数字信号处理-低通滤波器设计实验
课程设计-低通滤波器设计

课程设计-低通滤波器设计(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2010/2011学年第 2 学期学院:信息与通信工程学院专业:电子信息科学与技术学生姓名:学号:课程设计题目:低通滤波器设计起迄日期: 6 月 13 日~6月 24日课程设计地点:指导教师:系主任:下达任务书日期: 2011 年 6 月12 日课程设计任务书课程设计任务书目录1 设计目的及要 (5)1.1设计目的 (5)1.2设计内容和要求 (5)2 设计原理 (5)2.1 FIR滤波器 (5)2.2窗函数 (6)2.3矩形窗 (7)3 设计过程 (8)3.1 设计流程图 (8)3.2 产生原始信号并分析频谱 (8)3.3 使用矩形窗设计不同特性的数字滤波器 (10)3.4 信号滤波处理 (11)4 实验结果及分析 (12)5 课程设计心得体会 (12)6 参考文献 (13)附录: (14)低通滤波器的设计1 设计目的及要求1.1设计目的设计一种低通滤波器并对信号进行滤波。
低通滤波器的作用是滤去信号中的中频和高频成分,增强低频成分。
要求做到:1.了解MATLAB的信号处理技术;2.使用MATLAB设计低通滤波器,掌握其滤波处理技术;3.对滤波前和滤波后的波形进行时域和频域比较。
1.2设计内容和要求1.熟悉有关采样,频谱分析的理论知识,对信号作频谱分析;2.熟悉有关滤波器设计理论知识,选择合适的滤波器技术指标,设计低通滤波器对信号进行滤波,对比分析滤波前后信号的频谱;3.实现信号频谱分析和滤波等有关MATLAB函数;2设计原理本次课程设计,我们主要是基于矩形窗的FIR滤波器来设计一个低通滤波器。
2.1 FIR滤波器FIR滤波器即有限抽样响应因果系统,其单位抽样响应h(n)是有限长的;极点皆位于z=0处;结构上不存在输出到输入的反馈,是非递归型的。
其系统函数表示为:普通的FIR滤波器系统的差分方程为:式中:N为FIR滤波器的抽头数;x(n)为第n时刻的输入样本;h(i)为FIR滤波器第i级抽头系数。
数字信号处理实验报告

数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。
⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。
2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。
⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。
3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。
要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。
⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
(完整版)fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告(实验)课程名称数字信号处理电子科技大学教务处制表电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理:1. FIR 滤波器FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。
M 阶FIR 滤波器的系统函数H(z)为()[]Mkk H z h k z-==∑其中H(z)是kz-的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z平面原点z=0有M 个极点.FIR 滤波器的频率响应()j H e Ω为 0()[]Mj jk k H e h k e Ω-Ω==∑它的另外一种表示方法为()()()j j j H e H e e φΩΩΩ=其中()j H e Ω和()φΩ分别为系统的幅度响应和相位响应。
若系统的相位响应()φΩ满足下面的条件()φαΩ=-Ω即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。
由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。
如果一个离散系统的频率响应()j H e Ω可以表示为()()()j j H e A e αβΩ-Ω+=Ω其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。
如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为[][]h k h M k =±-当h[k]满足h[k]=h[M-k],称h[k]偶对称。
当h[k]满足h[k]=-h[M-k],称h[k]奇对称。
