,椭圆上点的坐标的设法及范围,直线与圆锥曲线相交,已知其中一个交点,求另一交点的坐标,利用相似比减少解析几何中的运算量.问题2中,d 21+d 22实际上就是矩形的对角线的平方,即PM 2.问题3中,求出A ,C 点坐标后,直接用-1k 替换k ,得到B ,D 点坐标.或将3MA →·MC →=4MB →·MD→转化为3(k 2+1)x A x C =4(1k2+1)x B x D .)18.如图,已知抛物线x 2=y ,点A (-12,14),B (32,94),抛物线上的点P (x ,y )(-12<x <32).过点B 作直线AP的垂线,垂足为Q .*(1)求直线AP 斜率的取值范围; ***(2)求|PA |·|PQ |的最大值. 答案:(1)(-1,1);(2)2716(试题分析:(1)由两点求斜率公式可得AP 的斜率为x -12,由-12<x <32,得AP 斜率的取值范围;(2)联立直线AP 与BQ 的方程,得Q 的横坐标,进而表达|P A |与|PQ |的长度,通过函数f (k )=-(k -1)(k +1)3求解|P A |·|PQ |的最大值.也可以利用向量的数量积的投影法: |PA |·|PQ |=PA →·PB →减少了求Q 点坐标问题达到简化运算的目的.)。

18第一部分 板块二 专题五 解析几何 第4讲 圆锥曲线中的定点、定值、存在性问题(大题)


解 假设存在常数 λ 使得|AB|+|CD|=λ|AB|·|CD|成立,则 λ=|A1B|+|C1D|. 由题意知,l1,l2的斜率存在且均不为零, 设l1的方程为y=kx+1, 则由yx=2=k4xy+,1, 消去 y 得 x2-4kx-4=0. 设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=-4.
(2)若过F的直线交抛物线C于不同的两点A,B(均与P不重合),直线PA,PB分别 交抛物线的准线l于点M,N.试判断以MN为直径的圆是否过点F,并说明理由.
解 以MN为直径的圆一定过点F,理由如下: 设A(x1,y1),B(x2,y2), 设直线AB的方程为x=my+1(m∈R),代入抛物线C:y2=4x, 化简整理得y2-4my-4=0, 则yy11+y2=y2=-44m,,
例 1 (2019·济南模拟)已知抛物线 C1:y2=2px(p>0)与椭圆 C2:x42+y32=1 有一个相同的
焦点,过点A(2,0)且与x轴不垂直的直线l与抛物线C1交于P,Q两点,P关于x轴的对 称点为M. (1)求抛物线C1的方程;
解 由题意可知抛物线的焦点为椭圆的右焦点,坐标为(1,0), 所以p=2,所以抛物线的方程为y2=4x.
例3 (2019·济南模拟)设M是抛物线E:x2=2py(p>0)上的一点,抛物线E在点M处 的切线方程为y=x-1. (1)求E的方程;
解 方法一 由xy2==x2-py1,, 消 y 得 x2-2px+2p=0.
由题意得Δ=4p2-8p=0,
因为p>0,所以p=2.
故抛物线E:x2=4y.
方法二 设 Mx0,2xp20 ,
由(1)知P(4,4), 所以直线 PA 的方程为 y-4=xy11--44(x-4)=myy1-1-43(x-4), 令 x=-1 得 y=4mm-y15-y31+8,即 M-1,4mm-y15-y31+8,

