沪教版(上海)数学七年级第二学期 第12章小结 实数的复习 教案

合集下载

2022年沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(精选)

2022年沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(精选)

沪教版(上海)七年级数学第二学期第十二章实数必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、3的算术平方根为()A B.9 C.±9D2、4的平方根是()A.2 B.﹣2 C.±2D.没有平方根3、下列各数是无理数的是()A B.3.33 C D.22 74、﹣π,﹣3)A.3π-<-B.3π-<-<C.3π-<-D.3π-<-<<5π,3.1411,8,0.020020002…中,无理数有()A.2个B.3个C.4个D.5个6、下列等式正确的是()A4±B4-C D.47)A B.-2 C.2±D.28、下列说法中,正确的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.任何数的绝对值都是正数D.和为0的两个数互为相反数9、若一个数的算术平方根与它的立方根的值相同,则这个数是()A.1 B.0和1 C.0 D.非负数10、下列各数中,3.1415127,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有()A.0个B.1个C.2个D.3个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.24=的值为____________.3()230y+=,则xy=_________.4、0.064的立方根是______.5、比较大小:1的相反数是______.三、解答题(10小题,每小题5分,共计50分)1、计算(1(2(32-2、计算:0321()2()|12π---+-+3、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”m 各个数位上的数字倒序排列可得到一个新的四位数m ',记()540909m m F m '--=. 例如:4512m =,∴2154m '=,则()4512215454045122909F --== (1)判断7643和4631是否为“多多数”?请说明理由;(2)若A 为一个能被13整除的“多多数”,且()0F A ≥,求满足条件的“多多数”A .4、已知a 2=16,b 3=27,求a b 的值.5、计算:(1)18+(﹣17)+7+(﹣8);(2)111()462+-×(﹣12);(3)﹣22﹣6、计算:27163.7、计算:(1(2).8、已知正数a 的两个不同平方根分别是2x ﹣2和6﹣3x ,a ﹣4b 的算术平方根是4.(1)求这个正数a 以及b 的值;(2)求b 2+3a ﹣8的立方根.92021(1)π+-10、对于一个三位自然数m ,若m 的百位数字等于两个一位正整数a 与b 的和()a b >,m 的个位数字等于两个一位正整数a 与b 的差,m 的十位数字等于b ,则称m 是“和差数”,规定(),m F a b =.例如:723是“和差数”,因为752=+,352=-,22=,所以723是“和差数”,即()7235,2F =.(1)填空:()3,1F =______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数910010n x y =⨯++(18x ≤<,8y ≤<,x 、y 是整数,即n 的百位数字是9,十位数字是x ,个位数字是y )为“和差数”,求所有满足条件的“和差数”n .-参考答案-一、单选题1、A【分析】利用算术平方根的定义求解即可.【详解】3故选:A .【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.2、C【分析】根据平方根的定义(如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:2=±,故选:C .【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.3、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.【详解】2,是有理数,3.33和227是无理数, 故选:C .【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.4、B【分析】根据实数的大小比较法则即可得.【详解】解: 3.1430π-≈-<-<,1.5=,1.5=,则3π-<-<故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.5、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项.【详解】4=,π,3.1411,8π,0.020020002…;共3个;故选B .【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.6、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】4=,故该选项不正确,不符合题意;=D.4=±,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a a称为被开方数).7、D【分析】4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A错误.B.∵数轴上的点也可以表示无理数.∴B错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.D.∵和为0的两个数互为相反数.∴D正确.故选:D.【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.9、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;127是分数,属于有理数;3之间的2的个数逐次增加1),共3个.故选:D .【点睛】此题考查了无理数.解题的关键是掌握实数的分类.二、填空题1、3-或4【分析】先根据新运算的定义可得一个关于m 的方程,再利用平方根解方程即可得.【详解】解:由题意得:22(23)(23)24m m m m ++--+-+=,即2(21)2524m --=,2(21)49m -=,217m -=或217m -=-,解得4m =或3m =-,故答案为:3-或4.【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.2、3【分析】根据算术平方根的定义可得316x +=【详解】4=∴316x +=即13x =3=故答案为:3【点睛】本题考查了算术平方根和立方根的定义,求得x 的值是解题的关键.平方根:如果x 2=a ,则x 叫做aa 称为被开方数), 其中属于非负数的平方根称之为算术平方根;立方根:如果x 3=a ,则x 叫做a a 称为被开方数).3、6-【分析】根据算术平方根的非负性及平方的非负性求出x 及y 的值,代入计算即可.【详解】()230y +=()2030y ≥+≥,,∴x -2=0,y +3=0,∴x =2,y =-3,∴3(2)6xy -=⨯=-,故答案为:-6.【点睛】此题考查了有理数的乘法计算,正确掌握算术平方根的非负性及平方的非负性求出x 及y 的值是解题的关键.4、0.4【分析】根据立方根的定义直接求解即可.【详解】解:∵30.40.064=,∴0.064的立方根是0.4.故答案为:0.4.【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义.5、> 1【分析】(1)将2(21的前面添“-”号,即可得到其相反数.【详解】(1)∵43>>∴2>故答案为:>(2)1)11-==故答案为:1【点睛】本题是实数的比较大小与求解相反数的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现.在任意一个数前面添上“-”号,新的数就表示原数的相反数.三、解答题1、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)1=+--0.5(2)2=-;2(2)-3(2=+32=.1【点睛】本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.2、4-【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式1=4-【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.3、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别F A≥,,列出关系式,进而求解.表示出A、F(A),根据A为一个能被13整除的“多多数”,且()0(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A 的个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴A 表示的数为1000(3)100(3)1010101013300y x y x y x +++++=++100010010(3)(3)101010133A x y x y x y '=+++++=++∴9099093267A A y x '-=-+∴()54090990932675403909909A A y x F A y x '---+-===-+ ∵()0F A ≥∴30y x -+≥∴3y x ≥-∵个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴1909039139x y x y ≤≤⎧⎪≤≤⎪⎨≤+≤⎪⎪≤+≤⎩,解得1606x y ≤≤⎧⎨≤≤⎩ ∴x 、y 的范围为16063x y y x ≤≤⎧⎪≤≤⎨⎪≥-⎩,且x 、y 为整数 ∵若A 为一个能被13整除的“多多数”,∴ 10101013300A y x =++(13779)(13710)1325311y x =⨯++⨯++⨯+13(777253)91011y x y x =+++++当1x =时,910119219813y x y y ++=+=++,06y ≤≤,y 的值可以为0、1、2、3、4、5、6,分别代入9813y ++后结果是13的倍数的是2y =同理,当2x =时,910119319526y x y y ++=+=++,06y ≤≤,没有符合条件的y ;当3x =时,910119419239y x y y ++=+=++,06y ≤≤,没有符合条件的y ;当4x =时,9101195191239y x y y ++=+=++,16y ≤≤,符合条件的3y =;当5x =时,910119619952y x y y ++=+=++,26y ≤≤,没有符合条件的y ;当6x =时,910119719665y x y y ++=+=++,36y ≤≤,没有符合条件的y ;综上符合条件的是12x y =⎧⎨=⎩、43x y =⎧⎨=⎩ 当12x y =⎧⎨=⎩时A 为5421, 当43x y =⎧⎨=⎩时A 为6734 综上足条件的“多多数”A 为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.4、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a 2=16,b 3=27,∴a =±4,b =3.当a =4,b =3时,a b =43=64.当a =﹣4,b =3时,a b =(﹣4)3=﹣64.综上:a b =64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.5、(1)0;(2)1;(3【分析】(1)根据有理数的加法计算法则求解即可;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.【详解】解:(1)()()181778+-++-181778=-+-0=;(2)()11112462⎛⎫+-⨯- ⎪⎝⎭ ()()()111121212462=⨯-+⨯--⨯- 326=--+1=;(3)221-415=-++=【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.6、2【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】 解:27163 7492【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.7、(1)23;(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(11213=-- 23=(2)===【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.8、(1)36a =,5b =;(2)b 2+3a ﹣8的立方根是5【分析】(1)根据题意可得,2x ﹣2+6﹣3x =0,即可求出a =36,再根据a ﹣4b 的算术平方根是4,求出b 的值即可;(2)将(1)中所求a 、b 的值代入代数式b 2+3a ﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a 的两个不同平方根分别是2x ﹣2和6﹣3x ,∴2x ﹣2+6﹣3x =0,∴x =4,∴2x ﹣2=6,∴a =36,∵a ﹣4b 的算术平方根是4,∴a ﹣4b =16,∴36-4b =16∴b =5;(2)当a =36,b =5时,b 2+3a ﹣8=25+36×3﹣8=125,∴b 2+3a ﹣85.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.9、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】20212(1)π+--=3﹣(π﹣+(﹣1)﹣=3﹣π+1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.10、(1)412(2)是,理由见解析(3)941或933或925或917【分析】(1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;(2)根据定义即可判断311是“和差数”;(3)由题意得到9a ba b y+=⎧⎨-=⎩,解得29a y=+,再结合a、b为正整数且a b>,即可得解.(1)解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故()3,1F =412. 故答案为:412;(2)解:311是“和差数”,∵321=+,121=-,11=,∴311是“和差数”;(3)解:∵910010n x y =⨯++(18x ≤<,18y <≤,x 、y 是整数)∴9a b a b y +=⎧⎨-=⎩∴29a y =+∴514a y b =⎧⎪=⎨⎪=⎩,633a y b =⎧⎪=⎨⎪=⎩,752a y b =⎧⎪=⎨⎪=⎩,871a y b =⎧⎪=⎨⎪=⎩。

