第四讲微带天线

合集下载

微带天线工作原理

微带天线工作原理

微带天线工作原理
微带天线是一种新型的天线结构,由金属片和介质基板组成。

它的工作原理基于电磁波在金属片和介质基板之间的传播和耦合。

在微带天线中,金属片是天线的辐射元件,它可以是一块导电材料,例如铜片或铝片,形状可以是矩形、圆形或其他形状。

介质基板则是承载金属片的结构,通常由低介电常数的材料制成,例如 FR4 玻璃纤维复合材料。

当电磁波经过微带天线时,它首先与金属片相互作用。

金属片的导电性使得电磁波的能量被吸收,并在金属上产生电流。

这个电流产生的磁场将能量传递到介质基板上,并经过耦合效应进一步传播。

在介质基板中,电磁波会以两种不同的方式传播:表面波模式和耦合模式。

表面波模式是指电磁波沿着金属片和介质基板的表面传播,形成一条沿着金属边缘的电磁波路径。

耦合模式是指电磁波通过介质基板内部的微带传播,与金属片的电流产生进一步耦合效应。

通过控制微带天线的几何形状、基板材料和工作频率,可以调节微带天线的辐射特性。

例如,改变金属片的长度和宽度可以调节天线的频率响应,改变基板的厚度可以调节天线的辐射阻抗。

此外,可以通过添加补偿结构或使用补偿网络来实现天线的宽频工作。

总之,微带天线的工作原理基于电磁波在金属片和介质基板之间的传播和耦合效应。

通过优化微带天线的结构参数,可以实现对天线的频率响应和辐射特性的调节,满足不同应用的需求。

微带天线PPT

微带天线PPT
微带天线
尽管微带天线的研究思想可以追溯到1953年, 但是直到七十年代初期才被人们所重视。微带 天线是在微带电路出现后发展起来的一种新型 天线。从七十年代中期开始,从理论、技术到 应用对这种天线进行了大量的研究,至今势头 不减。微带天线主要用在微波、毫米波段。
微带天线的结构及微带电路

微带天线由一块厚度远 小于波长的介质板(称为 介质基片)和覆盖在它的 上、下两个面上的金属片 构成。其中,下面完全覆 盖介质板的金属片称为接 地板;上面的金属片如果 尺寸可以和波长相比拟, 则称为辐射元;如果上面 的金属是长窄带,就构成 了微带传输线
微带电路:是微波电路的一 种。它是一种微波信号的 传输线。类似于波导。只 是它做在印制电路板上的 带状电路。
微带天线的分类


微带贴片天线:导体贴片通常是规则形状 的面积单元 微带振子天线:它是一个窄长的条状薄片 振子 微带线型天线:它利用微带线的某种形变 来形成辐射 微带缝隙天线:它利用开在接地板上的缝 隙,由介质基片另一侧的微带线或其他馈 线对其馈电
微带天线的工作原理

微带天线的辐射机理实际上是高频的电磁泄漏。 一个微波电路如果不是被导体完全封闭,电路中 的不连续处就会产生电磁辐射。例如微带电路的 开路端, 结构尺寸的突变、折弯等不连续处也会 产生电磁辐射(泄漏)。当频率较低时, 这些部 分的电尺寸很小,因此电磁泄漏小;但随着频率 的增高,电尺寸增大,泄漏就大。再经过特殊设 计,即放大尺寸做成贴片状,并使其工作在谐振 状态。辐射就明显增强,辐射效率就大大提高, 而成为有效的天线。
间接馈电法:与贴片无直接接触, 主要是 电磁耦合法

馈电技术直接影响到天线的阻抗特性
微带天线的设计

微带天线的主要参数

微带天线原理

微带天线原理

微带天线原理
微带天线是一种常见的天线结构,具有简单、易制作、易集成等优点。

其原理主要基于微带线的谐振和辐射机制。

微带天线由一块金属贴片和一片位于其下方的地板构成,金属贴片的尺寸和形状决定了其工作频率。

通过调整贴片的尺寸和形状,可以实现对不同频率的天线设计。

微带线的谐振是基于电磁场在金属贴片上的反射和干涉效应产生的。

当尺寸适当时,微带线上的电磁场会在贴片的边缘反射并形成驻波,从而实现共振。

共振条件决定了微带天线的频率特性。

同时,微带天线也利用了金属贴片的辐射作用来实现辐射电磁波的功能。

当电流通过微带线时,会在贴片上产生电场和磁场的耦合。

这种耦合会导致电磁波向外辐射,形成天线的辐射场。

微带天线的辐射模式通常是由贴片的形状和尺寸决定的。

常见的微带天线形状包括矩形、圆形、椭圆形等。

根据不同的形状和尺寸设计,微带天线可以实现不同的辐射特性,如指向性、全向性等。

综上所述,微带天线的工作原理主要涉及谐振和辐射效应。

通过精确设计微带线的尺寸和形状,可以实现对特定频率下的辐射场的传输和接收。

这使得微带天线在无线通信、雷达、卫星通信等领域具有广泛的应用。

微带天线

微带天线
微带天线
用于卫星通信技术的金属贴片
01 简介
03 结构与分类 05 分析模型
ቤተ መጻሕፍቲ ባይዱ目录
02 特点 04 圆极化技术 06 运用
微带天线的结构一般由介质基板、辐射体及接地板构成。介质基板的厚度远小于波长,基板底部的金属薄层 与接地板相接,正面则通过光刻工艺制作具有特定形状的金属薄层作为辐射体。辐射片的形状根据要求可进行多 种变化。
简介
mps在1953年开始提出了微带天线的概念。但是,直到70年代初期,理论模型的建立更加完备且微波集成技 术快速发展,此时,微带天线才得以实际使用。
一般要求微带天线介质基片的介电常数小于等于10,厚度h小于等于波长;辐射器的形状可以是矩形、圆形、 三角形或其他的规则形状。辐射贴片的形状不同,辐射特性也有所差异。
由于微带阵列天线可以实现提高增益、增强方向性、提高辐射效率、降低副瓣、形成赋形波束和多波束等特 性,故微带阵列天线越来越多的应用于各个领域,而国内外的学者对于微带阵列天线的研究也给予了广泛的。
特点
优点
缺点
微带天线在结构及物理性能等方面具有许多优点。
第一,剖面低,即微带天线可以做的很薄,非常适合于高速飞机及空间飞行器使用。
多元圆极化微带天线实际上是一个微带阵列,即利用多个线极化的辐射源,在相位上相差90°,保持振幅不 变以获得圆极化波,这一原理与多馈点的单个圆极化微带天线比较类似。
分析模型
目前为了更准确地求得其辐射特性,已经出现了多种物理模型来模拟微带天线。但不管是哪种理论分析法, 它们都是在求特定边界条件下的麦克斯韦方程组,只是处理特定边界条件的方法不同,推导过程中的具体解法不 同。
已提出的物理模型有传输线模型、腔体模型、模式展开模型、金属线模型、以及辐射孔径模型等。这些方法 相互补充,各有所长,各有所短。

微带天线工作原理

微带天线工作原理

微带天线工作原理微带天线是一种广泛应用于通信系统中的天线结构,它具有结构简单、制作方便、性能可调和工作频段宽等优点,因此在无线通信系统中得到了广泛的应用。

微带天线的工作原理是基于微带线与辐射负载之间的耦合效应,通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

本文将从微带天线的基本结构、工作原理和特点等方面进行详细介绍。

1. 微带天线的基本结构。

微带天线的基本结构包括微带线、辐射负载和基底板三部分。

微带线是由金属导体和绝缘基底组成的,其长度和宽度决定了天线的工作频率和阻抗匹配特性。

辐射负载是用来辐射电磁波的部分,通常是一个金属片或贴片,其结构和尺寸对天线的辐射特性有重要影响。

基底板是支撑微带线和辐射负载的部分,通常采用介质常数较小的材料,如陶瓷基板或塑料基板。

2. 微带天线的工作原理。

微带天线的工作原理主要是基于微带线与辐射负载之间的耦合效应。

当微带线上有高频电流通过时,会在微带线和基底板之间产生电磁场,这个电磁场会通过辐射负载辐射出去,从而实现天线的辐射功能。

微带线的长度和宽度决定了天线的工作频率,而辐射负载的结构和尺寸则影响了天线的辐射特性。

通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

3. 微带天线的特点。

微带天线具有结构简单、制作方便、性能可调和工作频段宽等特点。

首先,微带天线的制作工艺相对简单,可以采用印制电路板工艺进行批量生产,成本较低。

其次,微带天线的结构参数可以通过调节微带线和辐射负载的尺寸来实现对天线的频率、阻抗和辐射特性的调节,具有较好的可调性。

最后,微带天线的工作频段较宽,可以满足不同频段的通信需求。

总结:微带天线是一种在无线通信系统中广泛应用的天线结构,其工作原理是基于微带线与辐射负载之间的耦合效应。

通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

微带天线具有结构简单、制作方便、性能可调和工作频段宽等特点,因此在无线通信系统中得到了广泛的应用。

微带天线工作原理

微带天线工作原理

微带天线工作原理
微带天线是一种常用的无线通信天线,其工作原理是基于微带电路的特性。

微带天线的结构包括导体贴片、基底板和接地板。

导体贴片通常呈现出直线、圆形或其他形状,而基底板则是导体贴片的基座,接地板则用于提供天线的接地。

在工作过程中,微带天线通过导体贴片与基底板构成了一个微带传输线。

当电信号通过导体贴片传入时,导体贴片会通过电场和磁场的耦合作用产生辐射。

这种辐射可以在空间中形成一个电磁波,并且以指定的频率传输信号。

电场和磁场的耦合作用是通过微带传输线的微带模式完成的。

微带模式是指电场和磁场在导体贴片和基底板之间建立的共振模式。

通过调整导体贴片的长度、宽度和形状,可以改变微带模式的频率和辐射特性,从而实现对天线性能的优化。

微带天线的工作原理可以进一步解释为,当电信号通过导体贴片传输时,导体贴片会在其中产生电流分布。

这个电流分布将在导体贴片表面产生电场,并形成辐射电场。

同时,电流分布还会在导体贴片和基底板之间形成磁场,并形成辐射磁场。

这两个辐射场的叠加将形成辐射电磁波。

总之,微带天线通过微带传输线的电场和磁场耦合作用,将电信号转化为辐射电磁波。

这种辐射波可以被接收器或其他通信设备接收并解码,从而实现无线通信的传输。

微带天线顶级教程

微带天线顶级教程

微带天线顶级教程微带天线§6.1 缝隙天线缝隙天线:开在波导或谐振腔上缝隙,用以辐射或接收电磁波。

6.1.1 理想缝隙天线理想缝隙天线:开在无限大、无限薄的理想导体平面上的直线缝隙,用同轴传输线激励。

假设位于yoz 平面上的无限大理想导体平面上开有宽度为ω(λω<<)、长度2/2λ=l 的缝隙。

缝隙被激励后,只存在垂直于长边的切向电场,并对缝隙的中点呈对称驻波分布,其表达示为:()()[]y m ez l k E z E ˆsin --=m E ---缝隙中间波腹处的场强值。

缝隙相当于一个磁流源,由电场分布可得到等效磁流密度为:()[]()[]⎩⎨⎧<-->-=⨯-==0,ˆsin 0,ˆsin ˆ0x e z l k E x ez l k E E nJ z mz m z m等效磁流强度为:()[]()[]⎩⎨⎧<-->-=⋅=⎰0,sin 20,sin 2x z l k E x z l k E l d E I m m l m ωω 也就是说,缝隙可等效成沿Z 轴放置的、与缝隙等长的线状磁对称阵子。

根据对偶原理,磁对称阵子的辐射场可由电对称阵子的辐射场对偶得出。

对于电对称阵子,电流分布为:)(sin )(z l k I z I -=辐射场表达式:θθθsin )cos()cos cos(60kl kl r Ie j E jkr -=- ()()ϑϑπϕsin cos cos cos 2kl kl r Ie j H jkr -=- 由此得到0>x 半空间,磁对称阵子的辐射场为:()()ϑϑπωϕsin cos cos cos kl kl r e E j E jkr m m--=-输入阻抗2)60(π=ine inm Z Z任意长度的理想缝隙天线的输入阻抗、辐射阻抗均可由与其互补的电对称阵子的相应值求得。

例如,半波对称阵子的辐射阻抗为Ω=1.73re R ,理想半波缝隙天线的辐射电阻应为:Ω==5001.73)60(2πrmR 由于谐振电对称阵子的输入阻抗为纯阻,因此谐振缝隙的输入阻抗也为纯阻,并且其谐振长度同样稍短于2λ,且缝隙越宽,缩短程度越大。

微带天线的设计

微带天线的设计

微带天线设计天线大体可分为线天线和口径天线两类。

移动通信用的VHF 、UHF 天线,大多是以对称振子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。

天线的特征与天线的形状、大小及构成材料有关。

天线的大小一般以天线发射或接收电磁波的波长l 来计量。

因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。

与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。

最大辐射波束通常称为方向图的主瓣。

主瓣旁边的几个小的波束叫旁瓣。

为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有:1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。

2.天线效率3.极化特性4.频带宽度5.输入阻抗天线增益是在波阵面某一给定方向天线辐射强度的量度。

它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。

天线方向性GD与天线增益G类似但与天线增益定义略有不同。

因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。

理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。

这种情况下天线增益与天线方向性相等。

理想的天线辐射波束立体角ΩB及波束宽度θB实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。

在波束中心辐射强度最大,偏离波束中心,辐射强度减小。

辐射强度减小到3db时的立体角即定义为ΩB。

波束宽度θB与立体角ΩB关系为旁瓣电平旁瓣电平是指主瓣最近且电平最高的。

第一旁瓣电平,一般以分贝表示。

方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲微带天线
一、引言
上一讲介绍了对称振子和接地单极子天线。

这两种天线本质上属于线天线。

但是手机内置天线往往都不是线天线的形式,常见的PIFA天线和单极子变形天线往往都是平面天线的形式。

尽管在某种程度上它们也和对称振子或接地单极子天线有某种程度的相似性。

在现有理论基础下,由于专门对手机天线进行严格理论分析的论著还很少,所以为更加深入地理解手机天线,我们还有必要了解几种其他类型的天线的一般特性。

这一讲主要介绍微带天线的概念和基本原理。

二、微带天线的结构
如下图所示,结构最简单的微带天线是由贴在带有金属地板的介质基片()上的辐射贴片所构成的。

贴片上导体通常是铜和金,它可以为任意形状。

但通常为便于分析和便于预测其性能都用较为简单的几何形状。

为增强辐射的边缘场,通常要求基片的介电场数较低。

三、微带天线的特点
微带天线的典型优点是:
1.重量轻、体积小、剖面薄;
2.制造成本低,适于大量生产;
3.通过改变馈点的位置就可以获得线极化和圆极化;
4.易于实现双频工作。

但微带天线也有如下缺点:
1.工作频带窄;
2.损耗大,增益低;
3.大多微带天线只在半空间辐射;
4.端射性能差;
5.功率容量低。

四、微带天线的辐射机理
微带天线的辐射是由微带天线导体边沿和地板之间的边缘场产生的。

这可以从以下图中的情况简单说明,这个图是一个侧向馈电的矩形微带贴片,与地板相距高度为h。

假设电场沿微带结构的宽度和厚度方向没有变化,则辐射器的电场仅仅沿约为半波长()的贴片长度方向变化。

辐射基本上是由贴片开路边沿的边缘场引起的。

在两端的场相对地板可以分解为
法向和切向分量,因为贴片长度为,所以法向分量反相,由它们产生的远区场在正面方向上互相抵消。

平行于地板的切向分量同相,因此合成场增强,从而使垂直于地板的切向分量同相,因此合成场增强,从而使垂直于结构表面的方向上辐射场最强。

根据以上分析,贴片可以等效为两个相距、同相激励并向地板以上半空间辐射的两个缝隙。

对微带贴片沿宽度方向的电场变化也可以采用同样的方法等效为同样的缝隙。

这样,微带贴片天线的辐射就等效为微带天线周围的四个缝隙的辐射。

这种分析方法不仅适用于微带矩形贴片天线,同样也适于其他形状微带天线。

五、微带天线分析方法
各种天线在进行工程设计,都需要估算天线的性能参数(方向图、方向系数、效率、输入阻抗、极化和频带等),这样才能提高天线研制工作的质量和效率,降低研制成本。