2018届高三数学二轮复习 第一篇 专题突破 专题六 解析几何刺 第2讲 椭圆、双曲线、抛物线第1课时 圆锥曲线


因此H


2
t
2
.
,
p
2
t

所以N为OH的中点,即 | O H=2| .
|O N |
(2)直线MH与C除H以外没有其他公共点.
理由如下:
直线MH的方程为y-t= p x,即x=2 t (y-t).
2t
p
代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,
2
× 3 =2 .3 故选C.
2
考点二 圆锥曲线的几何性质(高频考点)
命题点 1.求椭圆、双曲线的离心率或离心率的范围; 2.由圆锥曲线的性质求圆锥曲线的标准方程; 3.求双曲线的渐近线方程.
1.椭圆、双曲线中,a,b,c之间的关系
(1)在椭圆中:a2=b2+c2,离心率为e= c = a
图(1) 当点M运动到短轴的端点时,∠AMB取最大值,此时∠AMB≥120°,则|MO|≤ 1,即0<m≤1; 当m>3时,椭圆C的长轴在y轴上,如图(2),A(0, m),B(0,- ),Mm ( ,0),3
图(2) 当点M运动到短轴的端点时,∠AMB取最大值,此时∠AMB≥120°,则|OA| ≥3,即 m≥3,即m≥9. 综上,m∈(0,1]∪[9,+∞),故选A. (2)如图,在圆O中,F1F2为直径,P是圆O上一点,所以PF1⊥PF2,设以OF1为
+|MF|+|NF|=|MN|+(2 5 -|ME|)+(2 -5|NE|).因为|ME|+|NE|≥|MN|,所以|MN|-
|ME|-|NE|≤0,当直线MN过点E时取等号,所以L=4 5+|MN|-|ME|-|NE|≤

