2017年辽宁省高考数学试卷(文科)(全国新课标ⅱ)
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年河北省全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.3 8.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC ﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年高考数学全国卷1文(附参考答案及详解)

!槡#!##33#!#9!
%
%
槡 槡 2$#7)#%$ 2$)7))5%$
7'!
7'!
$#!$本小题满分!$分%设 "#$ 为曲线&&)'#2$ 上 两 点#" 与$ 的 横 坐 标 之 和 为 2! $!%求直线 "$ 的斜率* $$%设 + 为曲线& 上 一 点#& 在 + 处 的 切 线 与 直 线 "$ 平 行# 且 "+0$+#求直线 "$ 的方程!
槡 经 计
算
得
#'
! !&
!&
2
7'!
#7
' 9!94#8 '
!!&72!'&!$#7)#%$ '
槡 槡 !!&$72!'&!#7$)!&#$%3 #!$!$#
!&
2$7)3!"%$ 3 !3!2(9#
7'!
!&
2$#7)#4%$7)3!"%')$!43#其 中 #7 为 抽 取 的 第7 个 零 件 的
-!#!#$ #% 的 中 位 数
(!下 列 各 式 的 运 算 结 果 为 纯 虚 数 的 是 ! !
*!0!10$
+!0$!)0
,!!10$
-!0!10
2!如图正方形 "$&' 内的图形来自中国古代的太极图!正 方 形 内
切圆中的黑色部分和白色部分关于正方形的中心成中心对称!
!!
*
+
2017年全国统一高考数学试题(理科)(新课标Ⅱ卷)(带解析)

C.5盏D.9盏
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A. B. C. D.
5.设x,y满足约束条件 ,则z=2x+y的最小值是()
A.-15B.-9C.1D.9
6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有
循环结果执行如下:
第一次: ;
第二次: ;
第三次: ;
第四次: ;
第五次: ;
第六次: ,
结束循环,输出 .故选B.
点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.
A. B. C. D.
12.已知 是边长为2的等边三角形, 为平面 内一点,则 的最小值是
A. B. C. D.
二、填空题
13.一批产品的二等品率为 ,从这批产品中每次随机取一件,有放回地抽取 次, 表示抽到的二等品件数,则 ____________.
14.函数 ( )的最大值是__________.
15.(2017新课标全国II理科)等差数列 的前 项和为 , , ,则 ____________.
16.已知 是抛物线 的焦点, 是 上一点, 的延长线交 轴于点 .若 为 的中点,则 ____________.
三、解答题
17. 的内角 的对边分别为 ,已知 .
(1)求 ;
(2)若 , 面积为2,求 .
箱产量≥50kg
2017年辽宁省高考数学试卷(理科)含答案

2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层, 红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是: 一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层 灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的 是某几何体的三视图,该几何体由一平面将一圆柱截去一 部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C . 1D . 96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们 四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成 绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上 信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A2 BCD.310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2017年全国统一高考数学试卷(理科)(新课标ⅱ)(原卷版)

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题目:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i 2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5} 3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 12.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2B.﹣C.﹣D.﹣1二、填空题目:本题共4小题,每小题5分,共20分。
【精品】2017年吉林省高考数学试卷及参考答案(文科)(全国新课标ⅱ)
2017年吉林省高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞) B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
2017全国Ⅰ卷高考文科数学真题及答案
2017全国Ⅰ卷高考文科数学真题及答案本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则( )。
A .A I B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A 【难度】简单【点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )。
A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【难度】简单【点评】本题在高考数学(理)提高班讲座 第十六章《计数技巧》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
3.下列各式的运算结果为纯虚数的是( )。
A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C 【难度】一般【点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
