初中数学人教版七年级上学期 第二章 整式的加减 教师版
人教版七年级数学上 第二章 整式的加减 精品课件

计算 a + (5a-3b) - (a-2b) 解:原式= a + 5a-3b - a + 2b = (a +5a - a) + (-3b + 2b) = 5a - b
例:计算:
3. 多项式3x3-2x-5的常数项是____,一次项是 ____, 三次项的系数是_____.二次项的系数是 _____.每 项的系数分别是____,每项的次 数分别是 ____多项式的次数是___
5 (4)多项式 8 abm-3a
如何进行整式的加减呢?
去括号、合并同类项
口诀:
去括号,看符号:
是“+”号,不变号;是“-”号,全
变号. 例如:
+(
3x-3)=
3x-3
例如: -( x - 1) = -x + 1
什么叫同类项 特征(1)含有相同的字母 (2)相同字母的指数也相同 具有这两个特征的项叫同类项
A0
B2 C 4 D6
3.一个三位数,十位数字为a-2,个位数字 比十位数字的3倍多2,百位数字比个位数 字少3.试用多项式表示这个三位数; 当a=3时,这个三位数是多少?
(1)2x2 -3x + 1与 -3x2 + 5x-7 的和
思维分析:把多项式看作一个整体,并用括号
见多必括
解 (2x2 -3x + 1)+( -3x2 + 5x-7) = 2x2 -3x + 1 -3x2 + 5x-7
=( 2x2 -3x2 )+(-3x + 5x)+(1-7)
七年级上册数学《整式的加减》教案优秀

七年级上册数学《整式的加减》教案优秀整式的加减篇一整式的加减篇二教学目的:1.经历及字母表示数量关系的过程,发展符号感;2.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
教学重点:会进行整式加减的运算,并能说明其中的算理。
教学难点:正确地去括号、合并同类项,及符号的正确处理。
教学过程:一、课前练习: 1.填空:整式包括_____________和_______________2.单项式的系数是___________、次数是__________3.多项式3m3-2m-5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________.4.下列各式,是同类项的一组是()(a)22x2y 与 yx2(b)2m2n与2mn2(c) ab与abc5.去括号后合并同类项:(3a-b)+(5a+2b)-(7a+4b).二、探索练习:1.如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________.2.如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________.●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式。
三、巩固练习:1.填空:(1)2a-b与a-b的差是__________________________;(2)单项式、、、的和为___________;(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n个三角形需__________个棋子。
初中数学人教七年级上册第二章 整式的加减 人教版七年级上册 整式的加减PPT

1、了解同类项和合并同类项的概念; 2、掌握合并同类项的法则;
教学重点和难点: 掌握合并同类项的法则
1、下列式子哪些是单项式?哪些是多项式?
ab
, 2abc
3
,
4ab 4, a4 2a2b2 b4
2、求上题中多项式的项及次数.
3、如果mx2yk是关于x,y的五次单项式,系数为6
(1)a+a=2a √ (4)4x2y-5xy2=-x2y × (2)3a+2b=5ab × (5)3x2+2x3=5x5 × (3)5y2-3y2=2 × (6)a+a-5a=-3a √
例: 合并同类项:
(1) 4x²+2x+7+3x-8x²-2
注意:1)合并同类项只是系数相加, 字母与字母的指数不变。 2)不是同类项的不能合并。
,则m= 6
,k= 3
。
4、如果3x2 7x3 yk mxy 是关于x,y的四次二项
式,则k= 1 ,m= 0 。
5个人+8个人=_(5__+_8_)个__人_; 5只羊+8只羊=_(5__+_8_)只__羊_; 5个人+8只羊=________.
将下列整式进行分类,并与同伴交流一下 你为什么这么分类?
2mn 2与_________________________.
如图:这个长方形的面 积可以用代数式表示吗?
8
5
有几种表示方法?
n
有两种表示方法:
8n+5n 或 (8+5)n
从上面这两个代数式你观察到了什么?你能 得出什么结论?
即:8n+5n = (8+5)n =13n
由 8n+5n=(8+5)n=13n 可看出什么?
人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

探究新知
知识点 1 同类项的概念
猴子要搬新家啦!有八只小猴子,每只身上都标有一个
单项式,你能根据这些单项式的特征将这些小猴子分到
不同的房间里吗?(用几个房间都可以)
8n
-7a2b
3ab2
2a2b
8n 6xy
5n
-3xy
-ab2
探究新知
8n 5nn
3ab2 -ab2
6xy -3xy
-7a2b 2a2b
法则
(1)系数相加;
合并同类项 (一加两不变) (2)字母连同它的指数不变.