2017春七年级数学下册126实数的运算(2)沪教版五四制!

2017春七年级数学下册126实数的运算(2)沪教版五四制!
⑵我们班9位同学的身高为1.65米;
⑶地球赤道的半径为6378千米;
⑷据国家统计局在2005年12月公布的经济普查结果,我国2004年GDP总量达到159878亿元。
请列举一些生活中近似数与准确数的实例。
新课探索三(1)
思考用四舍五入法得到:小林身高1.6米与小林身高1.60米,两者有什么区别?
按照“四舍五入”的规则:
对于近似数,要考虑它与相应准确数的接近程度。
新课探索三(2)
近似数与准确数的接近程度(即近似程度)的要求,叫做精确度。
近似数的精确度通常有以下两种表达方式:
⑴精确到某一位数;
⑵指定保留几个有效数字。
新课探索四(1)
精确到某一数位:
π=3.1415926……,按照“四舍五入”法对π取近似值。
π≈(精确到个位).
课前练习三
在下列各式的横线上填上“>”或“<”号:
⑴ 0;⑵3.14-π0;
由 ,请化简下列公式:
⑴ ;⑵ ;
⑶ ;
1、来不及做,可以作为课后作业。
2、第(2)、(4)错误较多,主要是 ,与加减法混淆。
学生很难理解,可以从正的平方根的意义去解释。
“同学的身高为1.65米”有同学说是准确数,要解释:与测量有关的数都是近似数。
请说一说上述哪些数是准确数?哪些数是近似数?
课内练习:书p27
课堂小结:
准确数,近似数.
精确度的表达方法:
⑴精确到某一位数;⑵指定保留几个有效数字.
对于一个近似树从左边第一个不是零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字。
课外
作业
练ห้องสมุดไป่ตู้册p10
预习
要求

沪科版数学七年级下册第6章《实数》复习教学设计

沪科版数学七年级下册第6章《实数》复习教学设计

沪科版数学七年级下册第6章《实数》复习教学设计一. 教材分析沪科版数学七年级下册第6章《实数》复习教学设计,主要涵盖实数的定义、分类和性质,以及实数与数轴的关系。

本章内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

教材内容主要包括有理数、无理数和实数的概念,实数的性质,实数与数轴的对应关系等。

二. 学情分析学生在七年级上学期已经学习了有理数和无理数的基本概念,对实数有一定的了解。

但部分学生对实数的性质和实数与数轴的关系理解不够深入,需要通过复习教学进一步巩固和提高。

学生的学习兴趣较高,但由于实数的概念较为抽象,部分学生可能在理解上存在困难。

三. 教学目标1.理解实数的定义和分类,掌握实数的性质。

2.建立实数与数轴的对应关系,能运用实数解决实际问题。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.实数的定义和分类。

2.实数的性质和实数与数轴的关系。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的性质和实数与数轴的关系。

2.利用数轴直观展示实数,帮助学生理解实数与数轴的对应关系。

3.通过实例分析,让学生学会运用实数解决实际问题。

六. 教学准备1.准备相关的教学PPT,内容包括实数的定义、分类、性质和实数与数轴的关系等。

2.准备数轴教具,用于展示实数与数轴的对应关系。

3.准备一些实际问题,用于巩固学生对实数的理解和应用。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,引出实数的概念。

提问:实数有哪些分类?实数与数轴有什么关系?2.呈现(10分钟)通过PPT展示实数的性质,如:实数有大小、可以进行加减乘除等运算。

同时,展示实数与数轴的对应关系,解释实数在数轴上的位置与其实数值的关系。

3.操练(10分钟)让学生分组讨论,通过数轴教具和PPT上的实例,自主探究实数的性质和实数与数轴的关系。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对学生探究的结果,进行巩固练习。

沪科版七年级数学下册:6.2实数教案

沪科版七年级数学下册:6.2实数教案

6.2实数教学目标:1.了解无理数和实数的概念,能对实数按照要求进行分类;2.了解实数范围内,相反数、倒数、绝对值的意义;3.知道数轴上的点与实数一一对应,能用数轴上的点来表示无理数;4.学会比较两个实数的大小,能数量地进行实数运算。

重难点:1.实数的有关概念;2.实数与数轴的对应关系;3.实数的运算。

知识点一:无理数(重点;掌握)利用计算器,我们可以求出:V2 =1.414213562... 爲二L 732050808...n=3. 141592654... 迟=1. 709975947...这些数有共同的特点:是无限小数,而且是不循环小数,像这样的无限不循环小数叫作无理数。

知识拓展:对无理数定义的理解应注意以下三点:(1)无理数是指无限的,不循环的小数;(2)并不是所有带根号的数都是无理数,如£经开方运算后,结果是有理数;(3)因为兀是一个无限不循环小数,所有圆周率兀是无理数。

无理数集合(知识点三:实数的有关性质(重点:掌握)知识拓展:在实数范围内,相反数、倒数、绝对值的意义与在有理数范围内完全一样,如实数d的相反数是绝对值为G ,当春0时,倒数为丄.a例1.下列说法中,正确的是()A. 实数包括有理数、无理数和0B.无理数就是无限小数C.无论是有理数还是无理数,都可以用数轴上的点来表示D.有理数和数轴上的点一一对应例2. (1) -V7 , n-3.14的相反数分别是 _____________ , 1-V3是实数 _______ 的相反数;(2)已知一个数的绝对值是石,则这个数是________________ ;帧的绝对值是________ 。

知识点四:实数的运算(重点,掌握)实数既可以进行加、减、乘、除、乘方运算,有可以进行开立方运算,其 中正数及零可以进行开平方运算。

实数的运算法则、运算律和运算顺序都与有理数的相同。

注意:开方运算 和乘方运算一样,都是第三级运算,在混合运算时,先算乘方、开方,再算乘 除,最后算加减;同级运算按照从左到右的顺序进行;有括号的先算小括号里 面的,再算括号里面的,最后算大括号里面的。

2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含答案解析)

2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含答案解析)

沪教版(上海)七年级数学第二学期第十二章实数必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式正确的是( ).A 2=±B .4=C 2=-D 3-2、若(3)(3)55x x +-=,则x 的值为( )A .8B .8-C .8±D .6或83、下列说法中正确的有( )①±2都是8的立方根=x32.A .1个B .2个C .3个D .4个4、﹣π,﹣3 )A .3π-<-B .3π-<-<C .3π-<-D .3π-<-<<5、可以表示( )A .0.2的平方根B .0.2-的算术平方根C .0.2的负的平方根D .0.2-的立方根 6、10的算术平方根是( )A .10BC .D .107、实数2,0,﹣3 )A .﹣3BC .2D .08、一个正方体的体积是5m 3,则这个正方体的棱长是( )A B C .25m D .125m9、下列实数比较大小正确的是( )A .14<-B .10000.01->-C .2334>D .227π-<-100.123,π2271中间依次多1个0)中,无理数有( ).A .2个B .3个C .4个D .5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、2_____________.2、若一个正数的两个平方根分别为 a +3与3a +1,则a =__________.3、计算:201(2π-⎛⎫-= ⎪⎝⎭__________. 4、对于有理数,a b 定义一种新运算:2*a b a b a +=,如2242*42⨯+=,则(2*6)*(1)-的值为_____________.5、给定二元数对(p ,q ),其中0p =或1,0q =或1.三种转换器A ,B ,C 对(p ,q )的转换规则如下:(1)在图1所示的“A —B —C ”组合转换器中,若输入()1,0,则输出结果为________;(2)在图2所示的“①—C —②”组合转换器中,若当输入()1,1和()0,0时,输出结果均为0,则该组合转换器为“____—C —____”(写出一种组合即可).三、解答题(10小题,每小题5分,共计50分)1、计算:0321()2()|12π---+-+2、已知10x -.(1)求x 与y 的值;(2)求x +y 的算术平方根.3、阅读下面的文字,解答问题.现规定:分别用[]x 和x 〈〉表示实数x 的整数部分和小数部分,如实数3.14的整数部分是[3.14]3=,小数部分是3.140.14〈〉=2-,小数部分是无限不循环小数,无法写完整,2的小数部分,所以2=.(1)= ,= ;= ,= .(2)如果a =,b =,求a b +4的小数部分我们不可能全部写出1的小数部分.理由是:对于正无理数,用本身减去其整数部分,差11.参考小燕同学的做法,解答下列问题:(1________;(2)已知7a 和b ,求a 2+2ab +b 2的值;(339=x y ,其中x 是整数,0<y <1,那么25x y +=________(4m 为正整数)的整数部分为n ,那么mm 的小数部分为________(用含m ,n 的式子表示).5、把下列各数分别填入相应的集合里.5+0, 3.14-,227,12-,3π-,()6--,0.1010010001…(每两个1之间依次多一个0) (1)整数集合:{ …}(2)正数集合:{ …}(3)无理数集合:{ …}6、阅读材料,回答问题.下框中是小马同学的作业,老师看了后,找来小马.问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头. 老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”请把实数|﹣12|,﹣π,﹣42表示在数轴上,并比较它们的大小(用<号连接). 解:请你帮小马同学将上面的作业做完.7、求下列各式中x 的值:(1)32764x =; (2)()214x +=.8、已知24a +的立方根是2,31a b +-算术平方根是4,求4a b +的算术平方根.9、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”m 各个数位上的数字倒序排列可得到一个新的四位数m ',记()540909m m F m '--=. 例如:4512m =,∴2154m '=,则()4512215454045122909F --== (1)判断7643和4631是否为“多多数”?请说明理由;(2)若A 为一个能被13整除的“多多数”,且()0F A ≥,求满足条件的“多多数”A .10、阅读下列材料:∴34,的整数部分为3,小数部分为3).请你观察上述的规律后试解下面的问题:如果9π的整数部分为a b ,求a b +的值.-参考答案-一、单选题1、D【分析】一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于a ,那么这个数叫做a 的立方根;据此可得结论.【详解】解:A 2,原式错误,不符合题意;B 、4=±,原式错误,不符合题意;C 2,原式错误,不符合题意;D 3=-,原式正确,符合题意;故选:D .【点睛】本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.2、C【分析】化简后利用平方根的定义求解即可.【详解】解:∵(3)(3)55x x +-=,∴x 2-9=55,∴x 2=64,∴x =±8,故选C .【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.3、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x ,正确;9=,9的平方根是±3,原说法错误;,正确;综上,正确的有②④共2个,故选:B .【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.4、B【分析】根据实数的大小比较法则即可得.【详解】解: 3.1430π-≈-<-<,1.5=,1.5=,则3π-<-<故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.5、C【分析】根据平方根和算术平方根的定义解答即可.【详解】解:可以表示0.2的负的平方根,故选:C.【点睛】此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.6、B【分析】直接利用算术平方根的求法即可求解.【详解】解:10故选:B.【点睛】本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.7、A【分析】根据实数的性质即可判断大小.【详解】解:∵﹣30<2故选A.【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质.8、B【分析】根据正方体的体积公式:V=a3,把数据代入公式解答.【详解】5(立方米),故选:B.【点睛】此题主要考查正方体体积公式的灵活运用,关键是熟记公式.9、D【分析】根据有理数比较大小的法则对各选项进行比较即可.【详解】解:A、1>-4,故本选项错误;B、-1000<-0.001,故本选项错误;C、2893==312124<,故本选项错误;D、223.1428 3.141597π-≈-<-≈-,故本选项正确;故选:D.【点睛】本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.10、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】=-是有理数,30.123是无限循环小数,是有理数,22是分数,是有理数,7π1中间依次多1个0)是无理数,共5个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题1、3【分析】【详解】解:132<<,∴3,2故答案为3.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方.2、-1【分析】直接利用平方根的定义得出a+3+2a+3=0,进而求出答案.【详解】解:∵一个正数的两个平方根分别为a+3和3a+1,∴a+3+3a+1=0,解得:a=-1,故答案为:-1.【点睛】本题考查了平方根的定义.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.3、3【分析】根据实数的运算法则即可求出答案.【详解】解:原式41=-3=.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.4、95##【分析】根据新定义运算的规律,先计算(2*6),所得的结果再与(-1)进行“*”运算.【详解】 解:由题意得,22+6(2*6)==52⨯, 25+(1)95*(1)=55⨯--= 故答案为:95.【点睛】本题考查新定义、有理数的混合运算等知识,是重要考点,掌握相关知识是解题关键.5、1 A A【分析】(1)利用转换器C 的规则即可求出答案.(2)利用转换器A 、B 、C 的规则,写出一组即可.【详解】(1)解:利用转换器C 的规则可得:输出结果为1.(2)解:当输入()1,1时,若①对应A ,此时经过A 、C 输出结果为(1,0),②对应A ,输出结果恰好为0.当输入()0,0时,若①对应A ,此时经过A 、C 输出结果为(0,1),②对应A ,输出结果恰好为0. 故答案为:1;A ;A .【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.三、解答题1、4-【分析】先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.【详解】解:原式1=4-【点睛】本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.2、(1)1x =,3y =;(2)2【分析】(1)根据绝对值和平方根的非负性求出x 与y 的值;(2)先计算x y +的值,即可得出x y +的算术平方根.【详解】(1)由题可得:10250x x y -=⎧⎨-+=⎩, 解得:13x y =⎧⎨=⎩, ∴1x =,3y =;(2)134x y +=+=,∵4的算术平方根为2,+的算术平方根为2.∴x y【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.3、(1)11,33;(2)2【分析】(1的范围,再根据题目规定的表示方法写出答案即可;(2a,b的值,进一步即可求出结果.【详解】(1<2,34,=11,]=33,故答案为:11,33;(23,1011,a2,=b=10,∴2108+=+=,a b∴a b+2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.4、(13;(2)1;(3(4)1n m【分析】(1)由题意易得34<3,然后问题可求解;(2)由题意易得23<,则有97+710,475<,然后可得7+7972,77437a b ,然后根据完全平方公式可进行求解;(3)由题意易得23<2,然后可得35,92xy ,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵34<,3,3;3;(2)∵23,∴97+710,475<,∵7a 和b , ∴7+7972,77437a b ,∴2222272371a ab b a b ;(339=x y 可知339=x y ,∵23<<,2,∵x 是整数,0<y <1, ∴35,92x y ,∴225255x y +=⨯=;(4m 为正整数)的整数部分为n ,∴n∴m m 的小数部分即为1,为1n m ; 故答案为1n m .【点睛】 本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.5、(1)整数集合:(){}5,0,12,6+---;(2)正数集合:()()22,6,0.1010010001107⎧⎫+--⎨⎬⎩⎭每两个之间依次多一个;(3)无理数集合:(),0.1010010001103π⎫-⎬⎭每两个之间依次多一个.【分析】根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数,(1)根据整数的分类即可得;(2)根据正数的分类即可得;(3)根据无理数的分类即可得.解:+5 0是整数,-3.14是正分数,227是正分数,-12是负整数,3π-是负无理数,()66--=是正整数,0.1010010001(每两个1之间依次多一个0)是无理数; 故(1)整数集合:(){}5,0,12,6+---;(2)正数集合:()()22,6,0.1010010001107⎧⎫+--⎨⎬⎩⎭每两个之间依次多一个;(3)无理数集合:(),0.1010010001103π⎫-⎬⎭每两个之间依次多一个. 【点睛】本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键.6、图见解析,﹣4<﹣π<|﹣12|<2【分析】根据π-【详解】把实数|12-|,π-,4-2表示在数轴上如图所示,4-<π-<|12-|<2 【点睛】本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.7、(1)43x =;(2)121, 3.x x ==-(1)把原方程化为36427x ,再利用立方根的含义解方程即可; (2)直接利用平方根的含义把原方程化为12x +=或12x +=-,再解两个一次方程即可.【详解】解:(1)32764x =36427x 解得:43x = (2)()214x +=12x ∴+=或12x +=-解得:121, 3.x x ==-【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.8【分析】根据立方根、算术平方根解决此题.【详解】解:由题意得:2a +4=8,3a +b -1=16.∴a =2,b =11.∴4a +b =8+11=19.∴4a +b本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.9、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A 的个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,根据新定义,分别表示出A 、F (A ),根据A 为一个能被13整除的“多多数”,且()0F A ≥,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A 的个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴A 表示的数为1000(3)100(3)1010101013300y x y x y x +++++=++100010010(3)(3)101010133A x y x y x y '=+++++=++∴9099093267A A y x '-=-+∴()54090990932675403909909A A y x F A y x '---+-===-+ ∵()0F A ≥∴30y x -+≥∴3y x ≥-∵个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴1909039139x y x y ≤≤⎧⎪≤≤⎪⎨≤+≤⎪⎪≤+≤⎩,解得1606x y ≤≤⎧⎨≤≤⎩ ∴x 、y 的范围为16063x y y x ≤≤⎧⎪≤≤⎨⎪≥-⎩,且x 、y 为整数 ∵若A 为一个能被13整除的“多多数”,∴ 10101013300A y x =++(13779)(13710)1325311y x =⨯++⨯++⨯+13(777253)91011y x y x =+++++当1x =时,910119219813y x y y ++=+=++,06y ≤≤,y 的值可以为0、1、2、3、4、5、6,分别代入9813y ++后结果是13的倍数的是2y =同理,当2x =时,910119319526y x y y ++=+=++,06y ≤≤,没有符合条件的y ;当3x =时,910119419239y x y y ++=+=++,06y ≤≤,没有符合条件的y ;当4x =时,9101195191239y x y y ++=+=++,16y ≤≤,符合条件的3y =;当5x =时,910119619952y x y y ++=+=++,26y ≤≤,没有符合条件的y ;当6x =时,910119719665y x y y ++=+=++,36y ≤≤,没有符合条件的y ;综上符合条件的是12x y =⎧⎨=⎩、43x y =⎧⎨=⎩当12xy=⎧⎨=⎩时A为5421,当43xy=⎧⎨=⎩时A为6734综上足条件的“多多数”A为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.10、a+b的值为.【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64a+b的值.【详解】解:∵9π≈28.26,∴a=28,∵27<28<64,<<4,∴b,∴a+b∴a+b的值为【点睛】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.。

沪教版数学七年级下册12.4《分数指数幂》教学设计

沪教版数学七年级下册12.4《分数指数幂》教学设计

沪教版数学七年级下册12.4《分数指数幂》教学设计一. 教材分析《分数指数幂》是沪教版数学七年级下册第12.4节的内容,主要介绍了分数指数幂的定义、性质和运算方法。

这一节内容是在学生已经掌握了实数、有理数、无理数等相关知识的基础上进行学习的,是指数幂知识的重要组成部分,也是进一步学习对数等知识的基础。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,但对于分数指数幂这一概念可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于指数幂的运算规则还不够熟悉,需要通过大量的练习来巩固。

三. 教学目标1.理解分数指数幂的概念和性质。

2.掌握分数指数幂的运算方法。

3.能够运用分数指数幂解决实际问题。

四. 教学重难点1.分数指数幂的概念和性质。

2.分数指数幂的运算方法。

3.运用分数指数幂解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析和练习,使学生理解和掌握分数指数幂的定义和运算方法;通过小组合作学习,培养学生的团队合作能力和交流沟通能力。

六. 教学准备1.教学PPT。

2.相关案例和练习题。

3.小组合作学习的任务单。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾实数、有理数、无理数等相关知识,为新课的学习做好铺垫。

2.呈现(10分钟)利用PPT呈现分数指数幂的定义、性质和运算方法,通过实例和动画演示,使学生直观地理解和掌握。

3.操练(10分钟)学生独立完成相关的练习题,教师巡回指导,及时发现和纠正学生的错误。

4.巩固(10分钟)学生分组讨论,总结分数指数幂的运算规律,教师点评并总结。

5.拓展(10分钟)学生运用分数指数幂解决实际问题,如计算化学反应的速率常数等,教师引导学生思考和探索。

6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,巩固所学知识。

7.家庭作业(5分钟)布置相关的练习题,要求学生独立完成,巩固所学知识。

2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专项练习试卷(含答案详解)

2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专项练习试卷(含答案详解)

