半导体存储器分类
存储器的分类和主要性能指标(微机原理)

第6章 半导体存储器及接口
作用:保存正在执行的程序和数据; 掩膜型ROM 主存储器 可一次编程PROM (内存) ROM 紫外线擦除的 EPROM 电可擦除的EEPROM 微型计算机 元件: 快擦型Flash MEM 的存储器由 静态RAM RAM 动态RAM 作用:保存主存的副本或暂时不执行的 辅助存储器 程序和数据; (外存) 软/硬磁盘 介质: 光盘 磁带等
第6章 半导体存储器及接口
§6.1
存储器的分类和主要性能指标
存储器是计算机系统的记忆设备。它用来存放 计算机的程序指令、要处理的数据、运算结果以 及各种需要计算机保存的信息,是计算机中不可 缺少的一个重要组成部分。 1、存储器的分类 (1)按存储器与中央处理器的关系分 内部存储器大学电子信息工程学院
第6章 半导体存储器及接口
6264芯片在上述系统中的地址范围:
A19A18A17A16A15A14A13A12A11…A0 0 … 0 0 1 1 1 1 1 1 1 …1 0 1 1 1 1 1 0 0 …0
所以该6264芯片的地址范围为3E000H~3FFFFH
西南大学电子信息工程学院
8
第6章 半导体存储器及接口 §6.2 半导体存储器件 ⒈只读存储器(ROM) ROM具有掉电后信息不会丢失的特点,一般用于存放 固定的程序和数据等。如监控程序、BIOS程序、字库等。
⑴ ROM的结构和特点
西南大学电子信息工程学院
9
第6章 半导体存储器及接口 ⑵ ROM的分类 按生产工艺和工作特性分为: ①掩膜编程的ROM(Mask Programmed ROM) 例如:采用“并联单元阵列”的掩膜ROM 薄栅氧化层的 管子为正常开启 厚栅氧化层的 管子为高开启
半导体存储器

2.主存-辅存存储层次
辅助存储器是主存的补充,用来存放暂时不用的程序和数据。主存-辅存层次通过附加的硬 件及存储管理软件来控制,使主存-辅存形成一个整体,称之为虚拟存储器。
6.5 辅助存储器
1. 辅助存储器的特点 2.磁表面存储器的主要技术指标
(1)记录密度。 (2)存储容量。 (3)平均寻址时间。 (4)数据传输率。 (5)误码率。
6.5.2 磁记录原理和记录方式
6.5.2 磁记录原理和记录方式 1.磁记录原理
磁表面存储器通过磁头和记录介质的相对运动完成读写操作。写入时,记录介质在磁头下 方匀速通过,根据写入代码的要求,对写入线圈输入一定方向和大小的电流,使磁头导磁体 磁化,产生一定方向和强度的磁场。由于磁头与磁层表面间距非常小,磁力线直接穿透到磁 层表面,将对应磁头下方的微小区域磁化(叫作磁化单元)。可以根据写入驱动电流的不同方 向,使磁层表面被磁化的极性方向不同,以区别记录“0”或“1”。
(2)磁表面存储器。磁表面存储器是在金属或塑料基体的表面上涂一层磁性材料作为记录介质,工作 时磁层随载磁体高速移动,用磁头在磁层上进行读写操作,为磁表面存储器。
(3)光盘存储器。光盘存储器是应用激光在记录介质(磁光材料)上进行读写的存储器,具有非易失性 的特点。光盘记录密度高、耐用性好、可靠性高和可互换性强等。
半导体存储器
6.1 存 储 器 的 基 本 概 念 6.2 半 导 体 存 储 器 6.3 主 存 储 器 与 CPU 的 连 接 6.4 提 高 存 储 器 性 能 的 方 法 6.5 辅 助 存 储 器
微型计算机系统原理及应用 第4章 半导体存储器

17
4.3 半导体只读存储器(ROM)
4.3.1 掩膜式只读存储器ROM ROM制造厂家按用户提供的数据,在芯片制造时
写定。用户无法修改。
18
4.3.2 可编程的只读存储器PROM 只能写入一次。
19
4.3.3 可编程、可擦除的只读存储器EPROM
1. 紫外线擦除的EPROM 进行照射10~20min,擦除原存信息,成为全1状态。
8