步骤 一容
教材作业 从课后习题中选取
自主安排 配套练习册练习
3
3
巩固练习
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
解: x4-5x2+2x3-x4+5x2-2x3+2x-1 = (x4-x4)+(-5x2+5x2)+(2x3-2x3)+2x-1 = 2x-1 当x=2019时,原式=2×2019-1=4037.
探究新知
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5 ×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a √
注:(2)(4)(5)中的单项式不是同类项,不能合并. (3)是同类项,但合并结果不对.
的同类探项究.新知
素养考点 1 合并同类项
4a2 3b2 2ab 3a2 b2.
解: 4a2 3b2 2ab 3a2 b2 找
探究新知
归纳总结
同类项的判别方法: (1)同类项只与字母及其指数有关,与系数无关,与
人教版初中数学2021课标版七年级上册第二章整式的加减课件(共27张PPT)

③结合律=( 4x2 - 8x2)+ (2x + 3x)+ (7 – 2)
④分配律=(4- 8)x2 + (2 + 3)x + (7 – 2)
在合并同类项时结果往往是一
⑤合并: ==-45x2 + 55xx+5-4 x2 个多项式,通常把这个结果写
A.系数相加减;
成按某一个字母的升幂或降幂 的形式排列。
B.字母和字母的指数不变。
教师讲解2
规律总结:合并同类项是整式运算的基 础,准确地找出整式中的同类项是合并 同类项的关键,合并时应注意每项的符 号,没合并的项不能漏掉,体现了数学 中的分类思想与对法则的理解应用能 力
三、分层提高
(一)师友训练
(二)教师提升
四、总结归纳
(一)师友总结
(二)教师归纳
把多项式中的同类项 合并成一项
(1)100t -252t 152t;
(2)3x2 +2x2
(3)3ab2 -4ab2 1ab2.
=-
= 5x2; =-
2.法则要点:
含有多个不同的同 类项的多项式如何 合并呢?
①找 例2:4x2 + 2x + 7 + 3x - 8x2 - 2 注意符号 ②交换律=4x2 - 8x2 + 2x + 3x + 7 - 2
五、巩固反馈
(一)师友检查
(二)教师评价
人教版初中数学2021课 标版七年级上册第二章 整式的加减课件(共27张
PPT)
2020/8/26
本课学习目标
1.理解同类项的概念,在具体情 境中,认识同类项.(重点)
2.理解合并同类项的概念,掌握 合并同类项的法则.(重点)
第一章有理数,第二章整式的加减法复习教案

砖_________块。
18、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每
月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么
超过部分每度电价按b元收费。某户居民在一个月内用电160度,他这个月
应缴纳电费是
元(用含a、b的代数式表示)。
三、解答题(共46分)
待学 生完 成, 教师 批改 后, 选择 性的 进行 订正
梳理
2、 什么叫做单项式的系数、次数?什么叫做多项式的项、次数?
知识
3、 什么叫做同类项?怎样合并同类项?合并同类项的依据是什么?
点,
4、 怎样去括号?去括号的依据是什么?符号变化有什么规律?
