(完整word版)巴特沃斯数字低通滤波器的设计—双线性变换法
数字信号处理第四章 模拟滤波器频率变换、冲激响应不变法、双线性变换法

4.4 冲激响应不变法
一、基本原理
=
x(t)
y(t)
取样
取样
x(n) = x(nT)
?
y(n) = y(nT)
?
=
响应不变
4.4 冲激响应不变法
一、基本原理
其中
取样
其中
另,根据数字系统响应
冲激响应不变原则!
4.4 冲激响应不变法
一、基本原理
模拟滤波器:
(M<N)
部分分式分解
冲激响应不变准则:
数字滤波器:
因此,双线性变换不改变系统稳定性
4.4 双线性变换法
4、频率预畸变
0
高频进行压缩
无混叠,有畸变
频率越高,畸变越大
预畸变
预畸变公式:
根据数字滤波器设计指标,求对应模拟滤波器设计指标时,需预先进行畸变
4.4 双线性变换法
5、双线性变换法设计滤波器步骤
(1)确定数字滤波器技术指标
(Hz表示)
(弧度表示)或
1)带通:计算几何中心
0
若
,则
代替
若
,则
代替
若
,则令
4.2.4 模拟滤波器的频率变换
带通带阻滤波器衰减参数选择
几何对称:
若实际给出的指标不满足几何对称,如何应对?
2)带阻:计算几何中心
0
若
,则
代替
若
,则
代替
若
,则令
固定靠近
的两个值
以让过渡带更窄为选择标准(靠近中心,指标更严)
模拟转数字滤波器
已知一个模拟滤波器H(s),如何得到数字滤波器H(z)?
3)设计归一化低通滤波器,得到传输函数
设计一个巴特沃斯模拟低通滤波器

1. 设计一个巴特沃斯模拟低通滤波器,要求通带截止频率为Hz f p 25=,通带最大衰减dB a p 3=,阻带起始频率Hz f s 50=,阻带最小衰减dB a s 25=。
解:根据已知条件确定巴特沃斯低通滤波器的阶数N :053.01010202520===--s a s δ()()2355.46021.05502.22lg 21053.01lg lg211lg 22==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-≥p s s ΩΩδN取N =5。
低通滤波器3dB 截止频率为)/(157502s rad πf πΩΩp p c ====则五阶巴特沃斯滤波器的传输函数为:1021.010719.110095.110326.510048.111236.3236.4236.4236.31)(2436495112345++⨯+⨯+⨯+⨯=+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=----s s s s s Ωs Ωs Ωs Ωs Ωs s H c c ccc2. 设计一个切比雪夫模拟低通滤波器,要求通带截止频率为kHz f p 3=,通带最大衰减dB a p 2.0=,阻带起始频率kHz f s 12=,阻带最小衰减dB a s 50=。
解:由()2.01lg 20-=-p δ,求得9772.0101202.0==--p δ。
则2171.019772.011)1(122=-=--=p δε 由50lg 20-=s δ,求得0032.0102050==-s δ,则23.31610032.011122=-=-=s δδ 所需滤波器的阶数为:()()()()8604.30634.29770.7312arccos 2171.0/23.316arccos arccos arccos ===≥h h ΩΩh εδh N p s取N =4。
则该模拟低通滤波器的幅度表示为:⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫⎝⎛+=32422210322171.01111)(πΩC ΩΩC εΩj H p Na归一化的系统函数表示为:∏∏==--=-⋅=Nk k Nk k N a p p p p εp H 111)(7368.11)(21)(其中极点k p 为:0715.14438.01j p +-=,4438.00715.12j p +-=,4438.00715.13j p --=,0715.14438.01j p --=将)(p H a 去归一化,求得实际滤波器的系统函数)(s H a()()()8428426414107790.4100394.4107791.4106731.1102687.77368.1)()(⨯+⨯+⨯+⨯+⨯=-==∏==s s s s p Ωs Ωp H s H k k p pΩs p a a p3. 设计一个巴特沃斯模拟高通滤波器,要求通带截止频率为kHz f p 20=,通带最大衰减dB a p 3=,阻带起始频率kHz f s 10=,阻带最小衰减dB a s 15=。
用双线性变换法设计原型低通为巴特沃斯型的IIR数字高通滤波器

《数字信号处理》课程设计报告用双线性变换法设计原型低通为巴特沃斯型的IIR数字高通滤波器学院:姓名:班级:学号:目录一、设计目的及设计内容 (2)二、概念设计 (4)三、详细设计 ···································· 1错误!未定义书签。
四、实验总结 (22)五、参考文献 (23)一、设计目的及设计内容当今,数字信号处理(DSP:Digtal Signal Processing)技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。
数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号、生物医学信号、控制信号、气象信号、地震勘探信号、机械振动信号、遥感遥测信号,等等。