专题10圆锥曲线(教学案)-2018年高考数学(文)考纲解读与热点难点突破

【2018年高考考纲解读】(1)中心在坐标原点的椭圆的标准方程与几何性质,B 级要求; (2)中心在坐标原点的双曲线的标准方程与几何性质,A 级要求;(3)顶点在坐标原点的抛物线的标准方程与几何性质,A 级要求;曲线与方程,A 级要求. (4)有关直线与椭圆相交下的定点、定值、最值、范围等问题. 【重点、难点剖析】 1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|). 2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上);(2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b2=1(a >0,b >0)(焦点在y 轴上).3.圆锥曲线的几何性质(1)椭圆:e =ca =1-b 2a2; (2)双曲线:①e =ca=1+b 2a2. ②渐近线方程:y =±b ax 或y =±a bx . 4.求圆锥曲线标准方程常用的方法 (1)定义法 (2)待定系数法①顶点在原点,对称轴为坐标轴的抛物线,可设为y 2=2ax 或x 2=2ay (a ≠0),避开对焦点在哪个半轴上的分类讨论,此时a 不具有p 的几何意义;②中心在坐标原点,焦点在坐标轴上,椭圆方程可设为x 2m +y 2n =1(m >0,n >0);双曲线方程可设为x 2m -y 2n=1(mn >0).这样可以避免讨论和繁琐的计算. 5.求轨迹方程的常用方法(1)直接法:将几何关系直接转化成代数方程;(2)定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; (3)代入法:把所求动点的坐标与已知动点的坐标建立联系;注意:①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式;③化简是否同解变形,是否满足题意,验证特殊点是否成立等. 6.有关弦长问题有关弦长问题,应注意运用弦长公式;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算. (1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|= 1+k 2|x 2-x 1|或|P 1P 2|=1+1k2|y 2-y 1|.(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”来简化运算. 7.圆锥曲线中的最值 (1)椭圆中的最值F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]; ②|PF 1|∈[a -c ,a +c ]; ③|PF 1|·|PF 2|∈[b 2,a 2]; ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有①|OP |≥a ; ②|PF 1|≥c -a . 8.定点、定值问题定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 9.解决最值、范围问题的方法解决圆锥曲线中最值、范围问题的基本思想是建立目标函数或建立不等关系,根据目标函数或不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 【题型示例】题型1、圆锥曲线的定义与标准方程【例1】【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .3B .3C .3D .13【答案】A【变式探究】【2016高考浙江文数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211m n -=+,即222m n =+,由于m >1,n >0,可得m >n ,又22212222222111111()(1)(1)(1)(1)2m n e e m n m n n n -+=⋅=-+=-++=42422112n n n n ++>+ ,故121e e >.故选A .【举一反三】 (2015·重庆,21)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .(2)法一 如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2, 求得x 0=±a ca 2-2b 2, y 0=±b 2c.由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b4c2.=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a , 即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4,解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 法二 如图,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a .由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =c a =|PF 1|2+|PF 2|22a=(2-2)2+(2-1)2=9-62=6- 3.【变式探究】(1)(2014·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=1 (2)(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.【命题意图】(1)本题主要考查双曲线的概念及其几何性质、直线的斜率等知识,意在考查考生的转化与化归思想、数形结合思想的应用与运算求解能力.(2)本题主要考查椭圆的几何性质、向量的坐标运算等知识.根据线段长度|AF 1|=3|F 1B |转化为向量的坐标运算求出点B 的坐标,代入方程求b 2的值,意在考查考生的转化与化归思想,运算求解能力,分析、解决问题的能力,逻辑推理能力. 【答案】(1)A (2)x 2+32y 2=1【变式探究】(2015·福建,18)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝ ⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由. 解 法一 (1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).⎩⎪⎨⎪⎧x =my -1,x 24+y22=1 得(m 2+2)y 2-2my -3=0. 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 2=⎝⎛⎭⎪⎫my 0+542+y 2=(m 2+1)y 20+52my 0+2516.|AB |24=(x 1-x 2)2+(y 1-y 2)24 =(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),题型2、圆锥曲线的几何性质【例2】【2017浙江,2】椭圆22194x y +=的离心率是A .3B .3C .23D .59【答案】B【解析】e ==,选B . 【变式探究】【2016高考新课标3文数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A【举一反三】(2015·陕西,20)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c 2=bca, 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)法一 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10,易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2, 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12, 从而x 1x 2=8-2b 2,于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2), 由|AB |=10,得10(b 2-2)=10, 解得b 2=3,故椭圆E 的方程为x 212+y 23=1.【变式探究】(1)(2014·重庆)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3 (2)(2014·湖南)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.【命题意图】(1)本题主要考查双曲线的定义与性质,意在考查考生的基本运算能力.(2)本题主要考查抛物线的图象、性质和正方形的性质,结合数形结合思想、转化思想和方程思想求解参数的比值问题,关键是由BC =CD 得出点D 为抛物线的焦点. 【答案】(1)B (2)1+ 2【感悟提升】 1.圆锥曲线的离心率椭圆和双曲线的离心率是反映椭圆的扁平程度和双曲线开口大小的一个量,其取值范围分别是0<e <1和e >1.在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特征,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围. 2.双曲线的渐近线(1)求法:把双曲线标准方程等号的右边1改为零,分解因式可得.(2)用法: ①可得b a 或a b的值;②利用渐近线方程来求双曲线的方程.(3)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线.这里强调p 的几何意义是焦点到准线的距离.(4)要能灵活运用平时解题过程中推导出来的一些结论,如椭圆中焦点三角形的面积公式S △F 1PF 2=b 2tan θ2,双曲线中的S △F 1PF 2=b 2tanθ2(其中θ=∠F 1PF 2)等,可简化运算过程,节省时间.(上述结论可结合正、余弦定理推导)【变式探究】 (2013·浙江卷改编)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.【答案】62【规律方法】求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出a ,c ,然后根据离心率的定义式求解;二是根据已知条件构造关于a ,c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.【变式探究】 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________.(2)椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.【答案】 (1)2 (2)2-1题型3、求动点的轨迹方程【例3】 【2017课标II ,文20】设O 为坐标原点,动点M 在椭圆C 上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM = (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F. 【答案】(1)(2)见解析【解析】解:(1)设P (x ,y ),M (),则N (),由得.因为M ()在C 上,所以.因此点P 的轨迹为.