教师
补充
一、选择题(共30分)
并列
1、用代数式表示a与-5的差的2倍是( )
举相
A、a-(-5)×2
B、a+(-5)×2
C、2(a-5) D、2(a+5)
应知
2、下面的式子,正确的是( )
识点
A、3a2+5a2=8a4 B、5a2b-6ab2=-ab2 C、6xy-9yx=-3xy D、2x+3y=5xy 的 例
人教版初中七年级数学上册第二章《整式的加减》(含答案解析)(1)
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 5.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.6.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.7.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】 根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 8.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.9.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 10.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.12.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A 解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .13.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-; 故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.14.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 2.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0, 故答案为0.3.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.y=,则输入的数x=________________.6.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.7.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解解析:83n【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.8.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.10.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.11.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 1.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.2.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到:2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.3.让我们规定一种运算a bad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()();2-3253310935xx x x x x x =⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.4.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x15,第8个分子上是x17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157xy,第8个分式为178xy.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。
最新部编版人教初中数学七年级上册《第二章(整式的加减)全章教学设计》精品优秀实用打印版整章每课教案
最新精品最新部编版人教初中七年级数学上册第二章整式的加减优秀教学设计(全章完整版)前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)第二章整式的加减2.1.1整式(一)教学内容:教科书第54—56页,2.1整式:1.单项式。
教学目标和要求:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是;(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。
让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)
一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.3.(0分)如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.4.(0分)下列说法正确的是()A.单项式34xy-的系数是﹣3 B.单项式2πa3的次数是4C.多项式x2y2﹣2x2+3是四次三项式D.多项式x2﹣2x+6的项分别是x2、2x、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.5.(0分)如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.6.(0分)下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.7.(0分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.(0分)已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 9.(0分)根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.10.(0分)如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 二、填空题11.(0分)多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.12.(0分)化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】(1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.16.(0分)某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.17.