沪教版(上海)七年级数学第二学期第十二章实数专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算2﹣1+30=( )A .72 B .﹣1 C .1 D .322、点A 在数轴上的位置如图所示,则点A 表示的数可能是( )AB C D3、在实数••133π- ) A .1 B .2 C .3 D .441最接近的是( )A .2B .3C .4D .55、以下正方形的边长是无理数的是( )A .面积为9的正方形B .面积为49的正方形C .面积为8的正方形D .面积为25的正方形6、若关于x 的方程(k 2﹣9)x 2+(k ﹣3)x =k +6是一元一次方程,则k 的值为( )A .9B .﹣3C .﹣3或3D .37、已知a =21()2-,b =-|-12|,c =(-2)3,则a ,b ,c 的大小关系是( ) A .b <a <c B .b <c <a C .c <b <a D .a <c <b8,0.123,π,2271中间依次多1个0)中,无理数有( ).A .2个B .3个C .4个D .5个9、下列四个数中,最小的数是( )A .﹣3BC .0D .﹣π10、下列各数是无理数的是( )A .-3B .23 C .2.121121112 D .4π 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知432=1849,442=1936,452=2025,462=2116,若n 为整数,且n n +1,则n 的值为 _____.2、一列数按某规律排列如下1121231234,,,,,,,,,1213214321,…若第n 个数为56,则n =_____.3、绝对值不大于4且不小于π的整数分别有______.4、已知a ,b 是有理数,且满足()220ab -,那么a =________,b =________.5、已知x 、y 2(2)y -=0,则x y 的算术平方根为______.三、解答题(10小题,每小题5分,共计50分)1、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”m 各个数位上的数字倒序排列可得到一个新的四位数m ',记()540909m m F m '--=. 例如:4512m =,∴2154m '=,则()4512215454045122909F --== (1)判断7643和4631是否为“多多数”?请说明理由;(2)若A 为一个能被13整除的“多多数”,且()0F A ≥,求满足条件的“多多数”A .22=-,求x +17的算术平方根.3、任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,.现对72进行如下操作:72第一次,第二次,第三次,这样对72只需进行3次操作变为1.(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;(2)对实数m 恰进行2次操作后变成1,则m 最小可以取到_______;(3)若正整数m 进行3次操作后变为1,求m 的最大值.4、直接写出结果:(12=____________;(2=____________;(3____________;(4)若x 2=(﹣7)2,则x =____________.5、求下列各数的平方根:(1)121 (2)729(3)(-13)2 (4)3(4)--6、解方程,求x的值.(1)2232x=(2)()381-27x-=7、已知a,b,c,d是有理数,对于任意a bc d,我们规定:a bbc adc d=-.例如:1223142 34=⨯-⨯=.根据上述规定解决下列问题:(1)2332=--_________;(2)若321711xx-=+,求x的值;(3)已知1153xk-=,其中k是小于10的正整数,若x是整数,求k的值.8的小数部分我们不可能全部写出1的小数部分.理由是:对于正无理数,用本身减去其整数部分,差11.参考小燕同学的做法,解答下列问题:(1________;(2)已知7a和b,求a2+2ab+b2的值;(339=x y,其中x是整数,0<y<1,那么25x y+=________(4m为正整数)的整数部分为n,那么m m的小数部分为________(用含m,n 的式子表示).9、解答下列各题:(1)计算:22②2332222(2)(3)()x x x x -+--⋅(2)分解因式:32816x x x -+10、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P ,该数轴上到点P 距离为1的点所对应的数分别记为a ,b (a <b ).定义:若数m =b 3﹣a 3,则称数m 为“复合数”.例如:若“正点”P 所表示的数为3,则a =2,b =4,那么m =43﹣23=56,所以56是“复合数”.(提示:b 3﹣a 3=(b ﹣a )(b 2+ab +a 2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.-参考答案-一、单选题1、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可.【详解】 解:原式=12+1=32. 故选:D .【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.2、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A 表示的数在4至4.5之间,A ,故该选项符合题意;B <4,故该选项不符合题意;C ,故该选项不符合题意;D ,故该选项不符合题意;故选:A .【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.3、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】,,∴无理数只有3 2个. 故选:B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,3π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4、A【分析】先由无理数估算,得到34<接近3,即可得到答案.【详解】解:由题意,∵34<<3,1最接近的是整数2;故选:A .【点睛】3.5、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A 、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B 、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C 、面积为8D 、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C .【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.6、B【分析】含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.【详解】 解: 关于x 的方程(k 2﹣9)x 2+(k ﹣3)x =k +6是一元一次方程,290,30k k ①②由①得:3,k由②得:3,k ≠所以:3,k =-故选B【点睛】本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.7、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a =2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b =12;乘方运算中,负数的奇次幂还是负数,即:c =-8,据此进行数据的比较.【详解】解:由题意得:a =21()2-=22=4,b =12--=12-,c =()3-2=-8, ∴c <b <a .故选:C .【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.8、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3=-是有理数, 0.123是无限循环小数,是有理数,227是分数,是有理数,π1中间依次多1个0)是无理数,共5个, 故选:D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.【详解】解:∵ππ-=,=33-=,3π>>∴30π-<-<,∴最小的数是π-,故选D .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A 、-3是整数,属于有理数.B 、23是分数,属于有理数.C 、2.121121112是有限小数,属于有理数.D 、4π是无限不循环小数,属于无理数.故选:D .【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:π,3π等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.二、填空题1、44【分析】4445,从而可得答案.【详解】解:193620212025<<,4445又∵1n n <+,n 为整数,44n ∴=.故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.2、50【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n 个数为56时n 的值,本题得以解决.【详解】解:1121231234,,,,,,,,,,1213214321∴可写成1121231234,,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴分母为10开头到分母为1的数有10个,分别为12345678910,,,,,,,,,,10987654321 ∴第n 个数为56,则n =1+2+3+4+…+9+5=50,故答案为50.