2017年江西省全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.3 8.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC ﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
(精品word版)2017年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学理
2017年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学理一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.31ii++=( )A.1+2iB.1-2iC.2+iD.2-i解析:()()()()313422 1112i ii iii i i+-+-===-++-.答案:D.2.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}解析:集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1-4+m=0,解得m=3,即有B={x|x2-4x+3=0}={1,3}.答案:C.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A.1盏B.3盏C.5盏D.9盏解析:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴()71238112712aa-==-,解得a=3,则这个塔顶层有3盏灯.答案:B.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π解析:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,22131036632V πππ=⋅⨯-⋅⋅⨯=.答案:B.5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则z=2x+y 的最小值是( )A.-15B.-9C.1D.9解析:x 、y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩的可行域如图:z=2x+y 经过可行域的A 时,目标函数取得最小值, 由32330y x y -+⎧⎨⎩=-=解得A(-6,-3),则z=2x+y 的最小值是:-15. 答案:A.6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A.12种 B.18种 C.24种 D.36种解析:4项工作分成3组,可得:246C =,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:33636A ⨯=种.答案:D.7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩解析:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩. 答案:D.8.执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.5解析:执行程序框图,有S=0,K=1,a=-1,代入循环,第一次满足循环,S=-1,a=1,K=2;满足条件,第二次满足循环,S=1,a=-1,K=3;满足条件,第三次满足循环,S=-2,a=1,K=4;满足条件,第四次满足循环,S=2,a=-1,K=5;满足条件,第五次满足循环,S=-3,a=1,K=6;满足条件,第六次满足循环,S=3,a=-1,K=7;7≤6不成立,退出循环输出,S=3.答案:B.9.若双曲线C:22221x ya b-=(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( )A.2解析:双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线不妨为:bx+ay=0,圆(x-2)2+y 2=4的圆心(2,0),半径为:2,双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线被圆(x-2)2+y 2=4所截得的弦长为2,可得圆心到直线的距离为:22222213b a b-=+=,解得:222443c a c-=,可得e 2=4,即e=2. 答案:A.10.已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.2B.5D.解析:【解法一】如图所示,设M 、N 、P 分别为AB ,BB 1和B 1C 1的中点, 则AB 1、BC 1夹角为MN 和NP 夹角或其补角 (因异面直线所成角为(0,2π]),可知112MN AB ==,112NP BC ==; 作BC 中点Q ,则△PQM 为直角三角形; ∵PQ=1,MQ=12AC , △ABC 中,由余弦定理得 AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC=4+1-2×2×1×(-12)=7,∴∴MQ=2;在△MQP中,2MP==;在△PMN中,由余弦定理得22222222cos2MN NP PMMNPMH NP⎛⎫⎛⎪+-+-∠===⋅⋅又异面直线所成角的范围是(0,2π],∴AB1与BC1【解法二】如图所示,补成四棱柱ABCD-A1B1C1D1,求∠BC1D即可;BC1BD=C 1 ∴BC 12+BD 2=C 1D 2, ∴∠DBC 1=90°,∴1cos BC D ∠==答案:C11.若x=-2是函数f(x)=(x 2+ax-1)e x-1的极值点,则f(x)的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析:函数f(x)=(x 2+ax-1)e x-1,可得f ′(x)=(2x+a)e x-1+(x 2+ax-1)e x-1,x=-2是函数f(x)=(x 2+ax-1)e x-1的极值点, 可得:-4+a+(3-2a)=0. 解得a=-1.可得f ′(x)=(2x-1)e x-1+(x 2-x-1)e x-1, =(x 2+x-2)e x-1,函数的极值点为:x=-2,x=1,当x <-2或x >1时,f ′(x)>0函数是增函数,x ∈(-2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12-1-1)e 1-1=-1. 答案:A.12.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( ) A.-2B.32-C.43-D.-1解析:建立如图所示的坐标系,以BC 中点为坐标原点,则A(0,B(-1,0),C(1,0),设P(x ,y),则()()()311PA x y PB x y PC x y =--=---=--,,,,,, 则()2222[]322224PA PB PC x y x y ⎛⋅+=-+=+-- ⎝⎭ ∴当x=0,y=32时,取得最小值33242⎛⎫⨯-=- ⎪⎝⎭. 