由题意知F (-1,0),设Q (-3,t ),P (m,n ),则,.【变式探究】【2016高考山东文数】(本小题满分14分) 平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>,抛物线E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22( 【解析】(Ⅰ)由题意知2322=-a b a ,可得:b a 2=. 因为抛物线E 的焦点为)21,0(F ,所以21,1==b a , 所以椭圆C 的方程为1422=+y x .因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y , 因为mx y 4100-=,所以直线OD 方程为x m y 41-=. 联立方程⎪⎩⎪⎨⎧=-=mx x m y 41,得点M 的纵坐标为M14y =-, 即点M 在定直线41-=y 上. (Ⅱ)由(Ⅰ)知直线l 方程为22m mx y -=,令0=x 得22m y -=,所以)2,0(2m G -, 又21(,),(0,),22m P m F D ))14(2,142(2223+-+m m m m ,所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=t tt t t S S , 当211=t,即2=t 时,21S S 取得最大值49,此时22=m ,满足0∆>, 所以点P 的坐标为)41,22(,因此12S S 的最大值为49,此时点P 的坐标为)41,22(.【举一反三】(2015·北京,19)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线PA 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ?若存在,求点Q 的坐标;若不存在,说明理由.所以B (m ,-n ).设N (x N ,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”,等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1.所以y 2Q =|x M ||x N |=m 21-n 2=2.所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,点Q 的坐标为(0,2)或 (0,-2).【变式探究】 在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足A M →·B M →=-2,求点M 的轨迹方程.x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).【规律方法】(1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为何种圆锥曲线,则可考虑用定义法求解或用待定系数法求解.(2)讨论轨迹方程的解与轨迹上的点是否对应,要注意字母的取值范围.【变式探究】 (2013·新课标全国Ⅰ卷)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.⎩⎪⎨⎪⎧x 24+y 23=1,y =24x +2,化简得7x 2+8x -8=0,解之得x 1=-4+627,x 2=-4-627.∴|AB |=1+k 2|x 1-x 2|=187.当k =-24时,由图形的对称性可知|AB |=187. 综上,|AB |=23或187.题型四 双曲线的定义及标准方程例4.【2016年高考北京文数】双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________. 【答案】2【举一反三】(2015·福建,3)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A .11B .9C .5D .3解析 由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B. 答案 B【变式探究】(2015·安徽,4)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1 C.y 24-x 2=1 D .y 2-x 24=1解析 由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.答案 C【举一反三】(2015·广东,7)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) A.x 24-y 23=1B.x 216-y 29=1 C.x 29-y 216=1 D.x 23-y 24=1题型五 双曲线的几何性质例5.【2017课标II ,文5】若1a >,则双曲线2221x y a-=的离心率的取值范围是A. )+∞B.C. (1D. (1,2) 【答案】C【解析】由题意222222111c a e a a a+===+,因为1a >,所以21112a <+<,则1e << C. 【变式探究】【2016高考山东文数】已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2【解析】假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a -,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 【举一反三】(2015·四川,5)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B .2 3C .6D .4 3解析 焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,y =±23,∴|AB |=23-(-23)=4 3.选D. 答案 D【变式探究】(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2答案 D【特别提醒】(2015·新课标全国Ⅰ,5)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233解析 由题意知M 在双曲线C :x 22-y 2=1上,又在x 2+y 2=3内部,由⎩⎪⎨⎪⎧x 22-y 2=1,x 2+y 2=3,得y =±33,所以-33<y 0<33. 答案 A题型六 抛物线的几何性质例6.【2016高考天津文数】设抛物线222x pt y pt⎧=⎨=⎩,(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为则p 的值为_________.【举一反三】(2015·天津,6)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,又渐近线过点(2,3),所以2ba=3,即2b =3a ,①抛物线y 2=47x 的准线方程为x =-7,由已知,得a 2+b 2=7,即a 2+b 2=7②, 联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1,选D.答案 D【变式探究】(2015·浙江,5)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1 D.|BF |2+1|AF |2+1 解析 由图象知S △BCF S △ACF =|BC ||AC |=x Bx A,由抛物线的性质知|BF |=x B +1,|AF |=x A +1,∴x B =|BF |-1,x A =|AF |-1,∴S △BCF S △ACF =|BF |-1|AF |-1.故选A.答案 A【举一反三】(2015·新课标全国Ⅰ,20)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.题型七 直线与圆锥曲线的位置关系例7.【2017山东,文21】(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,圆N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与圆N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(Ⅰ)22142x y+=.(II)3π.故21214t k ++=, 所以()222161611112ND tNFt t t=+=++++ . 令1y t t =+,所以211y t'=-. 当3t ≥时, 0y '>,从而1y t t=+在[)3,+∞上单调递增, 因此1103t t +≥, 等号当且仅当3t =时成立,此时0k =, 所以22134ND NF≤+=,由(*)得m <且0m ≠.故12NF ND≥, 设2EDF θ∠=, 则1sin 2NF NDθ=≥, 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线L 的斜率是0.综上所述:当0k =, ()(m ∈⋃时, EDF ∠取到最小值π3. 【变式探究】【2016高考江苏卷】(本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线2:y 2(0)C px p => (1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2,).p p --; ②求p 的取值范围.【答案】(1)x y 82=(2)①详见解析,②)34,0(①由22y px y x b⎧=⎨=-+⎩消去x 得2220(*)y py pb +-=因为P 和Q 是抛物线C 上的相异两点,所以12,y y ≠ 从而2(2)4(2)0p pb ∆=-->,化简得20p b +>.方程(*)的两根为1,2y p =-120.2y y y p +==- 因为00(,)M x y 在直线l 上,所以02.x p =- 因此,线段PQ 的中点坐标为(2,).p p -- ②因为(2,).M p p --在直线y x b =-+上 所以(2)p p b -=--+,即22.b p =-由①知20p b +>,于是2(22)0p p +->,所以4.3p < 因此p 的取值范围为4(0,).3【举一反三】(2015·重庆,10)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-2,0)∪(0,2) D .(-∞,-2)∪(2,+∞)【变式探究】(2014·辽宁,10)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43解析 ∵A (-2,3)在抛物线y 2=2px 的准线上,∴-p2=-2,∴p =4,∴y 2=8x ,设直线AB 的方程为x=k (y -3)-2①,将①与y 2=8x 联立,即⎩⎪⎨⎪⎧x =k (y -3)-2,y 2=8x ,得y 2-8ky +24k +16=0②,则Δ=(-8k )2-4(24k +16)=0,即2k 2-3k -2=0,解得k =2或k =-12(舍去),将k =2代入①②解得⎩⎪⎨⎪⎧x =8,y =8,即B (8,8),又F (2,0),∴k BF =8-08-2=43,故选D.答案 D【举一反三】(2015·山东,15)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点12 圆锥曲线的定义、方程、几何性质
[核心知识提炼]
提炼1 圆锥曲线的重要性质
(1)椭圆、双曲线中a,b,c之间的关系

