热学课后习题答案

合集下载

工程热力学第三版课后习题答案

工程热力学第三版课后习题答案

工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。

当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。

⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。

这种观点对不对,为什么?答:不对。

“绝热系”指的是过程中与外界无热量交换的系统。

热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。

物质并不“拥有”热量。

一个系统能否绝热与其边界是否对物质流开放无关。

⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。

⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。

因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。

环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。

“当地大气压”并非就是环境大气压。

准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。

⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。

它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。

⒍经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。

(完整版)工程热力学课后题答案沈维道童钧耕版.doc

(完整版)工程热力学课后题答案沈维道童钧耕版.doc

P30 (1)P56 (4)P93 (9)P133 (13)P193 (18)P235 (25)P263 (30)P281 (34)P396 (35)P301.闭与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。

2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。

对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。

3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。

4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p=p b+p g( p> p b),p= p b- p v( p< p b)中,当地大气压是否必定是环境大气压?p bp g2 p g1当地大气压p b改变,压力表读数p2=p g2+p1就会改变。

当地大气压p b不一定是环境大气压。

5.温度计测温的基本原理是什么?p1=p g1+p b热力学第零定律4 题图6.经验温标的缺点是什么?为什么?不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。

7.促使系统状态变化的原因是什么?举例说明。

有势差(温度差、压力差、浓度差、电位差等等)存在。

8.分别以图1-20 所示的参加公路自行车赛的运动员、运动手枪中的压缩空气、杯子里的热水和正在运行的电视机为研究对象,说明这些是什么系统。

参加公路自行车赛的运动员是开口系统、运动手枪中的压缩空气是闭口绝热系统、杯子里的热水是开口系统(闭口系统——忽略蒸发时)、正在运行的电视机是闭口系统。

9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。

取正在使用的家用电热水器为控制体(但不包括电加热器),这是什么系统?把电加热器包括在研究对象内,这是什么系统?什么情况下能构成孤立系统?电流热水热水传热传热冷水冷水a b9题图不包括电加热器为开口(不绝热)系统( a 图)。

【理想】大学物理化学1热力学第一定律课后习题及答案

【理想】大学物理化学1热力学第一定律课后习题及答案

【关键字】理想热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“”,错误的画“”。

1. 在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。

( )2. dU = nCV,mdT这个公式对一定量的理想气体的任何pVT过程均适用。

( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。

( )4. 时H2(g)的标准摩尔燃烧焓等于时H2O(g)的标准摩尔生成焓。

( )5. 稳定态单质的fH(800 K) = 0。

( )2、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。

(A)Q > 0;(B)U < 0;(C)W < 0;(D)H = 0。

2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。

( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。

3. pV = 常数( = Cp,m/CV,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。

4. 在隔离系统内:( )。

( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。

5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。

( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。

6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。

( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。

7. 已知反应H2(g) +O2(g) ==== H2O(g)的标准摩尔反应焓为rH(T),下列说法中不正确的是:()。

《传热学》课后习题答案-第一章

《传热学》课后习题答案-第一章

传热学习题集第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。

答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。

联系是:在发生对流换热的同时必然伴生有导热。

导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。

2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。

试写出这三个公式并说明其中每一个符号及其意义。

答:① 傅立叶定律:,其中,-热流密度;-导热系数;-沿x方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。

② 牛顿冷却公式:,其中,-热流密度;-表面传热系数;-固体表面温度;-流体的温度。

③ 斯忒藩-玻耳兹曼定律:,其中,-热流密度;-斯忒藩-玻耳兹曼常数;-辐射物体的热力学温度。

3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。

这三个参数中,只有导热系数是物性参数,其它均与过程有关。

4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。

试分析引入传热方程式的工程实用意义。

答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。

5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。

而一旦壶内的水烧干后,水壶很快就烧坏。

试从传热学的观点分析这一现象。

工程热力学课后习题及答案第六版(完整版)

工程热力学课后习题及答案第六版(完整版)

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J • (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO 2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量 2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2)27311+=t T (3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。