上述这些信号大部分是模拟信号,也有小部分是数字信号。
模拟信号是自变量的连续函数,自变量可以是一维的,也可以是二维或多维的。
大多数情况下一维模拟信号的自变量是时间,经过时间上的离散化(采样)和幅度上的离散化(量化),这类模拟信号便成为一维数字信号。
因此,数字信号实际上是用数字序列表示的信号,语音信号经采样和量化后,得到的数字信号是一个一维离散时间序列;而图像信号经采样和量化后,得到的数字信号是一个二维离散空间序列。
06 IIR(3) _ 双线性变换法(New)

(a)
Amplitude
Time
Frequency
回顾
2/68
脉冲响应不变法 优点: 时域逼近。使数字滤波器的单位脉冲响应完全模仿模拟滤 波器的单位冲激响应,即时域逼近良好。 线性频率关系: 模拟频率Ω和数字频率ω之间呈线性关系ω=ΩT。 缺点: 混叠失真效应。 因此,只适用于限带的模拟滤波器(例如衰减特性很好的 低通或带通滤波器),而且高频衰减越快,混叠效应越小; 而对于高通和带阻滤波器,由于它们在高频部分不衰减, 因此会产生混叠现象。
21/68
具体实现的二种方法:
① 先将Ha(s)分解成并联或级联形式,再分别采用双线性变换。
H a ( s ) H a1 ( s ) H a2 ( s ) H am ( s )
H ( z ) H1 ( z ) H 2 ( z ) H m ( z )
3 数字化方法
双 线 性 变 换 法
H ( z ) H a ( s) |
ak z k bk z k
k 0 k 0 N N
2 1 z 1 s T 1 z 1
a0 a1 z 1 a2 z 2 a N z N 1 b1 z 1 b2 z 2 bN z N
17/68
即某一频率段的幅频响应近似于某一常数。
A. 分段常数型AF经变换后,仍为分段常数型DF。 B. 分段边缘的临界频率点从AF转换到DF时,对应关系产 生畸变。—— 预畸变。
2 存在的问题
双 线 性 变 换 法
预畸变
18/68
将模拟滤波器的临界频率事先加以畸变,然后通过双线性
变换后正好映射到所需要的频率上。 利用关系式:
[B,A]=butter(N, Wc, 's');
巴特沃斯滤波器的设计

目录1数字滤波器的设计1.1滤波器的分类1.2数字滤波器性能指标1.3数字滤波器设计方法概述1.4巴特沃斯滤波器1.5用冲击响应不变法设计IIR数字低通滤波器1.6用双线性变换法设计IIR数字低通滤波器2本次课程设计中相关MATLA函数2.1循环结构for语句2.2 buttord 函数2.3 butter 函数2.4 freqz 函数2.5 impz 函数3程序设计及运行结果4心得体会5参考文献5参考文献[1] 阙大顺.数字信号处理学习指导与考研辅导.武汉:武汉理工大学出版社,2007[2] 陈怀琛.MATLA及在电子信息课程中的应用(第2版).北京:电子工业出版社,2003[3] 刘泉.数字信号处理原理与实现(第2版).北京:电子工业出版社,2009[4] 郑阿奇.MARTLAB实用教程(第2版).北京:电子工业出版社,2007[5] Emmanuel C. Ifeachor, Barrie W. Iervis. Digital Signal Processing, A Practical Approach (Sec ond Editi on). Publishi ng House of Electr onics In dustry,20031数字滤波器的设计1.1滤波器的分类按功能划分经典滤波器可分为低通、高通、带通、带阻四种滤波器按结构划分经典滤波器可分为递归系统、非递归系统按实现方法经典滤波器可分为无限长单位脉冲响应数字滤波器IIR和有限长单位脉冲响应数字滤波器FIR。
1.2数字滤波器性能指标.H a(2)u O p O c Q s u图1典型模拟低通滤波器幅频特性及其指标描述Q P是通带边界频率,Q c是阻带边界频率,Q s是3db截止频率。
用a p表示通带最大衰减(或称为通带峰值波纹)«=20lgJ ---------- dB匕越小,通带越平坦月艸(严卩用表示阻带最小衰减(以分贝(dB)表示波纹)亿越大,阻帶衰减越大1.3数字滤波器设计方法概述设计IIR数字滤波器一般有以下两种方法:1、模拟滤波器:首先设计一个合适的模拟滤波器,然后将它转换成满足给定指标的数字滤波器,这种方法适合于设计幅频特性比较规则的滤波器,例如低通、高通、带通、带阻等。
课程设计基于双线性变换法的IIR数字低通滤波器设计

课程设计---基于双线性变换法的IIR数字低通滤波器设计课程设计题目:基于双线性变换法的IIR数字低通滤波器设计姓名:院系:电气信息工程学院专业班级:电子信息工程11-02学号: 541101030206指导教师:成绩:时间: 2014 年 6 月 9 日至 2014 年 6 月 13 日课程设计任务书题目基于双线性变换法的IIR数字低通滤波器设计专业、班级电子信息工程11级2班学号541101030206姓名冯慧琦主要内容、基本要求、主要参考资料等:主要内容:首先依据给定的性能指标,采用双线性变换法设计IIR数字低通滤波器;然后利用MATLAB软件的wavread函数读取.wav格式的语音信号,并利用所设计的滤波器对音频信号进行滤波处理,画出滤波前后信号的时域波形及频谱;最后回放语音信号,分析滤波前后的语音变化。