按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。
2. 窗函数法设计FIR 滤波器窗函数设计法又称为傅里叶级数法。
《数字信号处理》课程中的数字滤波器实验设计

20211DOI:10.19392/ki.1671-7341.202102030《数字信号处理》课程中的数字滤波器实验设计王为天津师范大学电子与通信工程学院天津300387摘要:数字信号处理是电子信息、通信类专业核心课程,因其内容多、概念抽象、理论性强等特点,传统讲授式教学方法效果不理想,同时也无法突出该课程的应用性特色。
本文探索将数字信号处理中理论知识与实验设计相结合的教学方法,将理论知识讲解贯彻到实验设计过程,以无限冲激响应数字低通滤波器设计为例,通过对滤波器设计原理讲解、程序设计介绍以及实验仿真分析进一步加深理解理论知识以及相关知识如何应用,取得了较好的教学效果。
关键词:数字信号处理;数字滤波器;级联结构;实验教学;教学方法一、绪论作为电子信息、通信工程等相关专业重要的核心课程,《数字信号处理》课程具有内容多、概念抽象、理论性强、公式繁多等特点,并与《高等数学》《电路原理》《信号与系统》《通信原理》等课程知识联系紧密门⑷。
在实际教与学过程中,一方面教师大多数注重知识的理论性、逻辑性进行讲解,突出数字信号的频域变换方法和数字滤波器系统的理论设计方法介绍;另一方面学生对理论知识、数学公式等兴趣不足,或者理解上有困难,造成学习参与度不高,课程教学效果不理想。
同时《数字信号处理》课程知识具有很强的应用性,广泛应用于在实际生活、工程实践中,如关于信号的频谱分析与显示、数字信号的传输、运用数字滤波器系统进行信号处理等。
但在《数字信号处理》实验实践教学方面多采用仪器箱或者Matlab已有函数进行仿真,往往只能展示结果或现象,无法体现出《数字信号处理》课程中各种理论知识是如何具体应用的,学生无法将所学的数学理论知识和实验实践建立有效的联系,进一步降低了《数字信号处理》课程教学质量-5切#为了改善《数字信号处理》教学效果,提高教学质量,特别是提高学生学以致用的能力,本文将以无限冲激响应低通滤波器知识点的理论知识讲解和仿真实验程序设计为例,探索理论与实践相结合的《数字信号处理》教学方式。
数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计数字信号处理技术是现代通信、音频、图像等领域中不可或缺的一门技术。
数字信号处理的核心是数字滤波器设计,本文将介绍一种常用的数字滤波器——数字巴特沃斯滤波器的设计方法。
一、数字滤波器简介数字滤波器是将连续时间信号转换成离散时间信号,实现对离散时间信号的滤波处理,具有实时性好、精度高、可重复性强等优点。
数字滤波器有两种类型:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
二、数字巴特沃斯滤波器数字巴特沃斯滤波器是一种常用的IIR滤波器,其主要特点是具有平坦的通/阻带,通/阻带边缘陡峭。
因此在实际应用中,数字巴特沃斯滤波器应用较为广泛。
数字巴特沃斯滤波器的设计方法一般包括以下步骤:确定滤波器类型、确定通/阻带的截止频率、确定滤波器的阶数、计算滤波器的系数。
1、确定滤波器类型在实际应用中,数字巴特沃斯滤波器有四种类型:低通、高通、带通和带阻滤波器,应根据实际需求选择。
2、确定通/阻带的截止频率通常情况下,固定本例中采用的是低通滤波器,需要确定的就是通带和阻带的截止频率。
对于低通滤波器,通带截止频率ωc应该比信号频率fs的一半小,阻带截止频率ωs 应该比ωc大一些,通常ωs/ωc取0.5~0.7比较好。
滤波器的阶数一般是与滤波器的性能相关的。
阶数越高,性能越好,但同时计算量也会更大。
在实际应用中,一般取4~8的阶数即可。
4、计算滤波器的系数根据上述参数计算滤波器的系数,这里介绍两种常用的方法:一种是脉冲响应不变法(Impulse Invariant Method),另一种是双线性变换法(Bilinear Transformation)。
脉冲响应不变法是一种较为简单的设计方法,但由于其数字滤波器与连续时间滤波器之间的不同,可能会引入一定程度的失真。
双线性变换法可以使二阶系统和一阶系统的增益分别为1和0dB,这是一种比较理想的设计方法。
四、实验步骤本实验采用Matlab软件进行数字滤波器的设计,具体步骤如下:1、打开Matlab软件,新建一个.m文件;2、输入需要滤波的数字信号,此处可以使用Matlab自带的signal工具箱中的一些模拟信号;4、使用filter函数实现数字滤波器对信号的滤波过程;5、通过比较信号的频谱图,评估滤波器的性能。
数字信号处理实验报告

数字信号处理报告IIR数字滤波器上海理工大学教师:苏湛组员:王世豪徐骞刘新2016.1.4一、实验简介Butterworth 和Chebyshev 低通滤波器方法:1) 根据性能参数,先设计一个模拟滤波器,按照一定的算法转换为满足预定指标的数字滤波器。
利用模拟原型滤波器的逼近算法和特性。
2)计算机辅助设计,从统计概念出发,对所要提取的有用信号从时域进行估计,在统计指标最优的意义下,使得估计值最优逼近有用信号,减弱或消除噪声。
1)Butterworth 低通滤波器 1 幅频特性:21|()|1()a NcH j Ω=Ω+Ω,其中N 为滤波器的阶数,c Ω为通带截止频率。
在Ω=0处,有最大值|(0)|1a H =;2)在通带截止频率c Ω=Ω处,不同阶次的幅频量值都相同,即为|()|0.707|(0)|a a H j H Ω=;3)阶数N 增加时,通带幅频特性变平,阻带衰减更快,逐渐趋近于理想滤波器的幅频特性。
幅频特性通常用衰减函数1020log |()/(0)|a a H j H α=-Ω描述。
分贝(dB ) 2 极点一共有2N 个,并且以圆点为对称中心成对的出现。
21()22k j N k c s eππ-+=Ω k=1,2,…,N系统函数:122()()()()N a c N KH s K s s s s s s ==Ω--- …3 通带衰减函数p α、阻带衰减函数s α 和系统幅频特性20log |()|a H j -Ω的关系:10p 20log |()|a p H j α-Ω≤Ω≤Ω p Ω为通带截止频率 10s 20log |()|a s H j α-Ω≥Ω≥Ω s Ω为阻带截止频率4 阶数N 0.10.11010log [(101)/(101)]2log (/)p s p s N αα----≥ΩΩ5 通带截止频率c Ω 0.10.11/21/2(101)(101)ps psc NNαα--ΩΩΩ==--确定了滤波器的阶数N 和通带截止频率c Ω,就可以求出系统的极点,从而求出系统函数()a H s ,这样就完成了Butterworth 低通滤波器的设计。
数字信号处理实验报告-FIR滤波器的设计与实现
数字信号处理实验报告-FIR滤波器的设计与实现在数字信号处理中,滤波技术被广泛应用于时域处理和频率域处理中,其作用是将设计信号减弱或抑制被一些不需要的信号。
根据滤波器的非线性抑制特性,基于FIR(Finite Impulse Response)滤波器的优点是稳定,易设计,可以得到较强的抑制滤波效果。
本实验分别通过MATLAB编程设计、实现、仿真以及分析了一阶低通滤波器和平坦通带滤波器。
实验步骤:第一步:设计一阶低通滤波器,通过此滤波器对波型进行滤波处理,分析其对各种频率成分的抑制效果。
为此,采用零极点线性相关算法设计滤波器,根据低通滤波器的特性,设计的低通滤波器的阶次为n=10,截止频率为0.2π,可以使设计的滤波器被称为一阶低通滤波器。
第二步:设计平坦通带滤波器。
仿真证明,采用兩個FIR濾波器組合而成的阻礙-提升系統可以實現自定義的總三值響應的設計,得到了自定義的總三值響應函數。
实验结果:1、通过MATLAB编程,设计完成了一阶低通滤波器,并通过实验仿真得到了一阶低通滤波器的频率响应曲线,证明了设计的滤波器具有良好的低通性能,截止频率为0.2π。
在该频率以下,可以有效抑制波形上的噪声。
2、设计完成平坦通带滤波器,同样分析其频率响应曲线。
从实验结果可以看出,此滤波器在此频率段内的通带性能良好,通带范围内的信号透过滤波器后,损耗较小,滞后较小,可以满足各种实际要求。
结论:本实验经过实验操作,设计的一阶低通滤波器和平坦通带滤波器具有良好的滤波特性,均已达到预期的设计目标,证明了利用非线性抑制特性实现FIR滤波处理具有较强的抑制滤波效果。
本实验既有助于深入理解FIR滤波器的设计原理,也为其他应用系统的设计和开发提供了指导,进而提高信号的处理水平和质量。
数字信号处理实验FIR数字滤波器的设计
数字信号处理实验:FIR数字滤波器的设计1. 引言数字滤波器是数字信号处理的关键技术之一,用于对数字信号进行滤波、降噪、调频等操作。
FIR (Finite Impulse Response) 数字滤波器是一种常见的数字滤波器,具有线性相应和有限的脉冲响应特性。
本实验旨在通过设计一个FIR数字滤波器来了解其基本原理和设计过程。
2. FIR数字滤波器的基本原理FIR数字滤波器通过对输入信号的每一个样本值与滤波器的冲激响应(滤波器的系数)进行线性加权累加,来实现对信号的滤波。
其数学表达式可以表示为:y(n) = b0 * x(n) + b1 * x(n-1) + b2 * x(n-2) + ... + bN * x(n-N)其中,y(n)表示滤波器的输出,x(n)表示滤波器的输入信号,b0~bN表示滤波器的系数。
FIR数字滤波器的脉冲响应为有限长度的序列,故称为有限冲激响应滤波器。
3. FIR数字滤波器的设计步骤FIR数字滤波器的设计主要包括以下几个步骤:步骤1: 确定滤波器的阶数和截止频率滤波器的阶数决定了滤波器的复杂度和性能,而截止频率决定了滤波器的通带和阻带特性。
根据实际需求,确定滤波器的阶数和截止频率。
步骤2: 选择滤波器的窗函数窗函数是FIR滤波器设计中常用的一种方法,可以通过选择不同的窗函数来实现不同的滤波器特性。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
根据实际需求,选择合适的窗函数。
步骤3: 计算滤波器的系数根据选择的窗函数和滤波器的阶数,使用相应的公式或算法计算滤波器的系数。
常见的计算方法有频率采样法、窗函数法、最小二乘法等。
步骤4: 实现滤波器根据计算得到的滤波器系数,可以使用编程语言或专用软件来实现滤波器。
步骤5: 评估滤波器性能通过输入测试信号,观察滤波器的输出结果,评估滤波器的性能和滤波效果。
常见评估指标有滤波器的幅频响应、相频响应、群延迟等。
4. 实验步骤本实验将以Matlab软件为例,演示FIR数字滤波器的设计步骤。
数字信号处理课程设计-等波纹数字FIR低通滤波器
设计题目:等波纹数字FIR低通滤波器2.对课程设计成果的要求〔包括图表(或实物)等硬件要求〕:滤波器的初始设计通过手工计算完成;在计算机辅助计算基础上分析滤波器结构对其性能指标的影响(至少选择两种以上合适的滤波器结构进行分析);在计算机辅助计算基础上分析滤波器参数的字长对其性能指标的影响;以上各项要有理论分析和推导、原程序以及表示计算结果的图表;课程设计结束时提交设计说明书。
3.主要参考文献:[1]高息全丁美玉.《数字信号处理》[M].西安:西安电子科技大学出版社,2008.8[2]陈怀琛.《数字信号处理教程——MATLAB释义与实现》[M].北京:电子工业出版社,2004.12[3]张德丰.《详解MATLAB数字信号处理》[M].北京:电子工业出版社,2010.6[4]飞思科技产品研发中心.《MATLAB7辅助信号处理技术与应用》[M].北京:电子工业出版社,2005.34.课程设计工作进度计划:序号起迄日期工作内容接到题目,搜集资料1 2016.12.26-2016.12.31整理资料,构思设计方案2 2016.12.31-2016.1.3手工计算进行滤波器的初步设计3 2016.1.3-2016.1.5完善初步设计,学习Matlab软件操作4 2016.1.5-2016.1.7通过Matlab软件分析设计内容,逐步落实课题目标5 2016.1.8-2016.1.9上交课程设计,并做细节修改并完成设计6 2016.1.10-2016.1.13主指导教师日期:年月日1.前言数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置,在通信、图像、语音、雷达等许多领域都有着十分广泛的应用。
在数字信号处理中,数字滤波占有极其重要的地位。
目前对数字滤波器的设计有多种方法。
其中Matlab软件已成为设计数字滤波器的强有力工具。
传统的数字滤波器设计过程复杂、计算工作量大、滤波特性调整困难,但利用Matlab信号处理工具箱可以快速有效地实现由软件组成的常规数字滤波器的设计、分析和仿真,极大地减轻了工作量,有利于滤波器设计的最优化。
数字信号处理巴特沃斯滤波器设计
数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。
巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。
本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。
在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。
巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。
要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。
巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。
一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。
确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。
根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。
设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。
数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。
常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。
在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。
同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。
综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:数字信号处理
实验名称:低通滤波器设计实验
院(系):
专业班级:
姓名:
学号:
指导教师:
一、实验目的:
掌握IIR数字低通滤波器的设计方法。
二、实验原理:
2.1设计巴特沃斯IIR滤波器
在MATLAB下,设计巴特沃斯IIR滤波器可使用butter 函数。
Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。
在期望通带平滑的情况下,可使用butter函数。
butter函数的用法为:
[b,a]=butter(n,Wn)其中n代表滤波器阶数,W n代表滤波器的截止频率,这两个参数可使用buttord函数来确定。
buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。
buttord函数的用法为:[n,Wn]= buttord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。
当其值为1时代表采样频率的一半。
Rp和Rs分别是通带和阻带区的波纹系数。
2.2契比雪夫I型IIR滤波器。
在MATLAB下可使用cheby1函数设计出契比雪夫I 型IIR滤波器。
cheby1函数可设计低通、高通、带通和带阻契比雪夫I 型滤IIR波器,其通带内为等波纹,阻带内为单调。
契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。
cheby1函数的用法为:[b,a]=cheby1(n,Rp,Wn,/ftype/)在使用cheby1函数设计IIR滤波器之前,可使用cheblord 函数求出滤波器阶数n和截止频率Wn。
cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。
cheblord函数的用法为:
[n,Wn]=cheblord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。
当其值为1时代表采样频率的一半。
Rp和Rs分别是通带和阻带区的波纹系数。
三、实验要求:
利用Matlab设计一个数字低通滤波器,指标要求如下:
1.要求频率低于0.2rad π时,容许幅度误差在1db 以内;
在频率
0.3ππ:之间的阻带衰减大于15db.增益()()()20lg max jw db jw H e mag H e =
2. 设计巴特沃思滤波器实现以上功能。
3. 设计切比雪夫滤波器实现以上功能。
四、实验Matlab 代码及结果:
4.1 巴特沃思滤波器:
wp=0.2*pi;
ws=0.3*pi;
Rp=1;
Rs=15;
[N,wc]=buttord(wp/pi,ws/pi,Rp,Rs);
[b,a]=butter(N,wc);
[H,w]=freqz(b,a);
figure(1)
subplot(211);
mag=abs(H);
plot(w/pi,mag);
xlabel('角频率w/pi');
ylabel('幅度');。
grid on;
subplot(212);
phase=angle(H);
plot(w/pi,phase);
xlabel('角频率w/pi');
ylabel('相位');
grid on;
figure(2)
magdb=20*log10(mag);
plot(w/pi,magdb);
ylabel('增益/db');
xlabel('角频率w/pi');
grid on;
所的图像如下:
4.2切比雪夫滤波器:
wp=0.2;
ws=0.3;
Rp=1;
Rs=15;
[N,wn]=cheb1ord(wp,ws,Rp,Rs); [b,a]=cheby1(N,Rp,wn);
[H,w]=freqz(b,a,501);
mag=abs(H);
figure(1)
subplot(211);
plot(w/pi,mag);
xlabel('角频率w/pi');
ylabel('幅度');
grid on;
phase=angle(H);
subplot(212);
plot(w/pi,phase);
xlabel('角频率w/pi');
ylabel('相位');
grid on;
figure(2)
magdb=20*log10(mag); plot(w/pi,magdb); ylabel('增益db'); xlabel('角频率w/pi'); grid on;
所得图形如下所示:
五、实验心得:
1.采用MATLAB设计滤波器,使原来非常繁琐复杂的程序设计变成了简单的函数调用,为滤波器的设和实现开辟了广阔的天地,尤其是Matlab工具箱使各个领域的研究人员可以直观方便地进行科学研究与工程应用。
2.MATLAB 信号处理工具箱为滤波器设计及分析提供了非常优秀的辅助设计工具, 在设计数字滤波器时, 善于应用MATLAB进行辅助设计, 能够大大提高设计效率。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。