数列的十种典型递推式

合集下载

高中数学必修5数列的递推公式

高中数学必修5数列的递推公式

典型例题解析
例题1
已知等差数列{an}中, a1=2,d=3,求a10。
解析
根据等差数列的通项公 式an=a1+(n-1)d,代 入n=10,a1=2,d=3 ,可得a10=2+(101)×3=29。
例题2
已知等差数列{an}中, a3=7,a7=15,求a5 。
解析
根据等差数列的性质, a5=(a3+a7)/2=(7+15 )/2=11。
递推关系性质
递推关系具有确定性,即对于给 定的初始条件和递推公式,数列 的每一项都是唯一确定的。
递推关系建立
01
等差数列递推关系
等差数列的递推关系为an=a1+(n-1)d,其中a1为首项 ,d为公差,n为项数。
02
等比数列递推关系
等比数列的递推关系为an=a1×qn-1,其中a1为首项, q为公比,n为项数。
,r是公比。
调和数列
调和数列是每一项都是其前一项 的倒数与1的和的数列。递推公 式为1/a_n = 1/a_(n-1) + 1/b,
其中a_1 = b。
05 递推公式在实际问题中应用
数学问题应用举例
等差数列求和
数列通项公式求解
利用递推公式可以快速求解等差数列 的前n项和,如求1+2+3+...+n的和 。
03
其他类型数列递推关系
对于非等差非等比数列,需要根据具体题目条件建立相 应的递推关系。
初始条件确定
初始条件定义
初始条件是数列中已知的第一项或前 几项,用于启动递推过程。
初始条件确定方法
根据题目给出的条件或已知信息,确 定数列的初始条件。例如,题目中可 能会直接给出首项a1和公差d或公比q 等参数。