基本要求:1、滤波器技术指标为:f p=3000Hz; A p=2dB; f s=4000Hz; A s=45dB2、采用双线性变换法设计IIR数字低通滤波器;3、掌握利用wavread函数读取.wav格式语音信号的方法;4、对语音信号进行滤波,并画出滤波前后信号的时域波形及频谱;5、回放语音信号,分析滤波前后的语音变化。
主要参考资料:1、从玉良.数字信号处理原理及其MATLAB实现[M].北京:电子工业出版社.2009.72、胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社.2003,8完成期限:2010.6.24—2010.6.28指导教师签名:课程负责人签名:2013年6月24日摘要根据IIR滤波器的特点,在MATLAB坏境下用双线性变换法设计IIR数字滤波器。
利用MATLAB设计滤波器,可以随时对比设计要求和滤波器特性调整参数,直观简便,极大的减轻了工作量,有利于滤波器设计的最优化。
关键词:双线性变换法,数字滤波器,MATLAB ,IIR目录1.概述 --------------------------------------- 12.系统总体设计方案------------------------------- 22.1设计原理与步骤 ----------------------------- 22.1.1设计原理 ---------------------- 22.2设计方案--------------------------------- 32.3设计步骤--------------------------------- 72.3.1设计步骤 ---------------------- 72.3.2程序流程框图 ------------------ 82.3.3运行结果及分析 ---------------- 8 结论与展望------------------------------------ 11 参考文献------------------------------------- 12 附录---------------------------------------- 131.概述数字滤波器对信号滤波的方法是:用数字计算机对数字信号进行处理,处理就是按照预先编制的程序进行计算。
c 2巴特沃斯低通滤波器的设计方法

2.数字滤波器的技术指标
我们通常用的数字滤波器一般属于选频滤波器。假设数字滤 波器的传输函数H(ejω)用下式表示:
H (e j ) H (e j ) e j ()
通带纹波幅度 阻带纹波幅度 通带截止频率 3dB通带截止频率 阻带截止频率
数字低通滤波器的技术要求
5
通带内和阻带内允许的衰减一般用dB数表示,通带内允许的
脉冲响应不变法 阶跃响应不变法 双线性变换法
Desired IIR
7
5.2 模拟滤波器的设计
模拟滤波器的理论和设计方法已发展得相当成熟, 且有若干典型的模拟滤波器供我们选择,如巴特沃斯 (Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭 圆(Elliptic)滤波器、贝塞尔(Bessel)滤波器等,这些滤 波器都有严格的设计公式、现成的曲线和图表供设计 人员使用。
输函数
Ha ( p) N 1 1
( p pk )
(5.2.12)
k 0
15
式中,pk为归一化极点,用下式表示:
pk
sk c
最大衰减用ap表示,阻带内允许的最小衰减用as表示,ap和as分别 定义为:
H (e j0 ) ap 20 lg H (e jp ) dB
H (e j0 ) as 20 lg H (e js ) dB
(5.1.3) (5.1.4)
如将|H(ej0)|归一化为1,(5.1.3)和(5.1.4)式则表示成:
11
2.巴特沃斯低通滤波器的设计方法
幅度平方函数:
Ha(
j) 2
1 (
1
)2N
c
(5.2.6) 两个参数:N, Ωc
数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。
巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。
本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。
在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。
巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。
要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。
巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。
一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。
确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。
根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。
设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。
数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。
常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。