答案:B二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX=____. 解析:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100, 则DX=npq=np(1-p)=100×0.02×0.98=1.96. 答案:1.96.14.函数()23sin 04[]2f x x x x π⎛⎫=-∈ ⎪⎝⎭,的最大值是____. 解析:()2233sin 1cos 44f x x x x x =-=-+-, 令cosx=t 且t ∈[0,1],则22114y t t ⎛=-+=--+ ⎝⎭, 当f(t)max =1, 即f(x)的最大值为1. 答案:115.等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则11nk kS ∑==____. 解析:等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,S 4=2(a 2+a 3)=10,可得a 2=2,数列的首项为1,公差为1,()()112112211n n n n S S n n n n +==-+⎛⎫ ⎪⎝+⎭,=, 则1111111[]1112212122334111nk kn S n n n n ⎛⎫=-+-+-+⋯+-=-=⎪+++⎝⎭∑=.答案:21nn +.16.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N.若M 为FN 的中点,则|FN|=____.解析:抛物线C :y 2=8x 的焦点F(2,0),M 是C 上一点,FM 的延长线交y 轴于点N.若M 为FN 的中点,可知M 的横坐标为:1,则M 的纵坐标为:±26FN FM ===.答案:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2sin 8sin2BA C +=. (1)求cosB ;(2)若a+c=6,△ABC 面积为2,求b.解析:(1)利用三角形的内角和定理可知A+C=π-B ,再利用诱导公式化简sin(A+C),利用降幂公式化简28sin2B ,结合sin 2B+cos 2B=1,求出cosB , (2)由(1)可知8sin 17B =,利用勾面积公式求出ac ,再利用余弦定理即可求出b.答案:(1)()2sin 8sin 2B AC +=, ∴sinB=4(1-cosB),∵sin 2B+cos 2B=1,∴16(1-cosB)2+cos 2B=1, ∴(17cosB-15)(cosB-1)=0, ∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABCSac B =⋅=, ∴172ac =, ∴2222217152cos 2217b ac ac B a c =+-=+-⨯⨯ =a 2+c 2-15=(a+c)2-2ac-15=36-17-15=4, ∴b=2.18.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:()()()()()22n ad bc K a b c d a c b d -=++++.解析:(1)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;(2)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:(3)根据频率分布直方图即可求得其平均数.答案:(1)记B 表示事件“旧养殖法的箱产量低于50kg ”,C 表示事件“新养殖法的箱产量不低于50kg ”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg :(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P(B)的估计值0.62,新养殖法的箱产量不低于50kg :(0.068+0.046+0.010+0.008)×5=0.66, 故P(C)的估计值为,则事件A 的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092; ∴A 发生的概率为0.4092; (2)2×2列联表:则()222006266383415.70510010096104K⨯-⨯=≈⨯⨯⨯,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:X新=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.34,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:0.50.345052.350.068-+≈(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,1 2AB BC AD==,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.解析:(1)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.(2)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M-AB-D 的余弦值即可.答案:(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以1122EF AD AB BC AD====,,∠BAD=∠ABC=90°,∴12BC AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==, ∠BAD=∠ABC=90°,E 是PD 的中点.取AD 的中点O ,M 在底面ABCD 上的射影N 在OC 上,设AD=2,则AB=BC=1,∴∠PCO=60°,直线BM 与底面ABCD 所成角为45°,可得:BN=MN ,CN=3MN ,BC=1, 可得:22113BN BN +=,BN =,MN = 作NQ ⊥AB 于Q ,连接MQ ,所以∠MQN 就是二面角M-AB-D的平面角,MQ ==, 二面角M-AB-D的余弦值为:5=.20.设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x=-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.解析:(1)设M(x0,y0),由题意可得N(x 0,0),设P(x ,y),运用向量的坐标运算,结合M 满足椭圆方程,化简整理可得P 的轨迹方程;(2)设Q(-3,m),αα),(0≤α<2π),运用向量的数量积的坐标表示,可得m ,即有Q 的坐标,求得椭圆的左焦点坐标,求得OQ ,PF 的斜率,由两直线垂直的条件:斜率之积为-1,即可得证.答案:(1)设M(x 0,y 0),由题意可得N(x 0,0),设P(x ,y),由点P 满足2NP NM =. 