数列的递推公式及通项公式

数列的递推公式及通项公式

数列的递推公式及通项公式数列是由一系列按照一定规律排列的数字组成的序列。

数列中的每个数字称为项,而这些项之间的关系可以通过递推公式和通项公式来描述。

本文将介绍数列的递推公式和通项公式,并通过具体的例子来解释其应用。

一、递推公式递推公式是指通过前一项或多项来确定后一项的公式。

递推公式可以分为线性递推和非线性递推两种类型。

1.1 线性递推线性递推是指数列的每一项都可以通过前一项乘以某个常数再加上某个常数得到。

其一般形式如下:an = a(n-1) * r + d其中,an代表数列中的第n项,a(n-1)代表数列中的第n-1项,r为公比,d为公差。

例如,给定数列1,3,5,7,9,...,其中第一项a1为1,公差d 为2。

根据数列的特点可以确定递推公式为:an = a(n-1) + 2通过递推公式,可以依次计算出数列的每一项。

1.2 非线性递推非线性递推是指数列的每一项不能用前一项的线性组合表示,而是通过其他的方式来确定。

例如,斐波那契数列就是一个常见的非线性递推数列。

斐波那契数列的递推公式为:an = a(n-1) + a(n-2)其中,a1 = 1,a2 = 1。

根据递推公式,可以计算出斐波那契数列的每一项。

二、通项公式通项公式是指通过数列的位置n来直接计算数列中的第n项的公式。

通项公式可以分为线性通项和非线性通项两种类型。

2.1 线性通项线性通项是指数列的每一项可以通过位置n的线性关系来计算。

其一般形式如下:an = a1 + (n-1) * d其中,an代表数列中的第n项,a1为数列首项,d为公差。

以等差数列为例,假设已知数列首项a1为2,公差d为3,可以通过线性通项公式an = 2 + (n-1) * 3计算出数列的任意一项。

2.2 非线性通项非线性通项是指数列的每一项不能用位置n的线性关系来计算,而是通过其他的方式来确定。

例如,等比数列就是一个常见的非线性通项数列。

等比数列的通项公式为:an = a1 * r^(n-1)其中,an代表数列中的第n项,a1为数列首项,r为公比。

常见的递推数列

常见的递推数列

常见的递推数列的求法:(1)形如a n +1=a n +f (n )的一阶递归式,其通项求法为 (累加法): a n =a 1+∑(a k +1-a k )= a 1+∑f (k )(2)形如a n +1=f (n )a n 的递归式,其通项求法为(累积法):a n =a 1·∏a k +1a k= a 1·∏f (k )∵(3)形如a n +1=pa n +q (其中p ≠1)的递归式,法一:由a n +1=pa n +q 及a n =pa n -1+q ,两式相减得a n +1-a n =p (a n -a n -1),可得:数列{a n +1-a n }是首项为a 2-a 1,且公比为p 的等比数列,先求出a n +1-a n ,再累加求出a n ;法二:则两边同时加上q p -1,变为a n +1+ q p -1 = p (a n + q p -1),显然是以a 1+ q p -1为首项,p 为公比的等比数列,此法叫做特征根法; (4) 形如a n +1=pa n +f (n )(其中p ≠1)的递归式,其中f (n )不是常数, 由p ≠1,则两边同时除以p n +1,变形为a n +1p n +1 = a n p n + f (n )p n +1,令b n = a n p n ,得b n +1= b n + f (n )p n +1,先累加求出b n ,再求a n .即利用叠加法易得:a n p n = a 1p + ∑f (k )p k +1,从而a n =p n -1(a 1+∑f (k )pk +1)。

(5)形如a n +1=f(n)a n +g (n )(其中p ≠1)的递归式,其中f (n ),g(n)不是常数.(6)特征根法:a n +2=pa n +1+qa n ,特征方程为x 2=px +q ,令其两根为x 1,x 2,② 当12x x ≠时,则其通项公式为:a n =Ax 1n +Bx 2n ,A 、B 用待定系数法求得;②当12x x =时,则其通项公式为:1()n n a A Bn x =+,A 、B 用待定系数法求得.(7) 不动点法:当f (x )=x 时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法.典型例子:a n+1=aa n+bca n+d,令x=ax+bcx+d,即cx2+(d-a)x-b=0,设此方程的两个根为x1,x2,(1)若x1=x2,则有1a n+1-x1=1a n-x1+p,其中p可以用待定系数法求解,为p=2ca+d,然后再利用等差数列通项公式求解。

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:1()n na a f n +=+(()f n 可以求和)−−−−→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。

5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

3.4常见的几种递推公式

3.4常见的几种递推公式

法2:裂项法
pq
an1 q n1 p(an q n )
例 1、 (2007 年天津)在数列 an 中, a1 2,an1 an n1 (2 )2n (n N ) , 其中 0 .求数列 an 的通项公式. 例 2、 (2003 年河南)设 a0 为常数,且 an 3n1 2an1 (n N ) ,求 an .
px q x rx s
3bn 4 2, … , n 1, 3, , 2bn 3
例 (2007 年全Ⅰ)若数列 bn 中 b1 2 , bn1 求数列 bn 的通项.
常见的几种递推公式
类型Ⅵ an2 pan1 qan
an2 an1 (an1 an ) an2 an1 (an1 an )
常见的几种递推公式 类型Ⅳ an1 pan q(n)
(2)q(n) a qn
若q(n) a q b?
n
法1:变换法(两边同除pn+1或qn+1)
an1 an a qn n n 1 p p p n1
a n 1 p an a n n 1 q q q q
类型Ⅴ
pan q an1 ra n s
常见的几种递推公式
(1)若q=0,则两边取倒数; (2)若q≠0,则
法1:变换法
an1
(an )
ra n s
法2:特征方程法 ?
an1 p r an an1 p r an
类型Ⅷ
an1 p(n)an q(n)
n 1 1 (1)an1 an ; n n n 1 1 ( 2)an1 an ; n n n 1 1 (3)an1 an ; n 1 n

数列的通项公式及递推公式

数列的通项公式及递推公式

数列的通项公式及递推公式数列是按照一定的规律排列的一系列数字。

在数学中,我们常常使用通项公式和递推公式来描述数列。

一、通项公式通项公式是指能够给出数列中第n项的公式。

也就是说,通过通项公式,我们可以直接计算出数列中任意一项的值,而不需要知道前面的所有项。

1.1等差数列的通项公式等差数列是指相邻两项之间的差值都是相等的数列。

一般地,等差数列可以写作a,a+d,a+2d,a+3d,...,其中a是首项,d是公差(即相邻两项之间的差值)。

等差数列的通项公式为:an = a + (n-1)d,其中an是数列中第n项的值,a是数列的首项,d是数列的公差。

举个例子,如果一个等差数列的首项是2,公差是3,那么这个数列的通项公式就是an = 2 + 3(n-1)。

1.2等比数列的通项公式等比数列是指相邻两项之间的比值都是相等的数列。

一般地,等比数列可以写作a,ar,ar^2,ar^3,...,其中a是首项,r是公比(即相邻两项之间的比值)。

等比数列的通项公式为:an = a * r^(n-1),其中an是数列中第n 项的值,a是数列的首项,r是数列的公比。

举个例子,如果一个等比数列的首项是2,公比是3,那么这个数列的通项公式就是an = 2 * 3^(n-1)。

二、递推公式递推公式是指通过已知数列中的前几项来计算出下一项的公式。

也就是说,通过递推公式,我们可以通过已知的前几项来求解后面的项。

2.1等差数列的递推公式对于等差数列而言,递推公式可以表示为:an = an-1 + d。

这个公式表示数列中的第n项等于它前一项的值加上公差d。

2.2等比数列的递推公式对于等比数列而言,递推公式可以表示为:an = an-1 * r。

这个公式表示数列中的第n项等于它前一项的值乘以公比r。

举个例子,如果一个等差数列的首项是2,公差是3,那么数列的递推公式就是an = an-1 + 3对于一个等比数列的首项是2,公比是3,那么数列的递推公式就是an = an-1 * 3综上所述,通项公式和递推公式是描述数列的重要工具。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 三、换元法例3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

递推数列求通项公式

递推数列求通项公式

递推数列求通项公式递推数列是一种数学序列,其中每一项都是通过对前一项应用一个递推关系得到的。

求递推数列的通项公式是指找出一种依赖于自变量的表达式,用于计算数列中任意一项的值。

求递推数列的通项公式的方法主要有两种,一种是通过推导和观察数列的特点,找出合适的数学模型;另一种是利用已知的数学工具和技巧,通过数学推理和计算来找到通项公式。

下面以一些常见的递推数列为例,详细介绍如何求其通项公式。

1.等差数列:等差数列是最简单的一种递推数列,每一项与前一项的差值都相等。

设数列的首项为a,公差为d,则第n项可以表示为an = a + (n-1)d。

这是等差数列的通项公式。

2.等比数列:等比数列是一种每一项与前一项的比值都相等的递推数列。

设数列的首项为a,公比为r,则第n项可以表示为an = ar^(n-1)。

这是等比数列的通项公式。

3. 斐波那契数列:斐波那契数列是一种特殊的递推数列,前两项为1,后面每一项都是前两项之和。

即an = an-1 + an-2、通过观察数列的特点可以得知,斐波那契数列的通项公式是an = (1/sqrt(5)) *( ((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n )。

4.等差-等比混合数列:等差-等比混合数列是一种先等差递推,然后再等比递推的数列。

设数列的首项为a,等差为d,公比为r,则第n项可以表示为an = (a + (n-1)d) * r^(n-1)。

5. 将递推数列转化为代数方程求解:对于一些复杂的递推数列,可以通过将数列的前几项转化为代数方程的解,并找到通项公式。

例如,如果递推数列的第n项为an = n^2 - 3n + 2,我们可以将数列的前几项代入an的表达式,然后求解方程组,找到通项公式。

总结起来,求递推数列的通项公式需要运用数学推导和观察、数学工具和技巧、将数列转化为代数方程等方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 十大递推数列求通项: (1)等差数列:a n =a n-1+d例1:已知:数列{a n }中a 1=1,a n =a n-1+3,(n ≥2).求a n 的通项公式。

答a n =3n-2. (2)等比数列: a n =a n-1q例2:已知:数列{a n }中a 1=1,a n =2a n-1,(n ≥2).求a n 的通项公式。