大学物理化学4-多组分体系热力学课后习题及答案

大学物理化学4-多组分体系热力学课后习题及答案

多组分体系热力学课后习题一、是非题下述各题中的说法是否正确?正确的在题后括号内画“√”,错的画“⨯”1. 二组分理想液态混合物的总蒸气压大于任一纯组分的蒸气压。

( )2. 理想混合气体中任意组分B 的逸度B ~p 就等于其分压力p B ~。

( )3.因为溶入了溶质,故溶液的凝固点一定低于纯溶剂的凝固点。

( ) 4.溶剂中溶入挥发性溶质,肯定会引起溶液的蒸气压升高。

( ) 5.理想溶液中的溶剂遵从亨利定律;溶质遵从拉乌尔定律。

( ) 6. 理想液态混合物与其蒸气达成气、液两相平衡时,气相总压力p 与液相组成x B 呈线性关系。

( )7. 如同理想气体一样,理想液态混合物中分子间没有相互作用力。

( )8. 一定温度下,微溶气体在水中的溶解度与其平衡气相分压成正比( )9. 化学势是一广度量。

( )10. 只有广度性质才有偏摩尔量( )11. )B C C,(,,B ≠⎪⎪⎭⎫⎝⎛∂∂n V S n U 是偏摩尔热力学能,不是化学势。

( ) 二、选择题选择正确答案的编号,填在各题题后的括号内1. 在α、β两相中都含有A 和B 两种物质,当达到相平衡时,下列三种情况, 正确的是:( )。

(A)ααμ=μB A ; (B) βαμ=μA A ; (C) βαμ=μB A 。

2. 理想液态混合物的混合性质是:( )。

(A)Δmix V =0,Δmix H =0,Δmix S >0,Δmix G <0;(B)Δmix V <0,Δmix H <0,Δmix S <0,Δmix G =0;(C)Δmix V >0,Δmix H >0,Δmix S =0,Δmix G =0;(D)Δmix V >0,Δmix H >0,Δmix S <0,Δmix G >0。

3. 稀溶液的凝固点T f 与纯溶剂的凝固点*f T 比较,T f <*fT 的条件是:( )。

(A )溶质必需是挥发性的;(B )析出的固相一定是固溶体;(C )析出的固相是纯溶剂;(D )析出的固相是纯溶质。

热力学与统计物理课后习题答案第一章

试求理想气体的体胀系数,压强系数和等温压缩系数。

解:已知理想气体的物态方程为(1)由此易得(2)(3)(4)证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。

解:以为自变量,物质的物态方程为其全微分为(1)全式除以,有根据体胀系数和等温压缩系数的定义,可将上式改写为(2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有(3)若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。

确定常量C需要进一步的实验数据。

在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。

问:(a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少?解:(a)根据题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。

如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得(3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。

但是应当强调,只要初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。

这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。

本题讨论的铜块加热的实际过程一般不会是准静态过程。

在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。

将所给数据代入,可得因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为(4)将所给数据代入,有因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。

简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为解: 以为状态参量,物质的物态方程为根据习题式(2),有(1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有(2)或(3)考虑到和的数值很小,将指数函数展开,准确到和的线性项,有(4)如果取,即有(5)描述金属丝的几何参量是长度,力学参量是张力J,物态方程是实验通常在1下进行,其体积变化可以忽略。

化工热力学课后部分习题答案

2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。

2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。

气他的热力学性质均不同。

3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。

(F ) ② 理想气体的H 、S 、G 仅是温度的函数。

(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。

(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。

(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。

(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

《传热学》课后习题答案-第一章

传热学习题集第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。

答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。

联系是:在发生对流换热的同时必然伴生有导热。

导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。

2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。

试写出这三个公式并说明其中每一个符号及其意义。

答:① 傅立叶定律:,其中,-热流密度;-导热系数;-沿x方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。

② 牛顿冷却公式:,其中,-热流密度;-表面传热系数;-固体表面温度;-流体的温度。

③ 斯忒藩-玻耳兹曼定律:,其中,-热流密度;-斯忒藩-玻耳兹曼常数;-辐射物体的热力学温度。

3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。

这三个参数中,只有导热系数是物性参数,其它均与过程有关。

4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。

试分析引入传热方程式的工程实用意义。

答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。

5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。

而一旦壶内的水烧干后,水壶很快就烧坏。

试从传热学的观点分析这一现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n 转后,压强设当压强降到时,所需时间为 分,转数1-27 把 的氮气压入一容积为 的容器,容器中原来已充满同温同压的氧气。

试求混合气体的压强和各种气体的分压强,假定容器中的温度保持不变。

解:根据道尔顿分压定律可知 又由状态方程 且温度、质量M 不变。

第二章 气体分子运动论的基本概念2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。

设混合气体的温度为150℃,求混合气体的压强。

解:根据混合气体的压强公式有 PV=(N 氧+N 氮+N 氩)KT其中的氩的分子个数:N 氩=15231001097.410023.640103.3⨯=⨯⨯⨯=-N M 氩氩μ(个)∴ P=(1.0+4.0+4.97)10152231033.225004231038.1--⨯=⨯⨯⋅Pa 41075.1-⨯≅mmHg2-5 一容器内有氧气,其压强P=1.0atm,温度为t=27℃,求(1) 单位体积内的分子数:(2) 氧气的密度; (3) 氧分子的质量; (4) 分子间的平均距离; (5) 分子的平均平动能。