在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。
同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。
综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书2010—2011学年第一学期专业: 通信工程 学号: 080110509 姓名: 郭威课程设计名称: 数字信号处理课程设计设计题目: 巴特沃斯数字低通滤波器的设计—双线性变换法完成期限:自 2011 年 1 月 3 日至 2011 年 1 月 9 日共 1 周一.设计目的1.巩固所学的理论知识。
2.提高综合运用所学理论知识独立分析和解决问题的能力。
3.更好地将理论与实践相结合。
4.掌握信号分析与处理的基本方法与实现。
5.熟练使用MATLAB 语言进行编程实现。
二.设计内容已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。
三.设计要求1、设采样周期为s T 1=,用双线性变换法进行设计;2、绘出滤波器的的幅频响应曲线并分析所得结果是否满足技术指标;3、和同组另一同学采用的脉冲响应不变法设计的结果进行比较分析。
四.设计条件计算机、MATLAB 语言环境五、参考资料[1] 丁玉美,高西全.数字信号处理.西安:电子科技大学出版社,2006.[2] 陈怀琛,吴大正,高西全. MATLAB 及在电子信息课程中的应用.北京:电子科技大学出版社,2003.[3] 楼顺天,李博苗.基于MATLAB的系统分析与设计一信号处理西安:西安电子科技大学出版社,1998.指导教师(签字):教研室主任(签字):批准日期:年月日数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数字处理来达到频域滤波的目的。
本文是设计一个数字低通滤波器。
根据滤波器的设计思想,通过双线性变换法将巴特沃斯模拟低通滤波器变换到数字低通滤波器,利用MATLAB绘制出数字低通滤波器的系统幅频函数曲线。
关键词:数字滤波器;双线性变换法;巴特沃斯;MATLAB1课题描述 (1)2设计原理 (1)2.1 IIR数字滤波器设计原理 (1)2.2巴特沃斯低通滤波器的原理 (2)2.3双线性变换法 (3)3设计过程 (6)4结果分析 (8)总结 (11)参考文献 (12)1课题描述数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。
如果系统是一个连续系统,则滤波器称为模拟滤波器。
如果系统是一个离散系统,则滤波器称为数字滤波器。
数字滤波实质上是一种运算过程,实现对信号的运算处理。
输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。
描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。
时域离散系统的频域特性:()()()ωωjωj ejeY=XeH其中()ωj e Y、()ωj e X分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性), ()ωj e H是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。
输入序列的频谱()ωj e X经过滤波后()ωj e X()ωj e H,因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择()ωj e H,使得滤波后的()ωj e X()ωj e H满足设计的要求,这就是数字滤波器的滤波原理。
2设计原理2.1 IIR数字滤波器设计原理IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。
IIR 数字滤波器的设计步骤:① 按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标;② 根据模拟滤波器技术指标设计为响应的模拟低通滤波器;③ 跟据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;④ 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。
在MATLAB 中,经典法设计IIR 数字滤波器主要采用以下步骤:图2.1 IIR 数字滤波器设计步骤2.2巴特沃斯低通滤波器的原理巴特沃斯滤波器的特点是同频带内的频率响应曲线最为平坦,没有起伏,而在组频带则逐渐下降为零。
在振幅的对数对角频率的波特图上,从某一边界见频率开始,振幅随着角频率的增加而逐渐减少,趋向于负无穷大。
一阶巴特沃斯滤波器的衰减率为每倍频20分贝,二阶巴特沃斯滤波器的衰减率为每倍频12分贝,三阶的衰减率为每分贝18分贝,如此类推,巴特沃斯滤波器的振幅对角频率单调下降,并且滤波器的结束越高,在组频带振幅衰减速度越快,其他滤波器高阶的振幅对角频率图和低阶数的振幅对角频率有不同的形状。
N c s s H s H )(11)()(22Ω-+=- 上述函数的特点是等距离分布在半径为Ω的圆上。
因此,极点用下式表示为N k j j c k e e s )12(2+∏Ω=1,2,1,0-=N k)(s H a 的表示式:∏-=-Ω=10)()(N k k n ca ss s H 为了使设计公式和图表统一,将频率归一化。