可得())000x x y y -=,,,可得x-x 0=0,0,即有x 0=x,0y =, 代入椭圆方程2212x y +=,可得22122x y +=, 即有点P 的轨迹方程为圆x 2+y 2=2;(2)证明:设Q(-3,m),αα),(0≤α<2π), 1OP PQ ⋅=,可得)()31m αααα⋅--=,,即为222cos sin 2sin 1αααα---=,解得31m α=, 即有Q(-3,()312cos 2sin αα+), 椭圆2212x y +=的左焦点F(-1,0), 由OQ k =, PF k =,由k OQ ·k PF =-1,可得过点P 且垂直于OQ 的直线l 过C 的左焦点F.21.已知函数f(x)=ax 2-ax-xlnx ,且f(x)≥0.(1)求a ;(2)证明:f(x)存在唯一的极大值点x 0,且e -2<f(x 0)<2-2.解析:(1)通过分析可知f(x)≥0等价于h(x)=ax-a-lnx ≥0,进而利用()1h x a x'=-可得()min 1h x h a ⎛⎫= ⎪⎝⎭,从而可得结论; (2)通过(1)可知f(x)=x 2-x-xlnx ,记t(x)=f ′(x)=2x-2-lnx ,解不等式可知()min 1ln 2102t x t ⎛⎫==- ⎪⎝⎭<,从而可知f ′(x)=0存在两根x 0,x 2,利用f(x)必存在唯一极大值点x 0及012x <可知()014f x <,另一方面可知()0211f x f e e ⎛⎫= ⎪⎝⎭>. 答案:(1)解:因为f(x)=ax 2-ax-xlnx=x(ax-a-lnx)(x >0),则f(x)≥0等价于h(x)=ax-a-lnx ≥0,求导可知()1h x a x'=-. 则当a ≤0时h ′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x 0>1时,h(x 0)<h(1)=0,矛盾,故a >0. 因为当10x a <<时h ′(x)<0、当x >1a时h ′(x)>0, 所以()min 1h x h a ⎛⎫= ⎪⎝⎭, 又因为h(1)=a-a-ln1=0, 所以11a=,解得a=1; (2)证明:由(1)可知f(x)=x 2-x-xlnx ,f ′(x)=2x-2-lnx ,令f ′(x)=0,可得2x-2-lnx=0,记t(x)=2x-2-lnx ,则()12t x x '=-, 令t ′(x)=0,解得:x=12, 所以t(x)在区间(0,12)上单调递减,在(12,+∞)上单调递增, 所以t(x)min =t(12)=ln2-1<0,从而t(x)=0有解,即f ′(x)=0存在两根x 0,x 2, 且不妨设f ′(x)在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x 0-2-lnx 0=0,所以f(x 0)=x 02-x 0-x 0lnx 0=x 02-x 0+2x 0-2x 02=x 0-x 02,由012x <可知()()20002max 111224f x x x -=-+=<; 由10f e ⎛⎫' ⎪⎝⎭<可知0112x e <<,所以f(x)在(0,x 0)上单调递增,在(01x e ,)上单调递减,所以()0211f x f e e⎛⎫= ⎪⎝⎭>; 综上所述,f(x)存在唯一的极大值点x 0,且e -2<f(x 0)<2-2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM|·|OP|=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为(2,3π),点B 在曲线C 2上,求△OAB 面积的最大值. 解析:(1)设P(x ,y),利用相似得出M 点坐标,根据|OM|·|OP|=16列方程化简即可;(2)求出曲线C 2的圆心和半径,得出B 到OA 的最大距离,即可得出最大面积.答案:(1)曲线C 1的直角坐标方程为:x=4,设P(x ,y),M(4,y 0),则04x y y =,∴04y y x =, ∵|OM||OP|=16,16=, 即()2222116y x y x ⎛⎫++= ⎪⎝⎭, ∴x 4+2x 2y 2+y 4=16x 2,即(x 2+y 2)2=16x 2,两边开方得:x 2+y 2=4x ,整理得:(x-2)2+y 2=4(x ≠0),∴点P 的轨迹C2的直角坐标方程:(x-2)2+y 2=4(x ≠0).(2)点A 的直角坐标为A(1,显然点A 在曲线C 2上,|OA|=2,∴曲线C 2的圆心(2,0)到弦OA 的距离d ==∴△AOB 的最大面积(1222S OA =⋅+=+.[选修4-5:不等式选讲]23.已知a >0,b >0,a 3+b 3=2,证明:(1)(a+b)(a 5+b 5)≥4;(2)a+b ≤2.解析:(1)由柯西不等式即可证明,(2)由a 3+b 3=2转化为 ()()323a b ab a b +-=+,再由均值不等式可得: ()()32232a b a b ab a b +-+⎛⎫=≤ ⎪+⎝⎭,即可得到()3124a b +≤,问题得以证明.答案:(1)由柯西不等式得:()()()2255334a b a b a b ++≥=+≥,=a=b=1时取等号,(2)∵a 3+b 3=2,∴(a+b)(a 2-ab+b 2)=2,∴(a+b)[(a+b)2-3ab]=2,∴(a+b)3-3ab(a+b)=2, ∴()()323a b ab a b +-=+, 由均值不等式可得:()()32232a b a b ab a b +-+⎛⎫=≤ ⎪+⎝⎭, ∴()()33324a b a b ++-≤, ∴()3124a b +≤, ∴a+b ≤2,当且仅当a=b=1时等号成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年辽宁省高考数学试卷(文科)(全国新课标Ⅱ) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( ) A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=( ) A.1﹣i B.1+3i C.3+i D.3+3i 3.(5分)函数f(x)=sin(2x+)的最小正周期为( )
A.4π B.2π C.π D. 4.(5分)设非零向量,满足|+|=|﹣|则( ) A.⊥ B.||=|| C.∥ D.||>|| 5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是( ) A.(,+∞) B.(,2) C.(1,) D.(1,2) 6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )
A.90π B.63π C.42π D.36π 7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( ) A.﹣15 B.﹣9 C.1 D.9 8.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是( ) A.(﹣∞,﹣2) B.(﹣∞,﹣1) C.(1,+∞) D.(4,+∞) 9.(5分)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A.乙可以知道两人的成绩 B.丁可能知道两人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )
A.2 B.3 C.4 D.5 11.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A. B. C. D. 12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( ) A. B.2 C.2 D.3
二、填空题,本题共4小题,每小题5分,共20分 13.(5分)函数f(x)=2cosx+sinx的最大值为 . 14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)= . 15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为 . 16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B= .
三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2. (1)若a3+b3=5,求{bn}的通项公式; (2)若T3=21,求S3. 18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°. (1)证明:直线BC∥平面PAD; (2)若△PAD面积为2,求四棱锥P﹣ABCD的体积. 19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)记A表示时间“旧养殖法的箱产量低于50kg”,估计A的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附: P(K2≥K) 0.050 0.010 0.001 K 3.841 6.635 10.828 K2=. 20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=. (1)求点P的轨迹方程; (2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. 21.(12分)设函数f(x)=(1﹣x2)ex. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围.
选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程] 22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4. (1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程; (2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.
[选修4-5:不等式选讲] 23.已知a>0,b>0,a3+b3=2,证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2. 2017年辽宁省高考数学试卷(文科)(全国新课标Ⅱ) 参考答案与试题解析
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2013春•浏阳市期中)设集合A={1,2,3},B={2,3,4},则A∪B=( ) A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 【解答】解:∵A={1,2,3},B={2,3,4}, ∴A∪B={1,2,3,4} 故选A.
2.(5分)(1+i)(2+i)=( ) A.1﹣i B.1+3i C.3+i D.3+3i 【解答】解:原式=2﹣1+3i=1+3i. 故选:B.
3.(5分)函数f(x)=sin(2x+)的最小正周期为( ) A.4π B.2π C.π D. 【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π. 故选:C.
4.(5分)设非零向量,满足|+|=|﹣|则( ) A.⊥ B.||=|| C.∥ D.||>|| 【解答】解:∵非零向量,满足|+|=|﹣|, ∴, 解得=0, ∴. 故选:A.
5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是( ) A.(,+∞) B.(,2) C.(1,) D.(1,2) 【解答】解:a>1,则双曲线﹣y2=1的离心率为:==∈(1,). 故选:C.
6.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )
A.90π B.63π C.42π D.36π 【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半, V=π•32×10﹣•π•32×6=63π, 故选:B. 7.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是( ) A.﹣15 B.﹣9 C.1 D.9
【解答】解:x、y满足约束条件的可行域如图: z=2x+y 经过可行域的A时,目标函数取得最小值, 由解得A(﹣6,﹣3), 则z=2x+y 的最小值是:﹣15. 故选:A.
8.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是( ) A.(﹣∞,﹣2) B.(﹣∞,﹣1) C.(1,+∞) D.(4,+∞) 【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞), 令t=x2﹣2x﹣8,则y=lnt, ∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数; x∈(4,+∞)时,t=x2﹣2x﹣8为增函数; y=lnt为增函数, 故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞), 故选:D. 9.(5分)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A.乙可以知道两人的成绩 B.丁可能知道两人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 【解答】解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩 →乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩) →乙看到了丙的成绩,知自己的成绩 →丁看到甲、丁中也为一优一良,丁知自己的成绩, 故选:D.
10.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )