离心水泵的水力设计方法
离心泵轴向力计算式应用与平衡

离心泵轴向力计算式应用与平衡作者:于锡平来源:《科学与财富》2014年第02期摘要:离心泵在工作过程中,可靠运行的一个重要方面就是平衡部件(平衡盘或平衡鼓)和推力轴承的设计,一般在多级离心泵的叶轮上不考虑平衡轴向力的结构,因此,泵轴向力计算的准确程度影响到平衡部件、推力轴承的设计和使用寿命,本文经多年的设计实践,提出较理想的轴向力计算式,基本在设计卧式多级泵或立式多级泵的平衡盘或平衡鼓的部件时没有失误,可以借鉴。
关键词:离心泵;轴向力;计算式应用;平衡1. 轴向力产生的原因由于叶轮前后盖板因液体压力分布情况不同引起很大的轴向力,叶轮后盖板所受压强大于前盖板所受的压强,形成的压力差,方向自叶轮背面指向叶轮入口,这个力是泵轴向力的主要组成部分。
泵在正常运行时,叶轮吸入口的压力P1,叶轮背面的压力为P2,且P2>P1,因此沿着泵的轴向方向就会产生一个推力。
液体流经叶轮后,由于流动方向变化所产生的动压力F2,在多级离心泵中,流体通常由轴向流入叶轮,由径向流出,流动方向的变化是由于流体受到叶轮的作用力,因此流体也给叶轮一个大小相等、方向相反的反作用力。
扭曲叶片工作面和背面压力不同产生的轴向力。
对于立式泵,转子的重量也是轴向力的组成部分。
其它因素产生的轴向力。
2. 轴向力计算式探讨假定叶轮两侧间隙液体压力分布规律相同,则有轴向力F1=π/4(D21-dh2)ρg[HP-U22/8zg{1-(D21-d2h)/2D22}],实际上,由于存在泄漏,轮盖两侧会有液体从外径处经轮盖密封流向吸入口,轮盘测则由于级间泄漏,有液体自高压级漏失到低压级,从叶轮内径处流向外经处,在轮盖测,液体做向心的径向流动,所以压力要减小,而在轮盘测,液体作离心的径向流动,所以,压力要增大,这样一来,轴向力F1的实际值比上式要大一些,所以,一般使用经验公式F1=(π/4)(D21-d2h)ρgkHi,其中,k为实验系数,与比转数有关,当nS=60-150时,k=0.6;当nS=150-250时,k=0.8;i为叶轮级数。
牛栏江-滇池补水工程高扬程大功率离心式水泵科研与设计

牛栏江-滇池补水工程高扬程大功率离心式水泵科研与设计游超;徐宏光;宫让勤;吴喜东【摘要】干河泵站是牛栏江—滇池补水工程的核心,选用的立轴单吸单级离心式水泵是我国轴功率最大的离心泵,水泵设计难度很大.干河泵站水泵是我国自行独立研究、设计和制造的高扬程大功率离心泵,本文介绍了干河泵站水泵的研究成果和结构设计,以及水泵采取的抗泥沙磨损措施.干河泵站大型中低比转速离心泵的开发标志着我国大型离心水泵的研发具有世界领先水平,对提高我国水泵行业的技术水平具有重要意义.【期刊名称】《大电机技术》【年(卷),期】2014(000)006【总页数】5页(P36-39,46)【关键词】大型;单吸单级离心泵;中低比转速;科研;设计;泥沙磨损防护;供水工程;云南【作者】游超;徐宏光;宫让勤;吴喜东【作者单位】水利部水利水电规划设计总院,北京,100120;哈尔滨电机厂有限责任公司,哈尔滨,150040;哈尔滨电机厂有限责任公司,哈尔滨,150040;水力发电设备国家重点实验室,哈尔滨,150040【正文语种】中文【中图分类】TH3110 前言牛栏江—滇池补水工程是一项水资源综合利用工程,是滇中调水的近期重点工程,近期重点向滇池补充生态水量,改善滇池水环境,并在昆明发生供水危机时,提供城市生活及工业用水。
牛栏江—滇池补水工程由德泽水库水源枢纽工程、干河泵站工程及干河泵站至昆明(盘龙江)的输水线路工程组成,其中,干河泵站为补水工程的核心,泵站自牛栏江干流上的德泽水库库内取水,加压后经无压输水线路(设计流量为23m3/s)将水引入昆明市的盘龙江。
干河泵站工程由进水隧洞、调压井、主洞室、工作竖井、主交通洞、通风洞、出水竖井、地面出水池、地面 GIS楼和副厂房等组成。
泵站提水设计流量为23m3/s,设计扬程221.2m;最大扬程233.2m,提水流量为20m3/s;最小扬程186.3m,加权平均扬程208.7m。
泵站选用4台(含1台备用)立轴单吸单级离心式水泵机组。
化工原理第二章离心泵