解:(1) ∵P=nKT∴n=252351045.23001038.110013.10.1⨯=⨯⨯⨯⨯=-KT P m -3(2) l g RTP /30.1300082.0321=⨯⨯==μρ(3)m 氧=23253103.51045.2103.1-⨯≅⨯⨯=n ρg (4) 设分子间的平均距离为d ,并将分子看成是半径为d/2的球,每个分子的体积为v 0。

V 0=336)2(34d d ππ=∴71931028.41044.266-⨯=⨯⨯==ππn d cm (5)分子的平均平动能ε为: ε14161021.6)27273(1038.12323--⨯=+⨯⨯==KT (尔格) 2-12 气体的温度为T = 273K,压强为 P=1.00×10-2atm,密度为ρ=1.29×10-5g(1) 求气体分子的方均根速率。

(2) 求气体的分子量,并确定它是什么气体。

解:(1)s m PRTV/485332===ρμ(2)mol g mol kg PRTn PN A /9.28/109.283=⨯===-ρμ m=28.9该气体为空气2-19 把标准状态下224升的氮气不断压缩,它的体积将趋于多少升?设此时的氮分子是一个挨着一个紧密排列的,试计算氮分子的直径。

此时由分子间引力所产生的内压强约为多大?已知对于氮气,范德瓦耳斯方程中的常数a=1.390atm ﹒l 2mol -2,b=0.039131mol -1。

解:在标准状态西224l 的氮气是10mol 的气体,所以不断压缩气体时,则其体积将趋于10b ,即0.39131,分子直径为: 内压强P 内=8.90703913.039.122≅=V a atm 注:一摩尔实际气体当不断压缩时(即压强趋于无限大)时,气体分子不可能一个挨一个的紧密排列,因而气体体积不能趋于分子本身所有体积之和而只能趋于b 。

第三章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μ3-13 N 个假想的气体分子,其速率分布如图3-13所示(当v >v 0时,粒子数为零)。

(1)由N 和V 0求a 。

(2)求速率在1.5V 0到2.0V 0之间的分子数。

(1) 求分子的平均速率。

解:由图得分子的速率分布函数: NV Va0 (00V V 〈〈)Na(002V V V 〈〈) f(v)= 0 (02V V 〉) (1) ∵dv V Nf dN )(=∴aV aV V V a advdV V VadV V f N N VV V 00200202321)(0=+=+==⎰⎰⎰∞(2)速率在1.5V0到2.0V之间的分子数3-21 收音机的起飞前机舱中的压力计批示为1.0atm,温度为270C;起飞后压力计指示为0.80atm,温度仍为27 0C,试计算飞机距地面的高度。

解:根据等温气压公式:P=P0e -有In = -∴H = - In •其中In =In = -0.223,空气的平均分子量u=29.∴H= 0.223×=2.0×103(m)3-27 在室温300K下,一摩托车尔氢和一摩尔氮的内能各是多少?一克氢和一克氮的内能各是多少?解:U氢= RT =6.23×103(J)U氮= RT =6.23×103(J)可见,一摩气体内能只与其自由度(这里t=3,r=2,s=0)和温度有关。

一克氧和一克氮的内能:∴U氢= = = 3.12×103(J) U氮= = = 2.23×103(J)3-30 某种气体的分子由四个原子组成,它们分别处在正四面体的四个顶点:(1)求这种分子的平动、转动和振动自由度数。

(2)根据能均分定理求这种气体的定容摩尔热容量。

解:(1)因n个原子组成的分子最多有3n个自由度。

其中3个平动自由度,3个转动自由度,3n-1个是振动自由度。

这里n=4,故有12个自由度。

其中3个平动、个转动自由度,6个振动自由度。

(2) 定容摩尔热容量:Cv= (t+r+2s)R = ×18×2= 18(Cal/mol•K)第四章气体内的输运过程4-2.氮分子的有效直径为,求其在标准状态下的平均自由程和连续两次碰撞间的平均时间。

解:=代入数据得:-(m)=代入数据得:=(s)4-4.某种气体分子在时的平均自由程为。

(1)已知分子的有效直径为,求气体的压强。

(2)求分子在的路程上与其它分子的碰撞次数。

解:(1)由得:代入数据得:(2)分子走路程碰撞次数(次)4-6.电子管的真空度约为HG,设气体分子的有效直径为,求时单位体积内的分子数,平均自由程和碰撞频率。

解:(2)(3)若电子管中是空气,则4-14.今测得氮气在时的沾次滞系数为试计算氮分子的有效直径,已知氮的分子量为28。

解:由《热学》(4.18)式知:代入数据得:4-16.氧气在标准状态下的扩散系数:、求氧分子的平均自由程。

解:代入数据得4-17.已知氦气和氩气的原子量分别为4和40,它们在标准状态嗲的沾滞系数分别为和,求:(1)氩分子与氦分子的碰撞截面之比;(2)氩气与氦气的导热系数之比;(3)氩气与氦气的扩散系数之比。