2.静态RAM的结构 将多个存储单元按一定方式排列起来,就组成了一个静 态RAM存储器。
9
典型的SRAM 6116:2KB,A0~A10,D0~D7形成 128*16*8(每8列组成看作一个整体操作)的阵列
片选CS# 输出允许 OE#
读写控制 WE#
10
典型的SRAM芯片6264 (8KB)
29
存储器芯片的选用
RAM、ROM区别:
–ROM:ROM用来存放程序,为调试方便,多采用EPROM
–RAM:存储器容量不大,功耗较小时,可采用静态RAM;
系统较大,存储器容量很大,功能和价格成为主要矛盾, 要选择动态RAM,这时要考虑刷新问题。
组成存储器模块时,需要考虑的因素主要有:容
量、速度、负载等:
14
2. 双端口RAM举例
CY7C130/131/140/141 1K*8bit高速双端口SRAM A0~A9:地址线 I/O0~I/O7:数据线 CE#:片选 OE#:输出允许线 R/W#:读写控制 BUSY#: INT#:
15
存储器的基本组成 半导体存储器的内部结构为例
译码电路: 重合译码方式 存储体:核心。一个 基本存储电路可存入 一个二进制数码
A12 A7 A6 A5 A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 Vcc WE CS 2 A8 A9 A 11 OE A 10 CS 1 D7 D6 D5 D4 D3
存储芯片分类比较与应用情况介绍

表 :主要存储器类型介绍
存储芯片类型
作用
市场领先的参与者 国内主要参与者 市场规模
市场特点
代码型闪存存储器, 华邦、旺宏、兆易
NOF Flash 常
创新、Cypress、美
用于系统启动代码的
光
兆易创新
25亿-30 亿美元
市场规模曾随智能手机消亡而逐渐 萎缩,但目前已随着新兴应用的崛
保存着从主存储器取出 的缓存行
保存着取自本地存储的 缓存行
CPU可直接调取并执行
文件需调取到RAM才可执 行
2.2 EEPROM:低功耗,高擦写次数存储首选方案
➢ EEPROM的全称是“电可擦除可编程只读存储器”,可以在电脑上或专用设备上擦除已有信息,重新编 程,一般用在即插即用。在一些所需存储容量不大,并且需要频繁更新的场合,EEPROM相比较于 Flash,由于其百万次的擦写次数和更快速的写入,成为更佳选择。
➢ 从应用形态上看,NAND Flash的具体产品包括USB(U盘)、闪存卡、SSD(固态硬盘),以及嵌 入式存储(eMMC、eMCP、UFS)等。USB属于常见的移动存储设备,闪存卡则用于常见电子设备 的外设存储,如相机、行车记录仪、玩具等。
图:NAND Flash的结构特点
图:NAND下游应用领域
1
2.1存储器类型众多,应用广泛
➢ 众多半导体存储器中,市场规模最大的是DRAM和NAND Flash,市场规模均在数百亿美元,其中DRAM 2018年的市场规模已达到1000亿美元。除此之外,存储芯片市场空间较大的还有NOF Flash,其市场 规模曾一度随着功能手机的消亡而逐渐降低,但近年来随着新兴市场的崛起,NOF Flash的市场空间
存储器分类及功能大全

RAM/ROM存储器ROM和RAM指的都是半导体存储器,RAM是Random Access Memory的缩写,ROM是Read Only Memory的缩写。
ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。
一、 RAM有两大类:1、静态RAM(Static RAM,SRAM),静态的随机存取存储器,加电情况下,不需要刷新,数据不会丢失;而且,一般不是行列地址复用的。
SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。
但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,而SRAM却需要很大的体积,所以在主板上SRAM存储器要占用一部分面积。
优点:速度快,不必配合内存刷新电路,可提高整体的工作效率。
缺点:集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。
2、动态RAM(Dynamic RAM,DRAM),动态随机存取存储器,需要不断的刷新,才能保存数据。
而且是行列地址复用的,许多都有页模式。
DRAM利用MOS管的栅电容上的电荷来存储信息,一旦掉电信息会全部的丢失,由于栅极会漏电,所以每隔一定的时间就需要一个刷新机构给这些栅电容补充电荷,并且每读出一次数据之后也需要补充电荷,这个就叫动态刷新,所以称其为动态随机存储器。
由于它只使用一个MOS管来存信息,所以集成度可以很高,容量能够做的很大。
DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快;DRAM存储单元的结构非常简单,所以从价格上来说它比SRAM要便宜很多,计算机内存就是DRAM的。
DRAM分为很多种,常见的主要有FPRAM/ FastPage、EDORAM、SDRAM、DDRRAM、RDRAM、SGRAM以及WRAM等 I.SDRAM,即Synchronous DRAM(同步动态随机存储器),曾经是PC电脑上最为广泛应用的一种内存类型,即便在今天SDRAM仍旧还在市场占有一席之地。
存储器分类及功能大全

RAM/ROM存储器ROM和RAM指的都是半导体存储器,RAM是Random Access Memory的缩写,ROM是Read Only Memory的缩写。
ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。
一、 RAM有两大类:1、静态RAM(Static RAM,SRAM),静态的随机存取存储器,加电情况下,不需要刷新,数据不会丢失;而且,一般不是行列地址复用的。
SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。
但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,而SRAM却需要很大的体积,所以在主板上SRAM存储器要占用一部分面积。
优点:速度快,不必配合内存刷新电路,可提高整体的工作效率。
缺点:集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。
2、动态RAM(Dynamic RAM,DRAM),动态随机存取存储器,需要不断的刷新,才能保存数据。
而且是行列地址复用的,许多都有页模式。
DRAM利用MOS管的栅电容上的电荷来存储信息,一旦掉电信息会全部的丢失,由于栅极会漏电,所以每隔一定的时间就需要一个刷新机构给这些栅电容补充电荷,并且每读出一次数据之后也需要补充电荷,这个就叫动态刷新,所以称其为动态随机存储器。
由于它只使用一个MOS管来存信息,所以集成度可以很高,容量能够做的很大。
DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快;DRAM存储单元的结构非常简单,所以从价格上来说它比SRAM要便宜很多,计算机内存就是DRAM的。
DRAM分为很多种,常见的主要有FPRAM/ FastPage、EDORAM、SDRAM、DDRRAM、RDRAM、SGRAM以及WRAM等 I.SDRAM,即Synchronous DRAM(同步动态随机存储器),曾经是PC电脑上最为广泛应用的一种内存类型,即便在今天SDRAM仍旧还在市场占有一席之地。
存储器和可编程逻辑器件
A0
A1
地
址
译
码
器
存储矩阵
数据线
读写/控制电路
读/写控制(R/W)
片选(CS)
输入/输出
I/O
.
.
.
.
.
.
23.2.1 RAM的结构和工作原理
图23.2.1 RAM的结构框图
1. 存储矩阵:由存储单元构成,一个存储单元存储一位二进制数码“1”或“0”。与ROM不同的是RAM存储单元的数据不是预先固定的,而是取决于外部输入信息,其存储单元必须由具有记忆功能的电路构成。
2.地址译码器:为了存取的方便,给每组存储单元以确定的标号,这个标号称为地址。图23.1.1中,W0~WN-1称为字单元的地址选择线,简称字线;地址译码器根据输入的代码从W0~WN-1条字线中选择一条字线,确定与地址代码相对应的一组存储单元位置。被选中的一组存储单元中的各位数码经位线D0~DM-1传送到数据输出端。
2. 地址译码器:也是N取一译码器。
3. 读/写控制电路:当R/W=1时,执行读操作,R/W=0时,执行写操作。
4. 片选控制:当CS=0时,选中该片RAM工作, CS=1时该片RAM不工作。
23.2.2 2114静态RAM
MOS型RAM
静态RAM:管子数目多,功耗大,但只要不断电,信息就永久保存。
有二极管
无二极管
2. 双极型晶体管和MOS场效应管构成的存储矩阵
图23.1.4 双极型存储矩阵
存“1”
存“0”
D3
D2
D1
D0
W2
W1
W0
+UDD
W3
2. 双极型晶体管和MOS场效应管构成的存储矩阵
半导体存储器
设x的取值范围为0~15的正整数, 则对应的是4位二进制正整数,用 B=B3B2B1B0表示。根据y=x2可算 出y的最大值是152 =225,可以用 8位二进制数Y=Y7Y6Y5Y4Y3Y2Y1Y0 表示。由此可列出Y=B2 即y=x2 的真值表。
输 B3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 B2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
输 Y4 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0
出 Y3 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 Y2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1
&
&
&
W3
地 A1 0 0 1 1
址 A0 0 1 0 1 W0 1 0 0 0
字 W1 0 1 0 0
线 W2 0 0 1 0
D3=0
≥1
D2=1
D3 D2 ≥1
D1=1
D1 ≥1 ≥1
D0=1
D0
A1=1 A0=1
A1 A0
1 1
&
W0 W1 W2
W0=0 W1=0 W2=0 W3=1
存 W3 0 0 0 1 D3 1 0 1 0 储 D2 0 1 1 1 内 D1 1 0 0 1 容 D0 1 1 0 1
… …
27256(4) A0 O0 A 14 CS OE
… …
O7
… …
O7
… …
O7
… …
大学微机原理半导体存储器详解演示文稿
不可再次改写。
PROM基本存储电路
PROM的写入要由专用的电路(大
电流、高电压)和程序完成。
第17页,共36页。
第5章 半导体存储器
5.3.2 可擦除的PROM 一、EPROM(紫外线可擦除) 用户可以多次编程。用紫外线照射可全部擦除原有信息(擦除后内容 全为“1” ),便可再次改写。
一、RAM原理
构成
存储体(R-S触发器构成的存储矩阵) 外围电路 译码电路、缓冲器
I/O控制电路
0
0
地
1
1
数
址
存储
据
n位 译
矩阵
缓
地址 码 2n-1
m
冲
器
器
m位 数据
CS 控制 逻辑
R/W
存储芯片构成示意图
第6页,共36页。
第5章 半导体存储器
地址译码器:
接收来自CPU的n位地址,经译码后产生2n个地址选择信号,实现对片
3. 按存储器的功能来分类 ✓按存储器与CPU的关系分类
控制存储器CM 、主存储器MM 、高速缓冲存储器Cache 、
外存储器EM ;
✓按存储器的读写功能分类 读写存储器RWM 、只读存储器ROM;
✓按数据存储单元的寻址方式分类
随机存取存储器RAM 、顺序存取存储器SAM 、直接存取存储器DAM ;