(0分)将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.18.(0分)将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.19.(0分)王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 20.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.三、解答题21.(0分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n 个式子为(n ﹣1)(n+1)+1=n 2,证明:左边=n 2﹣1+1=n 2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.22.(0分)先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.23.(0分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.24.(0分)已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 25.(0分)已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.26.(0分)数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.27.(0分)某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
人教版数学七年级上册第二章《整式的加减》教学设计
人教版数学七年级上册第二章《整式的加减》教学设计一. 教材分析人教版数学七年级上册第二章《整式的加减》是学生进入初中阶段后接触到的第一个较为复杂的数学章节。
本章主要内容包括整式的加减运算,重点是让学生掌握整式加减的法则,并能够熟练进行整式的加减运算。
二. 学情分析学生在进入七年级之前,已经学习了实数、代数式等基础知识,对于整数和分数的加减运算已经有一定的掌握。
但是,对于整式的加减运算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解和掌握整式加减的法则,并通过大量的练习来提高学生的运算能力。
三. 教学目标1.让学生掌握整式加减的法则,并能够熟练进行整式的加减运算。
2.培养学生的逻辑思维能力和运算能力。
3.培养学生独立思考和合作交流的能力。
四. 教学重难点1.整式加减的法则的理解和掌握。
2.整式加减运算的技巧和方法。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握整式加减的法则。
2.使用多媒体教学,通过动画和图形的方式,让学生更直观地理解整式加减的过程。
3.采用小组合作学习的方式,让学生在合作交流中提高自己的运算能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出整式加减的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过多媒体课件,呈现整式加减的法则,引导学生理解和掌握。
3.操练(10分钟)让学生进行整式加减的运算练习,巩固所学知识。
4.巩固(10分钟)通过一些典型的例题,让学生进一步理解和掌握整式加减的法则。
5.拓展(10分钟)引导学生思考整式加减的运算规律,提高学生的逻辑思维能力。
6.小结(5分钟)对本节课的内容进行小结,让学生明确学习目标。
7.家庭作业(5分钟)布置一些整式加减的练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学人教版七年级上学期第二章整式的加减一、单选题(共10题;共20分)xy3与−3xy4+a是同类项,那么a的值是()1.已知单项式12A. -1B. 0C. 1D. 2【答案】Axy3和−3xy4+a是同类项【解析】【解答】解:因为12所以3=4+a所以a=-1故本题答案为A.【分析】根据同类项的定义,同类项中所含的字母及对应字母的指数都相同即可解答.2.关于单项式23x2y2z,下列结论正确的是()A. 系数是-2,次数是4B. 系数是-2,次数是5C. 系数是-2,次数是8D. 系数是23,次数是5【答案】 D【解析】【解答】解:根据题意,单项式的系数是:23;次数是:2+2+1=5;故答案为:D.【分析】根据单项式的定义,找出其系数及次数即可得出结论.3.下列说法正确的是()A. 单项式−a的系数是1;B. 单项式−3abc2的次数是3;C. 4a2b2−3a2b+1是四次多项式;D. m2n5不是整式;【答案】C【解析】【解答】A. 单项式−a的系数是-1,该选项错误;B. 单项式−3abc2的次数是4,该选项错误;C. 4a2b2−3a2b+1是四次多项式,该选项正确;D. m2n5是整式,该选项错误;故答案为:C.【分析】单项式的系数:指的是单项式中的数字因数;单项式的次数:指的是单项式中各个字母指数的和;据此判断A、B;一个多项式中,每个单项式叫做多项式的项,次数最高项的次数,叫做多项式的次数,据此判断C;单项式与多项式统称整式,由于m2n5是单项式,据此即可判断D.4.下列计算正确的是()A. 5a−2a=3B. 2a+3b=5abC. 3a+2a=5a2D. −3ab+ba=−2ab【答案】 D【解析】【解答】A. 5a−2a=3a,故A选项错误;B. 2a+3b,不是同类项,不能合并,故错误;C. 3a+2a=5a,故C选项错误;D. −3ab+ba=−2ab,故D选项正确;故答案为:D【分析】先确定各项是否为同类项,如为同类项根据合并同类项法则合并同类项即可.5.下列去括号中,正确的是()A. −(a+b+c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6c.C. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c【答案】B【解析】【解答】解:A. −(a+b+c)=−a−b−c,故A选项错误;B. −2(a+b−3c)=−2a−26+6c,故B选项正确;C. −(−a−b−c)=a+b+c,故C选项错误;D. −(a−b−c)=−a+b+c,故D选项错误;【分析】利用去括号法则即可选择.注意括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.6.任意给定一个非零数x,按下列箭头顺序执行方框里的相应运算,得出结果后,再进行下一方框里的相应运算,最后得到的结果是()→平方→→→结果A. xB. x2C. x+1D. x−1【答案】 D【解析】【解答】根据题意得:(x2+x)÷x-2=x2÷x+x÷x-2=x+1-2=x-1,故答案为:D.【分析】根据程序先列出算式,然后计算即可.7.一组按规律排列的多项式:ab,a2b3,a3b5,a4b7,⋯⋯,其中第10 个式子是()A. a10 b15B. a10 b19C. a10 b17D. a10 b21【答案】B【解析】【解答】解:根据题意,字母a的指数是:1、2、3、4、……n,字母b的指数是:1、3、5、7、……2n-1,∴第n个单项式为:a n b2n−1,当n=10时,有单项式为:a10b19;故答案为:B.【分析】根据题意,找出a、b的变化规律,从而得到单项式的规律,即可得到答案.8.如图,桌上有9张卡片,每张卡片的一面写数字1,另一面写数字-1.每次翻动任意2张(包括已翻过的牌)。