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.3、4【分析】根据绝对值的意义及实数的大小比较可直接进行求解.【详解】解:由绝对值不大于4且不小于π的整数分别有4和4-;故答案为4和4-.【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键.4、-2 -1【分析】利用平方与算术平方根的非负性即可解决.【详解】∵2(2)0ab -≥0≥,且()220ab -=∴20-=ab ,10b +=∴2a =-,1b =-故答案为:-2,-1【点睛】本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.5、4【分析】直接利用算术平方根以及偶次方的性质得出x ,y 的值,进而得出答案.【详解】2(2)0y -=,∴x +4=0,y -2=0,解得:x =-4,y =2,故x y =(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出x ,y 的值是解题关键.三、解答题1、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A 的个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,根据新定义,分别表示出A 、F (A ),根据A 为一个能被13整除的“多多数”,且()0F A ≥,,列出关系式,进而求解.(1)在7643中,7-4=3,6-3=3,∴7643是“多多数”,在4631中,3-3=1,6-1=5,∴4631不是“多多数”,(2)设A 的个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴A 表示的数为1000(3)100(3)1010101013300y x y x y x +++++=++100010010(3)(3)101010133A x y x y x y '=+++++=++∴9099093267A A y x '-=-+∴()54090990932675403909909A A y x F A y x '---+-===-+ ∵()0F A ≥∴30y x -+≥∴3y x ≥-∵个位数字为x ,十位数字为y ,则百位数字为x +3,千位数字为y +3,∴1909039139x y x y ≤≤⎧⎪≤≤⎪⎨≤+≤⎪⎪≤+≤⎩,解得1606x y ≤≤⎧⎨≤≤⎩∴x 、y 的范围为16063x y y x ≤≤⎧⎪≤≤⎨⎪≥-⎩,且x 、y 为整数 ∵若A 为一个能被13整除的“多多数”,∴ 10101013300A y x =++(13779)(13710)1325311y x =⨯++⨯++⨯+13(777253)91011y x y x =+++++当1x =时,910119219813y x y y ++=+=++,06y ≤≤,y 的值可以为0、1、2、3、4、5、6,分别代入9813y ++后结果是13的倍数的是2y =同理,当2x =时,910119319526y x y y ++=+=++,06y ≤≤,没有符合条件的y ;当3x =时,910119419239y x y y ++=+=++,06y ≤≤,没有符合条件的y ;当4x =时,9101195191239y x y y ++=+=++,16y ≤≤,符合条件的3y =;当5x =时,910119619952y x y y ++=+=++,26y ≤≤,没有符合条件的y ;当6x =时,910119719665y x y y ++=+=++,36y ≤≤,没有符合条件的y ;综上符合条件的是12x y =⎧⎨=⎩、43x y =⎧⎨=⎩ 当12x y =⎧⎨=⎩时A 为5421, 当43x y =⎧⎨=⎩时A 为6734 综上足条件的“多多数”A 为5421或6734.【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.2、3【分析】2-,求出x 的值,然后代入x +17求解算术平方根即可.【详解】2=-,∴5x +32=-8,解得:x =-8,∴x +17=-8+17=9,∵9的算术平方根为3,∴x +17的算术平方根为 3,故答案为:3.【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.3、(1)3;1;(2)416m ≤<;(3)m 的最大值为255【详解】解:(1)∵2223910416=<=<=,∴34<<,∴3=,∴对10进行1次操作后变为3;同理可得1415<,∴14=,同理可得34<,∴3=,同理可得12<,∴1=,∴对200进行3次作后变为1,故答案为:3;1;(2)设m 进行第一次操作后的数为x ,∵[]1x =,∴12x ≤<. ∴14.∴116m ≤<.∵要经过两次操作.2.∴4m ≥.∴416m ≤<.故答案为:416m ≤<.(3)设m 经过第一次操作后的数为n ,经过第二次操作后的数为x ,∵[]1x =,∴12x ≤<.∴12.∴14n ≤<.116.∴1256m ≤<.∵要经过3次操作,故16m ≥.∴16256m ≤<.∵m 是整数.∴m 的最大值为255.【点睛】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.4、(1)8;(2)0;(3)2;(4)7±【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可.【详解】解:(1235=+8=,故答案为:8;(25=55=-=,故答案为:0;(38=,2,故答案为:2;(4)∵x2=(﹣7)2,∴x2=49,∴x=±7.故答案为:±7.【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.5、(1)±11; (2)53±;(3)±13;(4)±8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解.【详解】含有乘方运算先求出它的幂,再开平方.(1)因为(±11)2=121,所以121的平方根是±11;(2)725299=,因为2525()39=±, 所以729的平方根是53±; (3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.6、(1)4x =或4x =- ;(2)x =−12【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x −1可做一个整体求出其立方根,进而求出x 的值.【详解】解:(1)2232x =,216x = ,4x =或4x =- ; (2)8(x −1)3=−27,(x −1)3=−278, x −1=−32,x =−12.【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.7、(1)-5(2)11x =-(3)k =1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含k 的式子表示x ,利用k 是小于10的正整数,x 是整数,就可求出k 的值.(1)解:233322532=⨯--⨯-=---; (2)解:()3212131711x x x x -=--+=+ 即:()21317x x --+=21337x x ---=11x -=11x =-(3)解:()113153x x k k-=--=, 即:()315x k --=335x k --=38x k =+83k x += 因为k 是小于10的正整数且x 是整数,所以k =1时,x =3;k =4时,x =4;k =7时,x =5.所以k =1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.8、(13;(2)1;(3(4)1n m【分析】(1)由题意易得34<3,然后问题可求解;(2)由题意易得23<,则有97+710,475<,然后可得7+7972,77437a b ,然后根据完全平方公式可进行求解;(3)由题意易得23<2,然后可得35,92xy ,进而问题可求解;(4)根据题意可直接进行求解.【详解】解:(1)∵34<,3,3;3;(2)∵23,∴97+710,475<,∵7a 和b , ∴7+7972,77437a b ,∴2222272371a ab b a b ;(339=x y 可知339=x y ,∵23<<,2,∵x 是整数,0<y <1, ∴35,92x y ,∴225255x y +=⨯=;(4m 为正整数)的整数部分为n ,∴n∴m m 的小数部分即为1,为1n m ;故答案为1n m .【点睛】 本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.9、(1)①0;(2)()24x x -【分析】(1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;(2)原式提取公因式x ,再利用完全平方公式分解即可.【详解】解:(122-(1=32523⨯+-+=1252++=3 ②2332222(2)(3)()x x x x -+--⋅666=89x x x -+-=0(2)32816x x x -+()2=816x x x -+()2=4x x -【点睛】此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.10、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数a,b,使a3﹣b3=12,故12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴71m nm n+=⎧⎨-=⎩,∴43mn=⎧⎨=⎩,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.。