①在椭圆中:a2=b2+c2;离心率为e=ca=1-b2a2;

②在双曲线中:c2=a2+b2;离心率为e=ca=1+b2a2.
(2)双曲线的渐近线方程与焦点坐标
①双曲线x2a2-y2b2=1(a>0,b>0)的渐近线方程为y=±bax;焦点坐标F1(-
c,0),F2(c,0);
②双曲线y2a2-x2b2=1(a>0,b>0)的渐近线方程为y=±abx,焦点坐标F1(0,
-c),F2(0,c).
(3)抛物线的焦点坐标与准线方程

①抛物线y2=±2px(p>0)的焦点坐标为±p2,0,准线方程为x=∓p2;

②抛物线x2=±2py(p>0)的焦点坐标为0,±p2,准线方程为y=∓p2.
提炼2 弦长问题
(1)直线与圆锥曲线相交时的弦长
斜率为k的直线与圆锥曲线交于点A(x1,y1),B(x2,y2)时,|AB|=1+k
2

|x1-x2|=1+k2x1+x22-4x1x2

或|AB|=1+1k2|y1-y2|=1+1k2y1+y22-4y1y2.
(2)抛物线焦点弦的几个常用结论
设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则

①x1x2=p24,y1y2=-p2;②弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角);

③1|FA|+1|FB|=2p;④以弦AB为直径的圆与准线相切.
[高考真题回访]
回访1 圆锥曲线的定义与方程

1.(2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y=±12x,则该
双曲线的标准方程为________.
x24-y2=1 [法一:∵双曲线的渐近线方程为y=±1
2
x,

∴可设双曲线的方程为x2-4y2=λ(λ≠0).
∵双曲线过点(4,3),
∴λ=16-4×(3)2=4,

∴双曲线的标准方程为x24-y2=1.

法二:∵渐近线y=12x过点(4,2),而3<2,
∴点(4,3)在渐近线y=12x的下方,在y=-12x的上方(如图).
∴双曲线的焦点在x轴上,故可设双曲线方程为
x2a2-y
2

b
2

=1(a>0,b>0).

由已知条件可得






ba=1

2

16a2-3b2=1,解得 a2=4,b2=1,

∴双曲线的标准方程为x24-y2=1.]
2.(2013·全国卷Ⅰ改编)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,
动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C,则C的方程为
________.
x24+y
2

3
=1(x≠-2) [由已知得圆M的圆心为M(-1,0),半径r1=1;圆N

的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.
因为圆P与圆M外切并且与圆N内切,
所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.

相关文档
最新文档