答a n =12-n .(3)似等差数列: a n =a n-1+f(n) 用叠加法。

例3:已知:数列{a n }中a 1=1,a n =a n-1+3n+1,(n ≥2).求a n 的通项公式。

答a n =265n 3n 2-+.(4)线性数列: a n =pa n-1+q 构造等比数列。

例4:已知:数列{a n }中a 1=3,a n =2a n-1-1,(n ≥2).求a n 的通项公式。

答a n =12+n.(5) 似等比数列: a n =a n-1f(n) 叠乘法。

例5:已知:数列{a n }中a 1=3,a n =na n-1,(n ≥2).求a n 的通项公式。

答a n =3n !.(6)三项递推: a n =pa n-1+qa n-2 设a n+1-xa n =y(a n -xa n-1),构造一个或二个等比数列再通过等差数列或解方程组求出。

例6:已知:数列{a n }中a 1=1,a 2=3,a n =3a n-1-2a n-2,(n ≥3).求a n 的通项公式。

答a n =2n -1. 例7:已知:数列{a n }中a 1=1,a 2=3,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式。

答a n =(n+1)2n-2. 例8:已知:数列{a n }中a 1=1,a 2=4,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式。

答a n =n2n-1.例9:已知:数列{a n }中a 1=2,a 2=3,a n =5a n-1-6a n-2,(n ≥3).求a n 的通项公式。

答a n =3×2n-1-3n-1. 例10:已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式。

答周期为6. 例11 (2006年普通高等学校夏季招生考试数学(文史类)福建卷(新课程))(22)已知数列满足(I )证明:数列是等比数列;(II )求数列的通项公式;(Ⅲ)若数列满足证明是等差数列。

(7)似线性数列:a n+1=pa n +f(n) , 变为111)(++++=n n n n n pn f p a p a ,即化为(3)型。

特别地①1n n a pa bn c +=++型,还可以令1(1)()n n a x n y p a xn y +-+-=--,待定系数x,y ,构造等比数列,要比通法简单。

②1nn n a pa q b +=++型,还可以令11()n n n n a xqy p a xq y ++--=--,待定系数x,y ,构造等比数列,要比通法简单。

例12:已知:数列{a n }中a 1=5,a n =3a n-1+3n -1,(n ≥2).求a n 的通项公式。

答213)21(+⋅+=n n n a (8)指数数列:a n+1=pa n k ,取对数,化为(4)型。

例13:已知:数列{a n }中a 1=4,a n =3)1(4-n n a n-13,(n ≥2).求a n 的通项公式。

答a n=1322-⋅n n . 原理:设cba r a s r a n n n +-=-+)(1,先待定s,r 的值,再取倒数。

得:s br a s c br r a n n +-+=-+)(11,令111++=-n n b ra ,化为:b n+1=ab n +c 型,下略。

求法:在上述原理中,称r 为cba mda a n n n ++=+1的特征根。

特征根的求法除了按上述方法逐步进行外,也可令cbx mdx x ++=,解关于x 的方程,得出方程的根x 1,x 2即为特征根r 1,r 2.至此法(ⅰ)令cba x a s x a n n n +-=-+)(111,再根据原式中分子的n a 的系数待定出s ,既可求解。

法(ⅱ)令n 1n x 1b a =-,得a n =1nx b 1+,将该式代入已知等式即得b n 的递推关系。

先求出b n ,再求a n 。

注:该法更容易用。

例14(2006年奥林匹克竞赛山东省赛区预选赛19题,即最后一题) 已知:数列{a n }满足a n+1a n +3a n+1+a n +4=0,(n ≥2). (1)当a 1=-1时, 求a n 的通项公式。

(2)当a 1=-2.03时,求a n 的最小值和最大值。

(3)当a 2006是{a n }中的最小项时,求a 1的取值范围。

答(1)a n =-2+n 1.(2)a 34最小为-5;a 35最大为-21.(3)20064013200540111-<<-a .例15 在数列{a n }中,a 1=4,且a n+1=423++n n a a ,求a n 。

