太阳能逆变器开发思路和方案

太阳能逆变器开发思路和方案
太阳能逆变器开发思路和方案

太阳能逆变器开发思路和方案

内容摘要:摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。

摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。

关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高.最有发展前途的技术之一。但是光伏发电系统存在着初期投资大.成本较高等缺点,因而探索高性能.低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减

少光伏发电系统自身损耗.提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。

因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素,研究其结构与控制方法对于提高系统发电效率.降低成本具有极其重要的意义 [5] 。

本文从电网.光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。

1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列.逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。

1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量. 防止孤岛效应和安全隔离接地3 个要求。

为了避免光伏并网发电系统对公共电网的污染,逆变器应输出失真度小的正弦波。影响波形失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速 DSP 等新型处理器,可明显提高并网逆变器的开关频率性能,它已成为实际系统广泛采用的技术之一;同时,逆变器主功率元件的选择也至关重要。小

容量低压系统较多地使用功率场效应管 (MOSFET),它具有较低的通态压降和较高的开关频率;但 MOsFET 随着电压升高其通态电阻增大,因而在高压大容量系统中一般采用绝缘栅双极晶体管(IGBT);而在特大容量系统中,一般采用可关断晶闸管 (GTO)作为功率元件[6] 。

依据 IEEE2000-929 [7] 和 UL1741[8] 标准,所有并网逆变器必须具有防孤岛效应的功能。孤岛效应是指当电网因电气故障.误操作或自然因素等原因中断供电时,光伏并网发电系统未能及时检测出停电状态并切离电网,使光伏并网发电系统与周围的负载形成一个电力公司无法掌握的自给供电孤岛 [g] 。防孤岛效应的关键是对电网断电的检测。

为了保证电网和逆变器安全可靠运行,逆变器与电网的有效隔离及逆变器接地技术也分重要。

电气隔离一般采用变压器。在三相输出光伏发电系统中,其接地方式可参照国际电工委员会规定的非接地 (I T)方式和变压器中性线直接接地。而用电设备的外壳通过保护线 (PE)与接地点金属性连接 (T-N)。

1 .

2 光伏阵列对逆变器的要求由于日照强度和环境温度都会影响光伏阵列的功率输出,因此必须通过逆变器的调节使光伏阵列输出电压趋近于最大功率点输出电压,以保证光伏阵列在最大功率点运行而获得最大能源。常用的最大功率点跟踪 (MPPT)方法有:定电压跟踪法.“上山”法.干扰观察法及增量电导法。

1 .3 用户对逆变器的要求从光伏发电系统的用户来说,成本低.效率与可靠性高.使用寿命长是其对逆变器的要求。因此,对逆变器的要求通常是:①具有合理的电路结构,严格筛选的元器件;具备输入直流极性反接.交流输出短路.过热过载等各种保护功能。

② 具有较宽的直流输入电压适应范围。由于光伏阵列的端电压随负载和日照强度而变化,因此逆变器必须能在较宽的直流输入电压范围内正常工作,且保证交流输出电压的稳定。

③尽量减少中间环节 ( 如蓄电池等 )的使用,以节约成本.提高效率。

2 逆变器结构的发展为了能够设计出尽量满足上述各项要求的并网逆变器,大多数研究人员一直集中于逆变器拓扑结构和控制方法2 方面的研究。

它采用单级无变压器.电压型全桥逆变结构。其特点是结构简单.造价低.鲁棒性强;但受限于当时开关器件水平,使系统的输出功率因数只有 0 .6 ~ 0 .7 ,且输出电流谐波大引。随着电子开关器件的发展,高频 ( 频率 >16 kHz)双极晶体管,MOSFET 或 IGBT 等逐渐取代了并网换相晶闸管。由于采用 PWM 全桥逆变电路和高频开关电子器件,能够很好地控制输出谐波;但16 kHz ~2O kHz 开关频率使得开关损耗增大,效率降低。

单级逆变系统直接将直流转换为交流,它的主要缺点是:① 需要较高的直流输入,使得成本提高,可靠性降低;

② 对于最大功率点的跟踪没有独立的控制操作,使得系统整体输出功率降低;

③结构不够灵活,无法扩展,不能满足光伏阵列直流输入的多变性。因此,在直流输入较低时,考虑采用交流变压器升压,以得到标准交流电压与频率,同时可使得输入输出之间电气隔离。

为带工频变压器结构的光伏逆变系统。其最大优点是逆变器在低压侧,因此逆变桥可以采用高频低压器件MOSFET ,节省了初期投资;而且逆变器的控制在低压侧实现,使得控制更易实现。此结构还适用于大电流光伏模块。

工频升压变压器体积大,效率低,价格也很昂贵,随着电力电子技术和微电子技术的进一步发展,采用高频升压变换能实现更高功率密度逆变。升压变压器采用高频磁芯材料,工作频率均在20 kHz 以上。其体积小.重量轻,高频逆变后经过高频变压器变成高频交流电,又经高频整流滤波电路得到高压直流电 ( 通常在300 V 以上 ),再由工频逆变电路实现逆变。

多转换级带高频变压器的逆变结构相比带工频变压器的逆变结构,功率密度大大提高,逆变器空载损耗也相应降低,从而效率得到提高,但也导致了逆变器的电路结构复杂,可靠性降低。

光伏逆变器由单级到多级的发展,使电能转换级数增加,能够便于满足最大功率点跟踪和直流电压输入范围的要求;但是单

级逆变器结构紧凑,元器件少,损耗更低,逆变器转换效率更高,更易控制。

因此,在结合两者优点的前提下,尽可能提高直流输入电压,就能提高逆变器的转换效率。早期采用了集中式技术提高输入电压,如图4(

a)所示。将光伏模块串/并联连接,产生直流高电压和电流,以增加转换效率。该结构方式不够灵活,会产生许多电能质量问题。现阶段的光伏并网逆变器大多采用串级型,其结构如图4(b)所示。把光伏模块串联输入,同时尽量采用模块化设计,减少中间环节,导致如图4(c)所示结构。该设计更灵活,适应性更强,可即插即用。图4(d)所示为多串级逆变器结构,它融合了串级的设计灵活.高能量输出与集中型低成本的优点,是今后光伏并网逆变结构的一种发展趋势。

最近,一些新型的逆变器拓扑结构和连接概念被提出来,如主从连接概念.队连接概念等。其研究不再仅仅局限于单个逆变器效率的提高,而是多个逆变器连接的效率即整个系统效率的提高。

3 逆变器的控制策略光伏逆变器实现并网运行必须满足:其输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相( 功率因数为1),而且其输出还应满足电网的电能质量要求。这些都依赖于逆变器的有效控制策略。光伏并网逆变器的控

制一般分为2 个环节:第1 个环节得到系统功率点,即光伏阵列工作点;第2 个环节完成光伏逆变系统对电网的跟踪。

同时,为保证光伏逆变器安全有效地直接工作于并网状态,系统必须具备一定的保护功能和防孤岛效应的检测与控制功能。

3 .1 光伏阵列工作点跟踪控制光伏阵列工作点的控制主要有恒电压控制 (CVT)和 MPPT 这2 种方式。C VT 是通过将光伏阵列端电压稳定于某个值的方法,确定系统功率点。其优点是控制简单,系统稳定性好。但当温度变化较大时, CVT 方式下的光伏阵列工作点将偏离最大功率点 r1 。M PPT 是当前较广泛采用的光伏阵列功率点控制策略。它通过实时改变系统的工作状态,跟踪阵列的最大工作点,从而实现系统的最大功率输出 r1 。它是一种自主寻优方式,动态性能较好,但稳定性不如 CVT 。其常用方法有“上山”法.干扰观察法.电导增量法等,具体实现见文献。

现在对 MPPT 的研究集中在简单.高稳定性的控制算法实现上,如最优梯度法 r1 .模糊逻辑控制法等.神经元网络控制法一等,也都取得了较显著的跟踪控制效果。

3 .2 逆变器跟踪电网控制对电网的跟踪控制是整个逆变系统控制的核心,直接关系到系统的输出电能质量和运行效率。

由于光伏并网逆变器是基于 PWM 逆变实现的,所以其控制属于逆变器 PWM 电流控制方式 r1 引。

较早出现的 PWM 非线性控制方法有瞬时比较方式和三角波比较方式 r1 引。

所示的瞬时比较方式,电流误差的补偿和 PWM 信号的产生同时在同一控制单元完成,并且构成了闭环反馈,使得控制器实现简单,具有良好的动态响应和内在的电流保护功能。但是它具有控制延时.开关频率不固定.无法产生零电压矢量等不足,因此输出电流波动.谐波畸变率都很大。为避免器件开关频率过高,可采用滞环宽度根据输出电流而自动调节的滞环比较器;或采用定时控制的瞬时值比较方式,但此方法的补偿电流误差不固定 l2 引。

三角波比较方式的原理,放大器 A 常采用比例或比例积分放大器。与瞬时值比较方式相比,该方法的优点是输出电压中所含谐波较少 ( 含有与三角波相同频率的谐波 ),器件的开关频率固定 ( 等于三角波的频率 );但该方法硬件较为复杂,跟随误差较大,放大器的增益有限,电流响应比瞬时值比较方式的慢。

目前更好的闭环电流控制方法是基于载波周期的一些控制方法,例如无差拍 PWM 技术。它是将目标误差在下一个控制周期内消除,实现稳态无静差效果。此方法计算量较大,但其开关频率固定.动态响应快,适宜于光伏并阿的数字控制实现引。

随着微处理器技术,尤其是数字信号处理器的发展,现代控制理论中许多先进算法也被应用到光伏逆变系统的控制中,如人工神经网络.自适应.滑模变结构.模糊控制等,它们在各自领域解

决了某些控制问题,但同样具有各种相应的局限性。例如:人工神经网络控制的精度依赖于模型训练样本;自适应控制要求在线辨识对象模型,算法复杂.计算量大;滑模变结构控制存在系统抖振问题;模糊控制依赖于隶属函数的选取,控制精度有待提高等。

三相并网系统中,较多地采用将交流变量转换为直流变量,将三相变换为两相的控制策略,并提出在 d-q 同步参考坐标系下基于空间矢量 PWM(SVPWM)的线性电流控制器 [z ] 。S VPwM 控制在解耦的 d 轴和 q 轴形成电流控制环,具有固定的开关频率,很好地输出谐波频谱,优化了开关控制方案和直流电压利用率。但它输出的电流质量一般,并且不具备内在的过电流保护能力。

近几年,光伏并网系统的综合控制成为其研究发展的新趋势。文献 [33-] 研究了基于瞬时无功理论的无功与谐波电流补偿控制,使得光伏并网系统既可以向电网提供有功功率,又可实现电网无功和谐波电流补偿。这对逆变器跟踪电网控制的实时性.动态特性要求更高。研究适合于这类逆变器的控制方法对电网电能质量的提高具有重大意义。

3 .3 逆变器对于孤岛效应的检测及控制逆变器直接并网时,除了应具有基本的保护功能外,还应具备防孤岛效应的特殊功能。从用电安全与电能质量考虑,孤岛效应是不允许出现的;

孤岛发生时必须快速.准确地切除并网逆变器,由此引出了对于孤岛效应进行检测控制的研究。

孤岛效应的检测一般分成被动式与主动式。被动式检测是利用电网监测状态 ( 如电压.频率.相位等 )作为判断电网是否故障的依据 [9] 。如果电网中负载正好与逆变器输出匹配,被动法将无法检测到孤岛的发生。主动检测法则是通过电力逆变器定时产生干扰信号,以观察电网是否受到影响作为判断依据 [9] ,如脉冲电流注入法 .输出功率变化检测法.主动频率偏移法和滑模频率偏移法。

等。

它们在实际并网逆变器中都有所应用,但也存在着各自的不足。当电压幅值和频率变化范围小于某一值时,频率偏移法无法检测到孤岛效应,即存在“检测盲区。输出功率变化检测法虽不存在“检测盲区”,然而光伏并网系统受到光照强度等影响,其光伏输出功率随时在波动,对逆变器加入有功功率扰动,将会降低光伏阵列和逆变系统的效率。为了解决这个问题,光伏并网的有功和无功综合控制方法经常被提出来。

随着光伏并网发电系统进一步的广泛应用,当多个逆变器同时并网时,不同逆变器输出的变化非常大,从而导致上述方法可能失效。因此,研究多逆变器的并网通信.协同控制已成为其孤岛效应检测与控制的研究趋势引。

4 结语无论是从社会经济发展,还是从环境的角度来考虑,光伏发电技术的研究均具有重大现实意义,而且近年来已得到了飞速发展。本文从提高光伏发电系统效率的角度,针对其主要部件逆变器的相关研究发展进行了论述。根据电网.光伏阵列和用户对于逆变器的不同要求,从并网逆变器的拓扑结构与控制方法2 方面对其研究现状.待解决的技术问题进行了分析。由目前来看,高集成度的模块化设计.减少中间转换环节.采用即插即用的形式是逆变器结构的发展方向;而研究适合于非线性.强耦合.多变量及分布式的综合控制策略是光伏发电系统中并网逆变器控制方法的研究重点。

2014年光伏逆变器行业分析报告

2014年光伏逆变器行业分析报告 2014年7月

目录 一、全球逆变器行业集中度提高,技术创新不断 (3) 1、亚洲厂商市场占有率上升 (3) 2、全球市场并购重组不断 (6) 3、高电压、智能化是两大技术趋势 (7) 4、新能源与互联网跨界,物联网终端不是梦想 (9) 二、中国:中国国情决定集中型未来两年的优势地位 (10) 1、中国政策影响下游市场的类型偏好 (12) 2、价格竞争的结果是毛利率下降和集中度提高 (14) 3、集装箱解决方案在近两年被广泛使用在地面电站 (15) 三、海外:技术趋势多元化,多种机型长期共存 (16) 1、日本:两雄进入全球前五两席 (17) 2、北美:微型逆变器累加出货量超过1GW (20) 3、欧洲:英国市场是欧洲未来两年的重点 (21) 3、印度:欧美逆变器厂商是主要参与者 (23) 四、集中型逆变器未来两年仍处在增量市场 (24) 1、阳光电源:领跑国内,扩张海外 (24) 2、华为:以技术创新推动产业发展 (26) 3、易事特:UPS市场稳定,光伏继续发力 (27) 4、科士达:充电桩是新亮点 (28)

一、全球逆变器行业集中度提高,技术创新不断 1、亚洲厂商市场占有率上升 2013 年全球前十大逆变器厂商中有四个来自中国和日本市场。根据光伏行业咨询公司IHS 的报告,来自日本的Omron、TMEIC、Tabuchi 和来自中国的阳光电源都在全球前十大逆变器厂商的名单上。其他上榜的厂商包括来自欧洲的SMA、ABB、Schneider Electric、Kaco,和来自美国的Advanced Energy、Enphase Energy。全球前十大逆变器厂商的销售收入总和达到了37 亿美金,占据全球逆变器市场58%的市场份额。来自中国和日本的逆变器厂商的上榜,是亚洲厂商的市场占有率上升的缩影。 快速成长的亚太光伏市场和日益萎缩的欧洲市场,极大地改变了全球逆变器市场的既有格局。值得一提的是,中国市场和日本市场上都几乎没有外国逆变器品牌的身影,中日市场对本土品牌的偏爱程度很高。

太阳能逆变器开发思路和方案

内容摘要:摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研 究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言 由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高、最有发展前途的技术之一 。但是光伏发电系统存在着初期投资大、成本较高等缺点,因而探索高性能、低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减少光伏发电系统自身损耗、提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素, 研究其结构与控制方法对于提高系统发电效率、降低成本具有极其重要的意义[5] 。 本文从电网、光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟 待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列、逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量、防止孤岛效应和安全隔离接地3 个要求。为了避免光伏并网发电系统对公共电网的污染, 失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速DSP等新型处理 器,可明显提高并网逆变器的开关频率性能,它已成 逆变器应输出失真度小的正弦波。影响波形 为实际系统广泛采用的技术之一;同时, 逆变器主功率元件的选择也至关重要。小容量低压系统较多地使用功率场效应管(MOSFET),它具有较低的通态压降和较高的开关频率;但MOsFET随着电压升高其通态 电阻增大,因而在高压大容量系统中一般采用绝缘栅双极晶体管(IGBT);而在特大容量系 统中,一般采用可关断晶闸管(GTO)作为功率元件[6]。 依据IEEE 2000-929 [7]和UL1741[8]标准,所有并网逆变器必须具有防孤岛效应的功能。孤岛效应是指当电网因电气故障、误操作或自然因素等原因中断供电时,光伏并网发电系统 未能及时检测出停电状态并切离电网,使光伏并网发电系统与周围

2013年太阳能光伏行业分析报告

2013年太阳能光伏行业分析报告 2013年9月

目录 一、90%的市场面临禁入威胁 (3) 1、产业链“两头在外”,对外依存度畸高 (3) 2、欧美对我国光伏产品“双反”,行业遭遇极度深寒 (4) 3、全产业链产品价格大幅下降,行业陷入整体性亏损 (5) 二、国内市场能否力挽狂澜 (7) 1、全球需求增速下降,产能严重过剩 (7) 2、国内市场燃起我国光伏行业的新希望 (9) (1)对欧美韩多晶硅“双反”,长痛还是短痛 (11) (2)电池片和组件去产能任务艰巨 (14) (3)电站开发成为产业链上利润最丰厚的环节 (16) 三、凤凰涅槃,光伏依然是最具发展潜力的可再生能源 (19) 1、2013全球新增装机总量稳定增长,市场主体切换 (19) 2、浴火重生,重新踏上快速发展的道路 (20) 四、洗牌进行时,谁将是新的行业领袖 (21) 1、抓住应用就是抓住需求 (22) 2、技术进步具备最大的降本空间,得技术者得天下 (24) 五、重点上市公司 (27) 1、中环股份 (27) (1)受益半导体基因,占领光伏单晶硅技术制高点 (27) (2)合作SunPower,打造世界最大光伏电站工程 (28) 2、阳光电源 (30) (1)国内光伏逆变器标杆企业 (30) (2)牵手三峡新能源,延伸产业链,提升综合竞争力 (30) (3)国内光伏市场启动,公司业绩弹性大 (31)

一、90%的市场面临禁入威胁 1、产业链“两头在外”,对外依存度畸高 我国光伏产业虽然经历了“超越任何产业的爆发式增长”,占据全球一半的产能,但却一直处于两头在外的不平衡状态,硅材料绝大部分是由国外进口,光伏产品90%是出口国外,欧洲目前是我国光伏产品最重要的产品销售区域。国内集中着大量电池片、组件加工制造企业,处于微笑曲线的底部区域,赚取微薄的加工收入。 我国光伏产品90%出口国外,其中欧洲和美国是出口的主要市场。2011年中国向欧洲出口光伏组件11.4GW,占中国光伏组件出口量的74.7%,向美洲(美国占90%以上份额)出口2.1GW,占组件出口量的13.9%。

太阳能光伏并网逆变器电路设计

太阳能光伏并网逆变器电路设计 1、引言 太阳能的大规模应用将是21世纪人类社会进步的重要标志,而光伏并网发电系统是光伏系统的发展趋势。光伏并网发电系统的最大优点是不用蓄电池储能,因而节省了投资,系统简化且易于维护。这类光伏并网发电系统主要用于调峰光伏电站和屋顶光伏系统。目前,美、日、欧盟等发达国家都推出了相应的屋顶光伏计划,日本提出到2010年要累计安装总容量达50、000MW的家用光伏发电站。作为屋顶光伏系统的核心,并网逆变器的开发越来越受到产业界的关注[1]。 2、光伏并网系统设计 2.1、系统结构 光伏并网逆变器的结构如图1所示。光伏并网逆变器主要由二部分组成:前级DC-DC变换器和后级DC-AC逆变器。这2部分通过DClink相连接,DClink的电压为400V。在本系统中,太阳能电池板输出的额定直流电压为100V~170V。DC—DC变换器采用boost结构,DC—AC部分采用全桥逆变器,控制电路的核心是TMS320F240型DSP。其中DC-DC变换器完成最大功率跟踪控制)MPPT)功能,DC-AC逆变器维持DClink 中间电压稳定并将电能转换成220V/50Hz的正弦交流电。系统保证并网逆变器输出的正弦电流与电网的相电压同频和同相。 2.2、控制电路设计 2.2.1、TMS320F240控制板 TMS320F240控制板如图2所示,以TI公司的TMS320F240型DSP为核心,外围辅以模拟信号调理电路、CPLD、数码管及DA显示、通信及串行E2PROM,完成电压和电流信号的采样、PWM脉冲的产生、与上位机的通信和故障保护等功能。 2.2.2、电压和电流信号检测电路 模拟信号检测电路的功能是把强电信号转换为DSP可以读取的弱电数字信号,同时要保证强电和弱电的隔离。笔者选用惠普公司的HCPL7800A型光电耦合器,其非线性度为0.004%,共模电压为l、000V时的共模抑制能力为15kV/lμs,增益温漂为0.000、25V/℃,带宽为100kHz。具体隔离检测电路如图3所示。 2.2.3、IGBT驱动电路 DSP控制电路产生的PWM信号先通过驱动电路,然后控制IGBT开关管的开通状态。笔者选用惠普公司的HCPL3120型专用IGBT驱动电路,如图4所示。驱动电路的输入和输出是相互隔离的,驱动电路还有电平转换功能,将DSP的+5V控制电压转换为+15V的IGBT驱动电压,驱动电路电源采用金升阳公司的B0515型隔离电源模块。

光伏逆变器行业调研分析报告

光伏逆变器行业调研分析报告 摘要—— 该光伏逆变器行业调研报告仅针对xx区域分析,时间2016-2017年度。 目前,区域内拥有各类光伏逆变器企业794家,从业人员39700人。截至2017年底,区域内光伏逆变器产值184937.75万元,较2016年160550.18万元增长15.19%。产值前十位企业合计收入77866.50万元,较去年65007.93万元同比增长19.78%。 ...... 经过长期追赶的沉淀和积累,当今我国在相当一些领域与世界前沿科技的差距都处于历史最小时期,已经有能力并行跟进这一轮科技革命和产业变革,加速实现制造业转型升级和创新发展。《中国制造2025》始终贯穿一个主题,就是加快新一代信息通信技术与制造业的深度融合。与发达国家在工业3.0基础上迈向4.0不同,我国制造业还有相当一部分停留在3.0甚至2.0,只有部分领先行业可比肩4.0。实施《中国制造2025》,必须处理好2.0普及、3.0补课和4.0赶超的关系,强化工业基础能力,提高综合集成水平,以推广智能制造为切入点,培育新型生产方式,推动制造业数字化网络化智能化。

第一章宏观环境分析 一、宏观经济分析 1、制造业是振兴实体经济的主战场。新一轮科技革命和产业变革浪潮之下,数字经济、共享经济、产业协作正在重塑传统实体经济形态,全球制造业都处于转换发展理念、调整失衡结构、重构竞争优势的关键节点,我国制造业提质升级的任务十分紧迫。综合来看,我国的高铁、核电、信息通信等领域已经具备了全球竞争力,但其他多数领域在技术创新、质量品牌、环境友好等方面落后于发达国家,离制造强国的建设目标还有很大差距。我们务必彻底摒弃旧的思维观念和方式方法,着眼解决深层次矛盾和问题,深化供给侧结构性改革,淘汰落后产能,加快创新驱动,优化升级传统产业,培育壮大战略性新兴产业,发展更多适应市场需求的新技术、新业态、新模式,促进“中国制造”上升为“中国高端制造”。 2、2018年是贯彻党的十九大精神的开局之年,是实施“十三五”规划承上启下的关键一年。同时2018年也是改革开放40周年。我国经济发展取得历史性成就、发生历史性变革。要审视复杂局势,科学判断,正确决策,把握战略窗口期。在此背景下,要继续加快推进制造强国、网络强国建设,深入实施推进中国制造建设,解决深层次矛

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

光伏并网逆变器分类

光伏并网逆变器分类 并网逆变器是太阳能光伏系统中的关键部件,它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。其性能,效率直接影响整个太阳能光伏系统的效率和性能。下面将从并网逆变器的分类来进行了解。 1、按照隔离方式分类 包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式。光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷。近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。 2、按照输出相数分类 可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。按照功率等级进行分类,可分为功率小于1kVA的小功率并网逆变器,功率等级1kVA~50kVA的中等功率并网逆变器和50kVA以上的大功率并网逆变器。 3、按照功率流向进行分类 分为单方向功率流和双方向功率流并网逆变器两类,单向功率流并网逆变器仅用作并网发电,双向功率流并网逆变器除可用作并网发电外,还能用作整流器,改善电网电压质量和负载功率因素。近几年双向功率流并网逆变器开始获得关注,是未来的发展方向之一。 4、按照拓扑结构分类 目前采用的拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。 从技术层面讲,大功率并网逆变器和小功率并网逆变器是未来的两个主要发展方向,其中小功率光伏并网逆变器——微逆变器是最具发展潜力和市场应用前景的发展方向,高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。

单相逆变器并网工作原理分析与仿真设计

第2章 基于定频积分的逆变器并网控制 2.1 引言 本章探索了一种基于定频积分控制的可选择独立工作和并网运行两种工作模式的光伏逆变器控制方案,对其工作原理以及并网电流纹波影响因素进行了理论分析,推导了控制方程,并给出了计算机仿真分析结果。 2.2 逆变器并网控制系统总体方案设计 如本文第一章所述,并网型逆变器主要应用在可再生新能源并网发电技术中,因此,对逆变器并网控制方案的研究也必须结合新能源发电的特点,达到最大限度的利用可再生资源。作者设计了一种既可以控制逆变器工作在并网送电状态,又可以控制逆变器工作在独立带载状态的逆变器并网控制系统。逆变器的具体工作模式由工作场合和用户需求决定,系统具有多功能。 本系统采用以定频积分为核心的控制方案。逆变器并网工作时采用基于定频积分的电流控制方案;独立工作时,在并网电流控制方案的基础上加入电压PI 外环,实现输出电压控制。定频积分控制不仅将并网输出电流控制和独立输出电压控制有机地融合在一起,而且使系统在两种工作模式下都具有良好的性能。 2.3 定频积分控制的一般理论 所谓定频积分控制是指保持电路工作的开关频率S f 不变,而通过积分器和 D 触发器来控制开关器件在每个周期的导通时间on T 和关断时间off T 。图2-1所示为定频积分控制的一般原理图。 定频积分控制是基于单周期控制的一种控制方法[43~45]。单周期控制是一种非线性控制技术, 该控制方法的突出特点是:无论是稳态还是暂态,它都能保持受控量(通常为斩波波形)的平均值恰好等于或正比于给定值,即能在一个开关周期,有效的抵制电源侧的扰动,既没有稳态误差,也没有暂态误差,这种控制技术可广泛应用于非线性系统的场合,比如脉宽调制、谐振、软开关式的变换器等。下面具体从理论上分析基于单周控制的定频积分控制的一般原理和特点。

太阳能光伏并网逆变器设计原文及翻译

Grid-Connected Solar Micro inverter Reference Design Abstract-In traditional grid-connected PV system, it’s hard to remove failure of individual PV panels. This paper presents a Solar PV Grid-Connected Micro-inverter which can be embedded in a single stand-alone photovoltaic panel to solve the problem of single point of failure. For a single photovoltaic panel, rated power of the Micro-inverter is 220W, using the topology of interleaved flyback converter. Keywords-Micro-inverter; interleaved flyback converter; grid-connected; PV panel I. INTRODUCTION With the draining of fossil fuel and increasingly serious pollution caused by traditional power generation methods across the world, renewable and pollution-free energy has gained much attention in economic and political fields. Renewable energy includes photovoltaic (PV) and wind power generation systems. Wide application of renewable energy is now impeded by cost and extensive researches shall be conducted in order to improve cost effectiveness. PV system, also known as solar converter, has gained popularity in recent years as a convenient renewable energy with good prospects. High production cost and low conversion efficiency of silicon solar panel are major defects of PV energy. Cost effectiveness of PV projects will become more reasonable with the application of new PV panel production technology and the

太阳能逆变器工作原理

太阳能光伏并网控制逆变器工作原理及控制方法 710019 21 世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1 可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到 太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富 210 目前的太阳能利用率还不到 1/1000。因此在我国大力开发太阳能潜力巨大。 器在我国应用广泛。起源于 100 多年前的“光生伏打现象”。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型 以 预计到 2013 年 安装成本可降至 1.5 美元/Wp 6 美分/(kWh) 并网已经成为可能。并网型光伏系统逐步成为主流。本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构图 1 所示为并网型光伏系统的结构。并网型光伏系 太阳能电池组件。将太阳传送到地 负责将电池板输出直流电能转为电网可接受的交流能量。根

图 1 并网型光伏发电系统太阳 变器主要负责将控制器输出的直流电能变换成稳压稳频的交流电能监控保护单元主要负责发电系统安全相关问题如孤岛效 并及时与上位机通讯传递能量传输信息。 3 太阳能控制器及其原理 3.1 太阳能电池组件模型图 2 所示硅型光伏电池板 Iph Iph值与光伏电池的面积、入射光的辐射度以及环境温度相关。ID为暗电流。没有太阳光 PN 结流过的单向电流。v RS为串联电阻一般小于 1 欧RSH为旁路电阻为几十千欧。光伏电池的理想模型可由下式表 tsviRvDviRveIIits+???=+) 1(ph 1vt为电池板热电势。 RSHRSIDRLIphv 图 2 光伏电池的等效电路图图 3 表述在特定光照条件下电池板的伏安特性。阴影部分是电池板在相应 压源与电流源的交汇处便是电池板在相应条件下的最大输出功率。 这个极大功率值会随着光照强 输出功率极大的条件。 v最大功率输出点ImUm端口电压 V口电流 A图 3 硅电池伏安特性 3.2 太阳能控制器电路拓扑图 4 S 调节电池板 实现对电池板的最大功率跟踪功能。图 4 控制电路结构 3.3 最大功率跟踪方法最大功率跟踪技术有两种技术路 CVT MTTP 最大功率跟 MPPT 的 MTTP 方法有两种。A P&O干扰观测法 如果采用 DC/DC 变换器实现 MPPT

光伏行业分析报告

光伏行业分析报告 随着全球能源短缺和环境污染问题日益突出,太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业。近年来全球光伏产业迅猛发展,产业规模不断扩大,产品成本持续下降。2011年全球太阳能电池产量为37.2GW,是2004年(1.2GW)的31倍,组件价格由2000年的4.5美元/瓦下降到2010年的1.7美元/瓦;2011年多晶硅产量为24万吨,是2004年(2.5万吨)的9.6倍,价格由2008年最高点475美元/公斤下降到2011年底的25美元/公斤。与此同时,受益于国内相关产业政策的出台和各项技术的突破,我国光伏行业得到迅速发展,已成为国内为数不多的、可以同步参与国际竞争、并有望达到国际领先水平的行业。 一、我国光伏产业概况及发展现状 (一)产业概况 1.产业规模迅速提高,市场占有率稳居世界前列 2006-2010年,我国太阳能电池产量以超过100%的年均增长率快速发展。2007-2010年连续四年产量世界第一,2010年太阳能电池产量约为10GW,占全球总产量的50%。我国太阳能电池产品90%以上出口,2010年出口额达到202亿美元。 2.掌握关键材料生产技术,产业基础逐步牢固 “十一五”期间,我国投产的多晶硅年产量从两三百吨发展至4.5万吨,光伏产业原材料自给率由几乎为零提高至50%左右,已形成数百亿元级的产值规模。国内多晶硅骨干企业已掌握改良西门子法千吨级规模化生产关键技术,规模化生产的稳定性逐步提升。 3.主流产品技术与世界同步,产品质量稳步提高 目前我国晶硅电池占太阳能电池总产量的95%以上。太阳能电池产品质量逐年提升,尤其是在转换效率方面,骨干企业产品性能增长较快,单晶硅太阳能电池转换效率达到17-19%,多晶硅太阳能电池转换效率为15-17%,薄膜等新型电池转换效率约为6-8%。

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

光伏并网逆变器选型细则

并网逆变器选型细则 并网逆变器是将太阳能直流电转换为可接入交流市电的设备,是太阳能光伏发电站不可缺少的重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍和分析。 1.并网逆变器在光伏电站中的作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。 1.1 并网光伏电站的基本结构 1.2 并网逆变器功作用和功能 并网逆变器是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它是光伏并网发电系统中不可缺少的关键部分。并网逆变器的主要功能是: ◆最大功率跟踪 ◆DC-AC转换 ◆频率、相位追踪 ◆相关保护 2.并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型和无变压器型逆变器,其中变压器型又分为高频变压器型和低频变压器型。变压器型和无变压器型逆变器的

主要区别在于安全性和效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。 ◆低频变压器型 采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。 ◆无变压器型 采用DC-AC的电路结构,无电气隔离,电压范围较窄,但是损耗小、效率高。 3.并网逆变器主要技术指标 a. 使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。 b. 直流输入最大电流 c. 直流输入最大电压 d. 直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。 e. 直流输入最大功率

2020年逆变器行业分析报告

2020年逆变器行业分 析报告 2020年9月

目录 一、逆变器:价差缩小+MPPT赋能,组串式性价比凸显 (6) 1、逆变器简介 (6) (1)逆变器:将光伏直流电转换为交流的工具 (6) (2)逆变器分类:集中、组串、微型逆变器 (7) (3)逆变器赛道好,轻资产高ROE高周转 (8) (4)盈利能力:组串式>集中式 (8) (5)逆变器工作原理 (9) 2、价差缩小+MPPT赋能,组串式性价比凸显 (10) (1)组串式和集中式核心差异:MPPT (10) (2)组串式和集中式核心差异:运维方便性 (14) (3)组串式和集中式核心差异:组串式品类多,技术迭代快 (14) 3、渗透电站+分布式比例提升,组串崛起 (15) (1)组串式逆变器是最适合分布式光伏应用的逆变器 (15) (2)渗透电站+分布式光伏比例提升双因素驱动组串式占比进一步提升 (16) (3)预计未来组串式占比提升至80%+ (17) (4)户用新秀崭露头角 (17) 二、行业拐点:国内厂商加速海外渗透 (18) 1、逆变器格局演变:欧州垄断打破,全球一超多强 (18) (1)欧洲垄断时期(2012年之前) (19) (2)中欧竞赛时期(2013-2015年) (20) (3)一超多强(2016年以后) (21) 2、逆变器趋势:国内厂商加速海外渗透 (23) (1)集中度不断提升,头部稳定,腰部竞争激烈 (23) (2)全球看:国内龙头出海是必然趋势 (24) (3)成本+技术双优势助力国产替代 (27)

(4)渗透全球,中国企业优势强化 (28) (5)海外市场:国内龙头加速脱颖而出 (29) (6)欧美龙头逐步退出,让出市场份额 (30) (7)华为被迫让出市场份额 (31) (8)以价换量策略,中国企业加速抢占海外市场 (33) (9)预计国内逆变器龙头海外收入持续高增长 (34) 3、需求持续增长,新增+替换潜力十足 (35) (1)光伏行业,星辰大海 (35) (2)新增+替换,潜力十足 (35) (3)海外高价值量高增速,带动行业高增长 (36) 三、中国逆变器龙头加冕之时 (37) 1、阳光电源:逆变器+EPC龙头,积极布局储能业务 (37) (1)逆变器+EPC龙头,积极布局储能业务 (37) (2)收入、利润迅速增长 (37) (3)现金流大幅改善 (39) (4)主营业务及毛利率 (40) (5)海外销量迅速增长、单价降幅趋缓 (41) (6)出口市占率提升 (42) (7)储能业务高增长 (43) 2、锦浪科技:小而美的组串式龙头企业 (44) (1)组串式逆变器全球领先企业 (44) (2)20H收入、利润明显增长 (45) (3)现金流改善明显 (46) (4)主业逆变器,毛利率稳定 (47) (5)销量快速增长 (48) (6)海外毛利率,高占比 (49) (7)出口市占率提升 (50) 3、固德威:组串+储能逆变器双龙头 (51)

光伏逆变器概述(完整版)

光伏逆变器概述 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。

1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。 3、微型逆变器 在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。 4、功率优化器 太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率

最新太阳能电池行业分析报告

最新太阳能电池行业分析报告目录(完整) 最新太阳能电池行业分析报告(完整版)内容简记: 30 年前出现的非晶硅薄膜,由于转换效率太低及效率衰退的问题,被束之高阁多年。前几年的硅材料供应危机,强烈刺激了薄膜太阳能电池研究和投资。 2008 年全球薄膜太阳能电池产量达892MW同比增长123%。权威估计,2050年太阳能在整个能源结构中会占到 1/5 的份额,意味着它的经济规模将在 100 万亿以上。 本报告从太阳能电池发电整体市场角度,详细分析了薄膜太阳能电池发展的现状,列举各种薄膜太阳能电池的技术特点,收集了国内外主要薄膜太阳能电池生产厂家的情况,分析了薄膜太阳能电池存在的问题和风险、发展前景等。 一、太阳能电池行业近年发展概况及前景展望 太阳能电池产品分为晶体硅电池、薄膜电池两类:前者包括单晶硅电池、多晶硅电池 两种,占据全球该行业绝大多数的市场份额;后者主要包括非晶硅电池、铜铟镓硒电池和碲化镉电池等,目前市场份额较小。 图 1 太阳能电池产品分类 传统的硅基太阳能电池容量大 , 对太阳光的转换率可以达到 20%, 技术成熟 , 但是它存 在的最大问题就是主要原料多晶硅或单晶硅制造工艺复杂、耗能大,成本高,而且必须加工成坚硬的板块状电池板 , 限制了它的许多用途。 DisplaySearch 在 09 年第三季最新发行的全球太阳能电池产能数据库与趋势季度研究报 告中指出: 从 2008 年 1 月到 2009 年 7 月为止,全球总共新增了(114 亿瓦)的新的太阳能第 2 页共 30 页电池产能,这庞大的新增产能是 2009 年在需求不佳的情形之下产能仍大幅成长56%的最主要原因; 截至 2006 年为止,日本拥有全球最大的产能,但中国大陆厂商自 2005 年起积极投入新 厂产能扩建,并在 2007 年成为全球最大的太阳能电池生产地,预计在 2009 年占全球太阳能电池产能的三分之一; 2009年薄膜(Thin Film)太阳能电池的产能达到亿瓦),其中有30%采用了 600mm x 1,200mm的基板尺寸。这个尺寸也是碲化镉(CdTe)太阳能电池的标准基板尺寸,并且

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

相关文档
最新文档