2022年最新沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含解析)

2022年最新沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含解析)

沪教版(上海)七年级数学第二学期第十二章实数必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1,0.123,π,2271中间依次多1个0)中,无理数有( ).A .2个B .3个C .4个D .5个 2、下列说法正确的是( )AB .绝对值最小的实数不存在C .两个无理数的和不一定是无理数D .有理数与数轴上的点一一对应3、100的算术平方根是( )A .10B .10-C .10±D .104、在实数••133π- ) A .1 B .2 C .3 D .45、下列四个数中,最小的数是( )A .﹣3BC .0D .﹣π6、10的算术平方根是()A.10 B C.D.10 7、下列说法正确的是()A B.2是4的平方根C D3-8)A B CD.39、下列说法中,正确的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.任何数的绝对值都是正数D.和为0的两个数互为相反数10、下列等式正确的是()A4±B4-C D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、925的平方根是________.2a=___.3、如果一个正数的平方根为2a-1和4-a,这个正数为_______.4、比较大小:213-_____. 5、下列各数中:12,227,3π,1--,0.1010010001…(每两个1之间的0依次加1),其中,无理数有_____个. 三、解答题(10小题,每小题5分,共计50分)12021(1)1-2、阅读下列材料:∴34,的整数部分为3,小数部分为3).请你观察上述的规律后试解下面的问题:如果9π的整数部分为a b ,求a b +的值.3、阅读下面材料,并按要求完成相应问题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,)a b 为实数的数叫做复数,其中a 是这个复数的实部,b 是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.例如:(52)(63)(56)(23)11i i i i ++-=++-=-2(52)(63)30151263036(1)363i i i i i i i +⨯-=-+-=--⨯-=-22(5)2510251012410i i i i i -=-+=--=-应用:(1)计算2(12)(32)(4)i i i +-++(2)如果正整数a 、b 满足()()37a bi a bi +-=,求a 、b 的值.(3)将22i i-+化为a bi +(,a b 均为实数)的形式,(即化为分母中不含i 的形式). 4、如果一个四位数m 满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为1m ,十位数字与个位数字之和记为2m ,记F (m )12m m =,若F (m )为整效,则称这个数为“运算数“,例如:∵F (5332)5332⨯==+3,3是整数,∴5332是“运算数”;∵F (1722)177224⨯==+,74不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数s 和t 都是“运算数”,其中s =8910+11x (2≤x ≤8,且x 为整数);t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F (t )=4,规定:k ()2t F s =-,求所有k 的值.5、已知一个正数x 的平方根是a +3和2a -15,求a 和x 的值6、求方程中x 的值(x ﹣1)2 ﹣16 = 07、已知21a -的平方根是3±,39a b +-的立方根是2,c的整数部分,求2a b c ++的算术平方根.8、做一个底面积为24cm 2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm ?92021(1)π+- 10、计算:(1(2).-参考答案-一、单选题1、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3=-是有理数, 0.123是无限循环小数,是有理数,227是分数,是有理数,π1中间依次多1个0)是无理数,共5个, 故选:D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可.【详解】解:A 、不存在最小的正无理数,不符合题意;B 、绝对值最小的实数是0,不符合题意;C 、两个无理数的和不一定是无理数,例如:()0ππ+-=,符合题意;D 、实数与数轴上的点一一对应,不符合题意.故选:C .【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.3、A【分析】根据算术平方根的概念:一个正数x 的平方等于a ,即2x a =,那么这个正数x 就叫做a 的算术平方根,即可解答.【详解】解:∵2(10)100±=,100>,100-<(舍去)∴100的算术平方根是10,故选A .【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.4、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】,,∴无理数只有3π2个.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,3π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.【详解】解:∵ππ-=,=33-=,3π>>∴30π-<-<,∴最小的数是π-,故选D .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.6、B【分析】直接利用算术平方根的求法即可求解.【详解】解:10故选:B .本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.7、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A.A错误;B.22=4,故2是4的平方根,B正确;C是有理数,故C错误;D.,故D错误;故选B.【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.8、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.9、D【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A错误.B.∵数轴上的点也可以表示无理数.∴B错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.D.∵和为0的两个数互为相反数.∴D正确.故选:D.【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.10、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】=,故该选项不正确,不符合题意;4=D.4=±,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x 2=a ,则x 叫做a a 称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x 3=a ,则x 叫做a a 称为被开方数).二、填空题1、±35【分析】直接根据平方根的定义求解即可.【详解】解:92535. 故答案为:±35.【点睛】本题主要考查了平方根,知道一个正数有两个平方根是解决本题的关键.2、256【分析】根据平方根与算术平方根的定义即可求解.【详解】16,∴256a =,故答案为:256.【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果()()20a b b ±=≥,那么a ±就叫做b 的平方根,如果对于两个正数有2a b =,则a 是b 的算术平方根.3、49【分析】根据平方根的定义得到21a -与4a -互为相反数,列出关于a 的方程,求出方程的解得到a 的值,即可确定出这个正数.【详解】根据题意得:2140a a -+-=,解得:3a =-,∴217a -=-,47a -=,则这个正数为49故答案为:49.【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.4、>【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】 解:2211 1.67,33 1.73,33 而1.67 1.73,21 3.3故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.5、2【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有3π,0.1010010001…(每两个1之间的0依次加1),共有2个, 故答案为:2.【点睛】本题考查了无理数,无理数是无限不循环小数,熟练掌握无理数的概念是本题的关键点.三、解答题1【分析】先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.【详解】解:原式3(1)(3)1)=--+-+3131=+-=【点睛】本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.2、a+b的值为【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64a+b的值.【详解】解:∵9π≈28.26,∴a=28,∵27<28<64,<<4,∴b,∴a+b∴a+b的值为【点睛】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.3、(1)22+12i;(2)16ab=⎧⎨=⎩或61ab=⎧⎨=⎩;(3)0.6-0.8i.【分析】(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;(2)利用平方差公式计算得出答案;(3)分子分母同乘以(2-i )后,把分母化为不含i 的数后计算.【详解】(1)2(12)(32)(4)i i i +-++22=3-2+6-4+16+8+i i i i i2=19+12-3i i∵21i =-∴原式()=19+12--3=22+12i i(2)()()a bi a bi +-()22=-a bi 222=-a b i22=+a b∵()()37a bi a bi +-=∴22+=37a b∵a 、b 是正整数∴16a b =⎧⎨=⎩或61a b =⎧⎨=⎩ (3)22i i-+ ()()()22-=22-i i i +224-4+=4-i i i 4-4-1=4+1i 3-4=5i =0.6-0.8i【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.4、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据28x ≤≤找出s ,设100010010(2)t a a b b =++++,其中19,17a b ≤≤≤≤,且,a b 为整数,由()4F t =,找出,a b 的值,代入()2t k F s =-中即可得解. 【详解】(1)99(9981)981F ⨯==+,9是整数,∴9981是“运算数”, 236(2314)145F ⨯==+,65不是整数,∴2314不是“运算数”; (2)891011s x =+,28x ≤≤且x 为整数,s ∴可为:8932,8943,8954,8965,8976,8987,8998, s 是“运算数”,8954s ∴=,89()854F s ⨯==+, t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为a ,个位数上的数字为b ,则千位上的数字为a ,十位上的数字为(2)b +,其中19,17a b ≤≤≤≤且,a b 为整数,100010010(2)t a a b b ∴=++++,()4F t =,2422a b ∴=+,即288a b =+, 当1b =时,4a =,其他情况不满足题意,10004100410314431t ∴=⨯+⨯+⨯+=,()4431738.5282t k F s ∴===--. 【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.5、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴32150a a ++-=,解得4a =,所以2(3)49x a =+=.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.6、5x =或3x =-根据平方根的定义解方程即可,平方根:如果x 2=a ,则x 叫做a a 称为被开方数)【详解】解:(x ﹣1)2 ﹣16 = 01x -=14x ∴-=或14x -=-解得5x =或3x =-【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.7【分析】直接利用平方根以及立方根和估算无理数的大小得出a ,b ,c 的值进而得出答案.【详解】解:∵2a -1的平方根是±3,∴2a -1=9,解得:a =5,∵3a +b -9的立方根是2,∴15+b -9=8,解得:b =2,5,c∴a+2b+c=5+4+4=13,∴a+2b+c【点睛】此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.8、这个长方体的长、宽、高分别为、【分析】根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.【详解】解:设这个长方体的长、宽、高分别为4x、2x、x.根据题意得:4x•2x=24,解得:x x.则4x=2x=所以这个长方体的长、宽、高分别为、.【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.9、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】20212(1)π+--=3﹣(π﹣+(﹣1)﹣=3﹣π+1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.10、(1)23;(2)【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(11213=-- 23=(2)===【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 实数的复习
教学目标:
1、梳理知识,形成知识结构框图,理清内容主线和知识脉络;
2、熟练掌握n 次方根的概念和性质,方根与分数指数幂的相互转化,体会转化思想;
3、正确运用运算法则、运算性质以及方根运算中的重要性质进行实数的有关运算. 教学重点:实数的有关概念、性质之间的联系. 教学难点:分数指数幂的运算. 教学过程:
教师活动
学生活动 设计意图 一、知识梳理
1、经过第十二章实数的学习,我们把数的范围从有理数扩大到了实数,今天我们就一起来回顾、复习本章的内容.
2、知识结构框图:
二、实数的分类 1. 已知下列实数:
,1020.5,2
3
,0,1.2,25,,722,14.3,32⨯-•π
1010010001.1(每两个1之间依次多一个0).
【注意】带根号的数不一定都是无理数;分数都是 有理数;分数形式的数不一定都是分数. (1)按要求填空:
无理数有______________________________, 有理数有______________________________, 整数有________________________________.
师生共同回忆.
无理数有:
2
3
,
,3π 1010010001.1
有理数有:
2
1020.5,0,1.2,
25,722
,14.3⨯-•
整数有:
21020.5,0,25⨯-
深入理解本章涉及的有关概念、性质.
复习实数的概念、能正确进行实数的分类.。

相关文档
最新文档