巴特沃斯滤波器采用3dB 截止频率c Ω归一化,归一化后的系统函数为∏-=Ω-Ω=Ω10)(1)(N k c k c c a s s s G 令c c s j p ΩΩ=Ω=+=λλη,,λ称为归一化频率,p 称为归一化复变量,这样巴特沃斯滤波器的归一化低通原型系统函数为∏-=-=10)(1N k k a p p G 式中,c k s p Ω=,为归一化极点,用下式表示:)21221(N k j k e p ++=π 1,2,1,0-=N k2.3双线性变换法双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。
为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到T pi 一段上,可以通过以下的正切变换来实现:)21tan(21T T Ω=Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。
将这个关系延拓到整个s 平面和1s 平面,则可以得到Ts Ts e e T T s T s ⋅-⋅-+-=⋅=11112)21tan(2 再将1s 平面通过标准变换关系映射到z 平面,即令)*1exp(T s z =得到11112--+-=zz T s 同样对z 求解,得到s TsTz -+=22 这样的变换叫做双线性变换。
为了验证这种映射具有s 平面的虚轴映射到z 平面单位圆上的特性,考虑 Ω=j s ,ωj e z =,得ωωj j ee T j --+-=Ω112 ω21tan 2T =Ω 除了使s 平面的虚轴映射到单位圆上之外,s 平面的左半部分映射到单位圆的内部,s 平面的右半部分映射到单位圆的外部。
如图所示图2.2 双线性变化映射关系示意图 观察式子s T s T z -+=22,发现s 的实部为负时,因子s Ts T -+22的幅度小于1,相当于单位圆的内部。
反之,当s 的实部为负时,该比值的幅度大于1,相当于单位圆的外部。
这样就可以看出使用双线性变换可从稳定的模拟滤波器得到稳定的数字滤波器。
双线性变换法还避免了使用脉冲响应不变法所遇到的混叠问题,因为它把s 平面的这个虚轴映射到z 平面的单位圆上。
然而,付出的代价是在频率轴上引入了失真。
因此,只有当能容忍或补偿这种失真时,使用双线性变换法设计数字滤波器的方法才是实用的。
仅在零频率附近时Ω与ω之间的频率变换关系接近于线性关系,所产生的数字滤波器的幅频响应相对于原模拟滤波器的幅频响应有畸变。
对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸变来加以校正,也就是将临界频率事先加以畸变,然后经变换后正好映射到所需要的频率上。
通过ω21tan 2T =Ω的关系变换成一组模拟频率。
图2.3 双线性变化法的频率关系为了克服冲击响应不变法产生的频率混叠现象,我们需要使s 平面与z 平面建立一一对应的单值关系,即求出)(z f s =,然后将其代入)(s G 就可以求得)(z H ,即)()()(z f s s G z H ==3设计过程已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。
步骤一:将设计内容题所给归一化巴特沃斯低通滤波器以3dB 截止频率为2π=c w 进行去归一化。
0000.169048,206568.132262.50000.16)(234++++=s s s s s H a 步骤二:用双线性变化法将低通模拟滤波器)(s H a 变换为低通数字滤波器)(z H421210177.04860.010940.03759.05639.03759.00940.0)(-----++++++=z z z z z z H 设计程序如下:clear all; clc; close allT=1; fs=1/T; N=4;wc=pi/2; omegach=2*tan(wc/2)/T;M=1; N=[1,2.6131,3.4142,2.6131,1][h,w]=freqs(M,N,512); %模拟滤波器的幅频响应subplot(2,1,1);plot(w,20*log10(abs(h)));grid; axis([0,10,-90,0])xlabel('Hz');ylabel('幅度'); title('归一化模拟低通滤波器');[Ms,Ns]=lp2lp(M,N,omegach); %对低通滤波器进行频率变换[hs,ws]=freqs(Ms,Ns,512); %模拟滤波器的幅频响应subplot(2,1,2);plot(ws,20*log10(abs(hs)));grid;axis([0,10,-90,0])xlabel('Hz');ylabel('幅度'); title('去归一化模拟低通滤波器');[Mz,Nz]=bilinear(Ms,Ns,1/T); %对模拟滤波器双线性变换[h1,w1]=freqz(Mz,Nz); %数字滤波器的幅频响应figureplot(w1/pi,20*log10(abs(h1))); grid;xlabel('ω/π');ylabel('幅度(dB)'); title('数字低通滤波器');axis([0,1,-160,0])运行结果如下图所示:图3.1模拟滤波器的幅频响应图形图3.2低通数字滤波器的幅频响应图形4结果分析比较脉冲响应不变法设计的低通滤波器和双线性法设计的低通滤波器进行比较:优点:是频率坐标变换是线性的,即T Ω=ω,如果不考虑频率混叠现象,用这种方法设计的数字滤波器会很好的重现原模拟滤波器的频率特性。