容积式:如往复式、回转式等
特点:机械内部的工作容积不断发生变化
一、离心泵的构造和工作原理
二.离心泵主要构件的结构及功能
三、离心泵的主要性能参数
四、离心泵的工作点与流量调节
五、离心泵的安装高度 六、离心泵的选用、安装与操作
复习:
1. 流量测量(变压头流量计;变截面流量计)。
思考:泵启动前为什么要灌满液体
气缚现象:
离心泵启动时,如果泵壳内存在空气,由于空气的密度远
小于液体的密度,叶轮旋转所产生的离心力很小,叶轮中心
处产生的低压不足以造成吸上液体所需要的真空度,这样,
离心泵就无法工作,这种现象称作“气缚”。
为了使启动前泵内充满液体,在吸入管道底部装一止
逆阀。此外,在离心泵的出口管路上也装一调节阀,用于
思考:三种叶轮中哪一种效率高?
闭式叶轮的内漏最小,故效率最高,
敞式叶轮的内漏最大。
敞式叶轮和半闭式叶轮不易发生堵 塞现象
平衡孔:在后盖板上钻有小孔,以
把后盖前后空间连通起来。
单吸式叶轮
液体只能从叶轮一侧被吸入,结
构简单。 按吸液方式
双吸式叶轮 相当于两个没有盖板的单吸式叶轮 背靠背并在了一起,可以从两侧吸 入液体,具有较大的吸液能力,而
1)离心泵基本方程式的导出
理想情况:
1)泵叶轮的叶片数目为无限多个,也就是说叶片的 厚度为无限薄,液体质点沿叶片弯曲表面流动,不发 生任何环流现象。 2)输送的是理想液体,流动中无流动阻力。
理论压头
离心泵在上述理想情况下产生的压头,就做理论压头, 用H∞表示。
离心泵的基本方程
H
泵站设计计算

计算与说明一、泵房形式的选择及泵站平面部署泵房东体工程由机器间、配电室、控制室和值班室等构成。
机器间采纳矩形半地下形式,以便于部署吸压水管路与室外管网平接,减少弯头水力损失,并紧靠吸水井西侧部署,直接从吸水井取水压送至管网。
值班室、控制室及配电室在机器间北侧,与泵房归并部署,与机器间用玻璃间隔分开。
最北侧设有配电室,双回路电源用电缆引入。
平面部署表示图见图1。
控制室配电室泵房机器间值班室图1二、泵站设计参数确实定1.设计流量该城市最高日用水量为m3 / d因为分级供水可减小管网中水塔的调理容积,故本设计采纳分级供水的形式。
二级泵站一般按最大日逐时用水变化曲线来确立各时段中泵的分级供水线。
参照相像城市的最大日用水量变化曲线,确立本设计分两级供水,并确立分级供水的流量。
泵站一级工作时的设计工作流量:Q I3 / h539.18 L / s泵站二级工作时的设计工作流量:Q II3 / h320.72 L / s2.设计扬程依据设计要求假定吸水井水面标高为。
则HⅠHSThshdHc 370.41 314.83 1 2 2此中 H I——设计扬程H ST——静扬程(m);h s——吸水管路水头损失(m),粗估为 1m;h d——压水管路水头损失(m),粗估为 2m;H c——安全水头2m三、选择水泵1.水泵原则的基来源则选泵重点:(1)大小兼备,分配灵巧再用水量和所需的水压变化较大的状况下,采纳性能不一样的泵的台数越多,越能适应用水量变化的要求,浪费的能量越少。
(2)型号齐备,互为备用希望能选择同型号的泵并联工作,这样不论是电机、电气设施的配套与设施管道配件的安装与制作均会带来很大的方便。
(3)合理的用尽各泵的高效段单级双吸是离心泵是给水工程中常有的一种离心泵(如 SH型、SA型)。
他们的经济工作范围(即高效段),一般在 0.85Q p ~ 1.05Q p之间( Q p为泵铭牌上的额流量值)。
(4)近远相联合的看法在选泵的过程中应赐予相当的重视,特别是在经济发展活跃的地域和年月,以及扩建比较困难的取水泵站中,可考虑近期用小泵大基础的方法,近期发展采纳还大泵轮以增大水量,远期采纳换大泵得方法。
离心泵

思考题(1)测定离心泵的特性曲线并绘出曲线图时为什么要注明转速数值?(2)随着离心泵流量的增大,进口真空表和出口压力表指示的数值怎么变化?功率表读数如何变化?(3)离心泵怎样启动?为什么?(4)离心泵启动后,如不打开出口阀会有什么结果?(5)为什么离心泵可用出口阀来调节流量?答:(1).离心泵特性曲线由泵的制造厂家提供,特性曲线会随转速而变化,故曲线图上一定要注明测定的转数.(2).泵的出水流量越大,泵的进口处真空度也越大.,功率也随之增大.(3).启动前应该先灌泵,防止发生气缚现象.(液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上.气缚现象:如果离心泵在启动前壳内充满的是气体,则启动后叶轮中心气体被抛时不能在该处形成足够大的真空度,这样槽内液体便不能被吸上.这一现象称为气缚.(通过第一章的一个例题加以类比说明).为防止气缚现象的发生,离心泵启动前要用外来的液体将泵壳内空间灌满.这一步操作称为灌泵.为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵)并关闭出口阀,使启动功率最小,减少启动电流,保护电机.停泵前也应该先关闭出口阀,以保护叶轮,防止液体倒排.(4).离心泵启动后,不打开出口阀,则无法形成泵内的负压,叶轮也不能靠惯性离心力获得能量,液体便不会被吸入和排出.(5).改变离心泵出口管路上的阀门开度,便可以改变管路特性方程He=K+BQe2中的B值,从而使管路特性曲线发生变化.关小阀门,B变大,流量变小,曲线变陡.3 、根据液体介质性质,确定清水泵,热水泵还油泵、化工泵或耐腐蚀泵或杂质泵,或者采用不堵塞泵。
安装在爆炸区域的泵,应根据爆炸区域等级,采用防爆电动机。
4、振动量分为:气动、电动(电动分为220v电压和380v电压)。
5、根据流量大小,选单吸泵还是双吸泵:根据扬程高低,选单吸泵还是多吸泵,高转速泵还是低转速泵(空调泵)、多级泵效率比单级泵低,当选单级泵和多级泵同样都能用时,宜选用单级泵。
基于CFturbo的离心泵设计专题资料(二)

6.低比转速离心泵叶轮内固液两相流的数值分析.pdf 为了分析离心叶轮内固液流动特性,采用Mixture多相流模型,扩展的标准κ ε 湍流方程与SIMPLEC算法,应用流体动力学软件Fluent对低比转速离心泵叶轮 内固液两相湍流进行了数值模拟.分析了多种粒径及浓度条件下的固相体积浓 度分布规律.当颗粒直径较小和泥沙浓度较低时,固粒在叶轮出口附近会出现 向叶轮背面迁移的趋势;但在离心泵叶轮固液两相流动中,固体颗粒还是主要 集中于叶轮工作面,因而会加剧叶轮工作面磨损破坏速度.数值结果表明,在相
心泵知识库:
1.小粒径固液两相流在螺旋离心泵内运动的数值分析.pdf 针对螺旋离心泵内固液两相流动比较复杂的情况,以黄河含沙水为工作介质, 采用改变沙粒粒径和含沙水体积分数的方法,对小粒径颗粒在螺旋离心泵内的
流动进行了数值模拟.通过内流场的速度、压力与颗粒分布,分析了粒径大小
对泵内固体颗粒运动的影响和进口固相初始体积分数对泵内压力和固相分布 的影响,得出压力沿叶轮工作面和背面的分布规律以及固相体积分数沿叶轮轴
Workbench软件对离心泵叶轮转子进行模态分析,得到四阶固有频率和振型;加
载径向力载荷后,不同流量下叶轮转子产生形变,其中0流量和0.4 Q0流量时泵 密封环处形变量超出密封间隙设计值,为泵的密封环间隙的设计和修改提供了
参考依据.
5.离心泵流噪声实验研究.pdf 搭建了离心泵流噪声测试系统,并对离心泵的流噪声进行实验研究。利用水 听器测量了原型叶轮和四种改型叶轮在不同转速下的流噪声,发现水 泵流噪 声随着转速的增加而增加,随轮舌间隙的减小而增加。实验结果还表明,水 泵下游的流噪声声压级要高于上游。观察水泵两端声压级差随转速以 及叶轮 半径的变化关系,并探讨其产生的原因。
小流量高扬程低比转速给水泵水力设计

小流量高扬程低比转速给水泵水力设计
水力设计是指对给水泵进行设计,以满足特定要求和条件下的给水需求。
小流量高扬
程低比转速给水泵的水力设计是在流量较小、扬程较高以及转速较低的条件下进行设计。
小流量高扬程低比转速给水泵的水力设计需要确定给水流量。
根据特定要求和条件下
的给水需求,确定给水流量的大小,这个流量是指单位时间内通过给水泵的水量。
根据给水流量和扬程的要求,确定给水泵的扬程。
扬程是指水泵将液体抬升到所需高
度所需克服的压力。
在小流量高扬程低比转速给水泵的设计中,由于流量较小而扬程较高,需要确保给水泵能够提供足够的压力,使得水能够抵达所需高度。
然后,根据给水流量、扬程、转速以及其他相关参数,进行给水泵的选型。
根据给水
流量和扬程的要求,以及转速的限制,选择合适的给水泵型号。
在选型过程中需要考虑给
水泵的性能曲线、效率、功率等指标,以及泵的材质、密封方式等。
进行给水泵系统的管道设计。
根据给水泵的选型和位置,进行给水管道的设计,确保
管道能够满足流量、压力等要求,避免流量过大或过小、压力过高或过低的情况发生。
也
需要考虑管道的材质、直径等因素,以确保管道能够承受所需流量和压力。
泵和泵站第二章 叶片式水泵1

⑴填料密封
压盖填料型填料盒
1轴封套;2填料(盘根);3水封管;4水封环;5压盖(格兰)
(2)机械密封
DY101型系列机械密封
112型系列机械密封
平衡型机械密封:密封介质作用于动环上有效面积小于 动、静环接触面,可用于高压 非平衡型机械密封:密封介质作用于动环上有效面积大 于或等于动、静环接触面
e a
P
b
P
6
1
P
2
g
P
d
m ( C c o s RC c o s R ) M 2 2 2 1 1 1 d t
动量矩定理:单位时间里控制面内恒定总流的动量矩变化(流 出液体的动量矩与流入液体的动量矩之矢量差)等于作用于该 控制面内所有液体质点的外力矩之和。
P
3
f b
P
静压能。
3)泵壳顶上设有充水和放气的螺孔,以便在泵起动前用来 充水及排走泵壳内的空气。在泵壳的底部设有放水螺孔, 以便在泵停车检修时用来放空积水
4、泵座: 1)泵座上有与底板或基础固定用的法兰孔。 2)泵壳顶上设有充水和放气的螺孔,以便在泵起动前充水及排 走泵壳内的空气。
3)在泵吸水和压水锥管的法兰上,开设有安装真空表和压力表
泵用机械密封主要泄漏点: (l)轴套与轴间的密封; (2)动环与轴套间的密封; (3)动、静环间密封; (4)对静环与静环座间的密封; (5)密封端盖与泵体间的密封。
6、减漏环(承磨环)
为什么要装减漏环?(减漏环作用) 减漏环位置:叶轮吸入口的外圆与泵壳内壁的接缝处
(a)单环型;(b)双环型;(c)双环迷宫型 1、泵壳;2、镶在泵壳上的减漏环;3、叶轮;4、镶在叶轮上的减漏环
单级单吸卧式离心泵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离心泵过流部分主要包括吸水室、叶轮和压水室。
离心泵水力设计的基本任务是:根据给定的扬程、流量、汽蚀余量、效率等设计参数,设计出具有良好能量和汽蚀特征的离心泵过流部件形状,其中关键的部件就是叶轮。
离心泵的水力设计要解决三方面问题:
1、过流部件的主要参数,以及部件各部门的佳比例。
2、流型设计,选定在水力设计过程中所选定的过流部件的活动规律。
例如蜗壳周向速度的分布,叶轮前后活动环量的分布及轴面速度的分布。
这些分布均为设计前的假定。
3、叶轮叶片及流道的型线设计,提供过流部件的加工木木模图。
离心泵在水力设计过程中应尽量达到:
1、保证达到设计参数的要求,即流量和扬程等要求;
2、使离心泵有良好的能量机能,即有较高的水力效率,且高效率区尽量宽;
3、有良好的空化和空蚀机能,减少空化引起的效率下降;
4、有良好的不乱性,压力脉动和噪声值均较低;
5、尽可能小的尺寸,以降低造价;
6、知足些特殊运行前提的要求,例如深井,潜水和高含沙水流等特殊要求;
7、知足制造的安装等工艺的要求。
上述给大讲述的这些要求有时是相互矛盾的。
比如在提高离心泵汽蚀性能是,通常造成离心泵效率下降。
要综合地满足各方面要求是
项复杂的工作,因此必须对水力计算方法进行深入的研究。