答:21112525-----+=n n n n n a 。

例16 已知曲线C :1xy =,过C 上一点(,)n n n A x y 作斜率12n n k x =-+为的直线交曲线C 于另一点111(,)n n n A x y +++,点列(1,2,3,)n A n = 的横坐标构成数列{}n x ,其中1117x =。

(Ⅰ)求n x 与1n x +的关系式; (Ⅱ)求证:1123n x ⎧⎫+⎨⎬-⎩⎭是等比数列;(Ⅲ)求证:23*123(1)(1)(1)(1) 1.(,1)n n x x x x n N n -+-+-++-<∈≥ 。

答案:(Ⅰ)121n n x x +=+,(Ⅱ)1111122323n nx x +⎧⎫⎧⎫+=-+⎨⎬⎨⎬--⎩⎭⎩⎭,(Ⅲ)由(Ⅱ)知121(2)3n n a =+--,∴(ⅰ)当n 为偶数时,11112111132(1)(1)111122223339n n nn n n n n n x x ------⋅-+-=+=+-+⋅-121323.22n n n --⋅<=∴ 23123243331(1)(1)(1)(1)112222nn n n x x x x -+-+-++-<+++=-< 。

(ⅱ)当n 为奇数时,2312311(1)(1)(1)(1)11(02n n n n n x x x x x x --+-+-++-<--<> 由可知) 综上所述:23*123(1)(1)(1)(1) 1.(,1)nn x x x x n N n -+-+-++-<∈≥ 。

(10)f(a n ,S n )=0 构造f(a n-1,S n-1)=0,两式相减。

(11)两个数列的递推。

若数列{a n },{b n }满足⎩⎨⎧+=+=----1n 21n 1n1n 21n 1n b m a m b b k a k a (n ≥2)。

构造a n +xb n =y(a n-1+xb n-1)求解。

例16 已知:数列{a n },{b n }满足⎩⎨⎧+=+=----1n 1n n1n 1n n 4b 3a b b 2a a (n ≥2)且a 1=2,b 1=3,求a n ,b n 的通项公式。

答:)15(43b ,43541a n n n n -⋅=+⋅= . 例17 已知:数列{a n },{b n }满足⎪⎩⎪⎨⎧+=+=----1n 1n n 1n 1n n b 32a 31b b 31a 32a (n ≥2)且a 1=10,b 1=8,求a n ,b n 的通项公式。

答:a n =9+1n 31- ,b n =1n 319--.(12) 周期数列例18 已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式。

答:a 1=a,a 2=b,a 3=b-a,a 4=-a,a 5=-b,a 6=a-b,a 7=a,a 8=b,故a n 是周期为6的数列。

例19 已知:数列{a n }中a 1=a, a n =1a 33a 1n 1-n +--,(n ≥2).求a n 的通项公式。

答:.a a ,1a 33-a -a ,1a 33a a ,a a 4321=-=+-==故a n 是周期为3的数列。

注:特别地,a 1=0时,常为考题。

例20 已知:数列{a n }中a 1=1, a n =3a 1a 31n 1-n +--,(n ≥2).求a n 的通项公式。

答:a 1=1,1a ,32a ,32a ,1a ,23a ,32a 765432=+=--=-=-=-= . 故a n 是周期为6的数列。

例21 已知:数列{a n }中a 1=a, a n =1a 1a 1n 1-n +--,(n ≥2).求a n 的通项公式。

答:a a ,a1a1a ,a 1a ,1a 1a a ,a a 54321=-+=-=+-==。

故a n 是周期为4的数列。

2 数列求和中常用的拆裂项方法。

(1) 若a n 成等差数列,则)11(1111++-=n n n n a a d a a 。

)11(21121121+++++-=n n n n n n n a a a a d a a a .(2))(11b a ba b a --=+ (3)C n m =C 11++n m -C n m+1n ×n != (n+1)!-n ! mC n m =nC 11--n m , m(m-1)C n m =n(n-1)C22--n m , n 2=2 C n 2+n, n 3=6 C n 3+6 C n 2+n,(4))n11n 1(4114n 4n 1)12n (122--<+-=-。

相关文档
最新文档