内存储单元的选址。
控制逻辑电路:
接收片选信号CS及来自CPU的读/写控制信号,形成芯片内部控制信号, 控制数据的读出和写入。
数据缓冲器:
寄存来自CPU的写入数据或从存储体内读出的数据。
存储体:
存储体是存储芯片的主体,由基本存储元按照一定的排列规律构成。
半导体存储器
第7章半导体存储器内容提要半导体存储器是存储二值信息的大规模集成电路,本章主要介绍了(1)顺序存取存储器(SAM)、随机存取存储器(RAM)、只读存储器(ROM)的工作原理。
(2)各种存储器的存储单元。
(3)半导体存储器的主要技术指标和存储容量扩展方法。
(4)半导体存储器芯片的应用。
教学基本要求掌握:(1)SAM、RAM和ROM的功能和使用方法。
(2)存储器的技术指标。
(3)用ROM实现组合逻辑电路。
理解SAM、RAM和ROM的工作原理。
了解:(1)动态CMOS反相器。
(2)动态CMOS移存单元。
(3)MOS静态及动态存储单元。
重点与难点本章重点:(1)SAM、RAM和ROM的功能。
(2)半导体存储器使用方法(存储用量的扩展)。
(3)用ROM 实现组合逻辑电路。
本章难点:动态CMOS 反相器、动态CMOS 移存单元及MOS 静态、动态存储单元的工作原理。
7.1■■■■■■■■■半导体存储器是存储二值信息的大规模集成电路,是现代数字系统的 重要组成部分。
半导体存储器分类如下:I 融+n 右西方性翼静态(SRAM )(六管MO 白静态存储单元) 随机存取存储器〔^^'{动态侬^1口3网又单管、三管动态则□吕存储单元) 一固定艮cmil 二极管、M 口号管) 可编程RDM (PROM )[三极管中熠丝上可擦除可编程ROM (EPROM )[叠层栅管、雪崩j1-电可擦除可编程良口财(EEPROM^【叠层栅管、隧道)按制造工艺分,有双极型和MOS 型两类。
双极型存储器具有工作速度快、功耗大、价格较高的特点。
MOS 型存储器具有集成度高、功耗小、工艺简单、价格低等特点。
按存取方式分,有顺序存取存储器(SAM )、随机存取存储器(RAM )和只读存储器(ROM )三类。
(1)顺序存取存储器(简称SAM ):对信息的存入(写)或取出(读)是按顺序进行的,即具有“先入先出”或“先入后出”的特点。
(2)随机存取存储器(简称RAM ):可在任何时刻随机地对任意一个单元直接存取信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体存储器是计算机和电子设备中常用的内部存储器类型,根据不同的特性和用途,可以分为多种分类。
以下是常见的半导体存储器分类:
1.RAM(随机存取存储器):
SRAM(静态随机存取存储器):使用触发器构建,读写速度快,但需要较多的芯片面积和功耗。
DRAM(动态随机存取存储器):基于电容的存储单元,需要定期刷新,但相对较高的存储密度使其成为主流内存选项。
2.ROM(只读存储器):
PROM(可编程只读存储器):用户一次性编程,无法擦除或重新编程。
EPROM(可擦除可编程只读存储器):需要特殊设备进行擦除,然后重新编程。
EEPROM(电可擦除可编程只读存储器):可通过电子擦除和编程,较为灵活,但擦写次数有限。
Flash 存储器:类似于EEPROM,但支持块擦除,用于各种应用,包括闪存驱动器、存储卡和固态硬盘。
3.Cache 存储器:
L1、L2、L3 Cache:位于处理器内部的高速缓存,用于加速数据访问。
缓存存储器层次结构:不同级别的缓存通过层次结构来平衡速度和容量。
4.寄存器文件:
寄存器组:在CPU 内部的小型存储器单元,用于存储指令、数据和控制信号。
5.存储卡和存储棒:
SD 卡、MicroSD 卡、USB 存储棒等:用于移动设备和计算机的便携式存储。
6.堆栈存储器:
堆栈内存:用于存储函数调用、局部变量和返回地址等,通常遵循先进后出(LIFO)原则。
7.内存芯片:
内存芯片:集成了多个存储单元,通常作为外部存储器使用。
这些存储器类型在不同的应用场景中具有不同的特点和用途。
随着技术的发展,各类存储器不断优化和演进,以满足日益复杂的计算和数据存储需求。