许多人致力于微带天线的理论研究,并产生了多种分析方法,如传输线法、腔模理论法、格林函数法、积分方程法和矩量法。

这些分析方法各有长短,但都可以得到近似的定性结论,这些结论对判断天线的特性是很有帮助的。

常用微带天线大多是窄带器件,其窄带性质主要表现在输入阻抗对频率敏感的特性上,因此确定微带天线的谐振频率和阻抗特性十分关键,这也是评价不同分析方法优劣的一个重要依据。

除这种特殊情况以外,各种分析方法计算微带天线的方向图时结果基本是一致的,特别是主波束。

六、微带贴片的传输线分析法
传输线分析法是微带天线最早期的分析方法,也是最简单的方法。

这种方法基于如下基本假设:
1.微带片和接地板构成一段微带传输线,传输准TEM波,传输方向决定于馈点,线段长度,是准TEM波的波长。

场在传输方向呈驻波分布,而在其垂直方向(宽度方向)是常数。

2.传输线的两个开口端(始端和末端)等效为两个辐射缝,长为W,宽为h,缝口径场即为传输线开口端的场强。

缝平面可以看作是位于微带片两端的延伸面上,即将开口面向上弯折90度,而开口场强随之折转。

根据上面的两点假设,当时,两缝上的切向电场都是方向,并且等幅同相。

它们等效为磁流,由于接地板的作用,相当于有两倍磁流向上半空间辐射,缝上的等效磁流密度为:
V是传输线开口端的电压。

由于缝已经放平,在计算上半空间的辐射场时,就可以按照自由空间处理。

微带线和同轴线馈电的微带贴片天线等效电路如下图所示。

在上面的等效电路中,(a)是带线馈电方式,其中是缝隙辐射导纳,是微带片的特性导纳。

(b)是同轴线的馈电方式,探针从接地板穿孔引出,称为底部馈电。

两种等效电路的不同之处在于,同轴馈电的馈点在微带片的开口端之间馈电,激励源与开始端有一段距离,探针本身会引入感抗。

七、微带贴片天线的辐射方向图
从上面的微带天线传输线等效电路可以方便地导出天线的辐射场函数,并可以画出方向图。

在这个方向图中,在方向上,只有分量,所以本平面称为E面,这是包含准TEM波传播方向和轴的平面;而平面上,,只有分量,所以是H面,这是与波传播方向垂直的平面。

八、微带天线的工作频率和输入阻抗
根据传输线等效电路也可以计算微带天线的谐振频率和输入阻抗,但计算方法相当复杂,需要求解复杂的超越方程,结果也不够精确。

在手机天线中,为获得工作频率和输入阻抗通常采用矢量网络分析仪通过实验测试确定。

[提示] 天线技术是一种实践性很强的技术,又是一种理论和实践密切配合的技术。

有时数学工具可以帮助进行精确的分析和定性判断,但数学工具也不是万能的,必须重视实践。

爱迪生曾让一位数学家计算灯泡的容积,数学家三天也没算出来结果。

当爱迪生将灯泡灌满水让数学家去量一下水量时,数学家恍然大悟。

微带天线的输入阻抗值的确定就是这样的一个典型例子,与其解一大堆方程,不如用一下网络分析仪。

九、微带贴片天线中的若干经验公式
在若干数学物理学家对微带天线进行研究的同时,另外也有不少实干家通过实验寻找相关的经验公式,这些经验公式对实际设计同样有重要的指导意义。

以下就介绍一些微带天线中重要实验定理和经验公式。

1.列文实验定理:影响微带天线辐射场的因素包括微带谐振器的尺寸、工作频率、相对介电场数和基片的厚度;高频时辐射损耗远远大于导体和介质的损耗;使用厚度大而介电场数低的基片时,开路微带线的辐射更强。

2.频带的决定因素:微带天线的带宽窄,主要是由两个辐射缝之间的传输线特性阻抗低(1-10欧)所致。

厚度的增大可以使传输线特性阻抗增大从而使频带变宽。

当厚度时,VSWR<2的频带宽度的经验公式是:
,其中频率单位是GHz,h单位是毫米。

3.基板厚度h对效率的影响:实验证明,随着基板厚度h的增加,辐射效率显著加大。

4.工作带宽和Q值的关系:,S为最大允许VSWR值。

5.Q值和基板厚度h的关系:。

相关文档
最新文档