解:已知(1)根据(2)由于氮氩都是单原子分子,因而摩尔热容量C相同(3)现P、T都相同,第五章热力学第一定律5-21. 图5-21有一除底部外都是绝热的气筒,被一位置固定的导热板隔成相等的两部分A和B,其中各盛有一摩尔的理想气体氮。

今将80cal 的热量缓慢地同底部供给气体,设活塞上的压强始终保持为1.00atm,求A部和B部温度的改变以及各吸收的热量(导热板的热容量可以忽略).若将位置固定的导热板换成可以自由滑动的绝热隔板,重复上述讨论.解:(1)导热板位置固定经底部向气体缓慢传热时,A部气体进行的是准静态等容过程,B部进行的是准表态等压过程。

由于隔板导热,A、B两部气体温度始终相等,因而=6.7K=139.2J(2)绝热隔板可自由滑动B部在1大气压下整体向上滑动,体积保持不变且绝热,所以温度始终不变。

A部气体在此大气压下吸热膨胀5-25.图5-25,用绝热壁作成一圆柱形的容器。

在容器中间置放一无摩擦的、绝热的可动活塞。

活塞两侧各有n 摩尔的理想气体,开始状态均为p0、V0、T0。

设气体定容摩尔热容量C v为常数,=1.5将一通电线圈放到活塞左侧气体中,对气体缓慢地加热,左侧气体膨胀同时通过活塞压缩右方气体,最后使右方气体压强增为p0。

问:(1)对活塞右侧气体作了多少功?(2)右侧气体的终温是多少?(3)左侧气体的终温是多少?(4)左侧气体吸收了多少热量?解:(1)设终态,左右两侧气体和体积、温度分别为V左、V右、T左、T右,两侧气体的压强均为p0对右侧气体,由p0 =p右得则外界(即左侧气体)对活塞右侧气体作的功为(2)(3)(4)由热一左侧气体吸热为5-27 图5-27所示为一摩尔单原子理想气体所经历的循环过程,其中AB为等温线.已知3.001, 6.001求效率.设气体的解:AB,CA为吸引过程,BC为放热过程.又且故%5-28 图5-28(T-V图)所示为一理想气体(已知)的循环过程.其中CA为绝热过程.A点的状态参量(T, )和B点的状态参量(T, )均为已知.(1)气体在A B,B C两过程中各和外界交换热量吗?是放热还是吸热?(2)求C点的状态参量(3)这个循环是不是卡诺循环?(4)求这个循环的效率.解:(1)A B是等温膨胀过程,气体从外界吸热,B C是等容降温过程,气体向外界放热.从又得(3)不是卡诺循环(4)==5-29 设燃气涡轮机内工质进行如图5-29的循环过程,其中1-2,3-4为绝热过程;2-3,4-1为等压过程.试证明这循环的效率为又可写为其中是绝热压缩过程的升压比.设工作物质为理想气体, 为常数.证:循环中,工质仅在2-3过程中吸热,循环中,工质仅在4-1过程中放热循环效率为从两个绝热过程,有或或由等比定理又可写为5-31 图5-31中ABCD为一摩尔理想气体氦的循环过程,整个过程由两条等压线和两条等容线组成.设已知A点的压强为2.0tam,体积为 1.01,B点的体积为2.01,C点的压强为 1.0atm,求循环效率.设解:DA和AB两过程吸热,===6.5atmlBC和CD两过程放热===5.5atml%5-33 一制冷机工质进行如图5-33所示的循环过程,其中ab,cd分别是温度为, 的等温过程;cb,da为等压过程.设工质为理想气体,证明这制冷机的制冷系数为证:ab,cd两过程放热, 而Cd,da两过程吸热, ,而则循环中外界对系统作的功为从低温热源1,(被致冷物体)吸收的热量为制冷系数为证明过程中可见,由于,在计算时可不考虑bc及da两过程.第六章热力学第二定律6-24 在一绝热容器中,质量为m,温度为T1的液体和相同质量的但温度为T2的液体,在一定压强下混合后达到新的平衡态,求系统从初态到终态熵的变化,并说明熵增加,设已知液体定压比热为常数CP。

相关文档
最新文档