改变其向上的面,然后计算能看到的所有牌面数字的积请问,当翻了2019次时牌面数字的积为( )A. 1B. -1C. 2019D. -2019【答案】A【解析】【解答】第一次翻牌时有两张变成-1,其它都为1,故乘积为1;第二次翻牌时,有三种可能:①翻到的两张都为未翻到的牌,则有四张-1,其它都为1,乘积为1;②翻到的两张都为翻到的牌,则有0张-1,其它都为1,乘积为1;③翻到的两张一张为翻过的牌,一张为未翻过的牌,则-1有两张,其它都为1,乘积为1.依次类推,从第二次开始每次翻牌都有三种可能,-1的个数比原来增加2,-1的个数保持不变,-1的个数减少2,总之-1的个数为偶数,其余全是1,故乘积为1.所以当翻了2019次时牌面数字的积为:1.故答案为:A.【分析】依照题述翻牌,发现翻牌时-1的个数总保持偶数,故2019次翻牌乘积仍为1.9.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第10个图案中涂有阴影的小正方形的个数为()A. 50B. 45C. 41D. 36【答案】C【解析】【解答】解:由题意得第1个图形中涂有阴影部分的小正方形的个数为:1+4×1=5;第2个图形中涂有阴影部分的小正方形的个数为:1+4×2=9;第3个图形中涂有阴影部分的小正方形的个数为:1+4×3=13;…第n个图形中涂有阴影部分的小正方形的个数为:1+4n;∴第10个图形中涂有阴影部分的小正方形的个数为:1+4×10=41;故答案为:C.【分析】观察图形的变化规律分别求出第1个图形中涂有阴影部分的小正方形的个数;第2个图形中涂有阴影部分的小正方形的个数;根据数字的变化规律可得到第n个图形中涂有阴影部分的小正方形的个数为1+4n;,然后将n=10代入计算可求解。
10.一个长方形的宽是a,长是2a,则这个长方形的周长是()A. 3aB. 6aC. 2a 2D. 9a【答案】 B【解析】【解答】根据题意,得 C =2(2a +a)=6a故答案为B.【分析】根据长方形的周长公式: C =2(a +b) ,计算即可得解.二、填空题(共9题;共27分)11.计算: −a −3a = ________.【答案】 −4a【解析】【解答】-a-3a=(-1-3)a=-4a .故答案为:-4a .【分析】直接利用合并同类项法则分别计算得出答案.12.多项式 2x 2y-xy 的次数是________.【答案】 3【解析】【解答】解:多项式 2x 2y −xy 的次数是3,故答案为:3.【分析】根据多项式的次数的定义,即可得到答案.13.写出一个3次单项式________。
【答案】 答案不唯一, 如:abc , x 3等【解析】【解答】解:abc ,x 3.故答案为:abc.【分析】利用单项式中所有字母的指数和是单项式的次数,写出一个三次单项式即可。
14.把多项式 3a 2b 2−a 3b −1−ab 3 按字母 a 升幂排列后,第二项是________.【答案】 −ab 3【解析】【解答】解:多项式 3a 2b 2−a 3b −1−ab 3 按字母 a 升幂排列是: −1−ab 3+3a 2b 2−a 3b ∴第二项是 −ab 3故答案为: −ab 3【分析】先将原式按照字母 a 升幂排列,然后确定第二项.15.关于m 、n 的单项式 2m a n b 与−3m 2(a −1)n 的和仍为单项式,则这个和为________【答案】 -m 2 n【解析】【解答】解:根据题意知 {a =2(a −1)b =1,解之得: {a =2b =1 故 2m a n b =2m 2n , −3m 2(a−1)n =−3m 2n ,∴ 2m 2n +(−3m 2n)=−m 2n故结果为: −m 2n【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出a ,b 的值,再代入代数式计算即可.16.如图所示的运算程序中,若开始输入的x值为12,我们发现第1次输出的结果为6,第2次输出的结果为3,…,第2020次输出的结果为________.【答案】12【解析】【解答】由程序框图知:若开始输入的x值为12,=6,第1次输出的结果为12× 12=3,第2次输出的结果为6× 12第3次输出的结果为3+7=10,=5,第4次输出的结果为10× 12第5次输出的结果为5+7=12,=6,第6次输出的结果为12× 12=3…第7次输出的结果为6× 12不难推知以后四次一循环,∵2020÷4=404,∴第2020次输出的结果为12.故答案为:12.【分析】根据已知和程序框图,依次写出输出的结果,寻找规律,从而确定结果.17.多项式x2−3mxy−3y2+6xy−8中不含xy项,则常数m的值是________.【答案】2【解析】【解答】整理原式x2−3mxy−3y2+6xy−8=x2+(6−3m)xy−3y2−8,∵该多项式不含xy项,∴6−3m=0,得m=2.故填:2.【分析】先将多项式合并同类项,再根据多项式不含xy项得6−3m=0,即可解出m.18.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是________(n≥1)。
【答案】 y=2n +n【解析】【解答】解:观察发现:3=21+1;6=22+2;11=23+3,则可得y=2n +n (n 为正整数).【分析】观察不难发现最下面小三角形中的数等于上面两个小三角形中的数字之和,而左上侧小三角形中的数字依次为1、2、3…,右上侧小三角形中的数字依次为21、22、33…,据此不难得到y 与n 的关系,注意n 的取值为正整数.19.一组按规律排列的式子: −92,166,−2512,3620 …照此规律第9个数为________ 【答案】 −12190【解析】【解答】由式子: −92,166,−2512,3620 …得出第9个数为 −(9+2)29×10 = −12190 . 故答案为: −12190 .【分析】由分母2=1×2,6=2×3,12=3×4,20=4×5…得出第n 个数的分母为n (n +1),分子是从3开始连续自然数的平方,第n 个数的分子为(n +2)2 , 符号为奇负偶正,由此规律求得第9个数即可.三、计算题(共4题;共20分)20.化简求值:3x 3-(4x 2+5x)-3(x 2-2x 2-2x),其中x=-2。
【答案】 解:原式=3x 3-4x 2-5x-3x 3+6x 2+6x=2x 2+x.当x=-2时原式=2×(-2)2+(-2)=6【解析】【分析】根据去括号,合并同类项法则,先化简,再代入求值,即可.21.先化简,再求值: 3a 2b −[−2a 2b −6(ab −23a 2b)+4ab]−3ab ,其中 a =3 , b =−13 .【答案】 解:原式= 3a 2b −(−2a 2b −6ab +4a 2b +4ab)−3ab= 3a 2b +2a 2b +6ab −4a 2b −4ab −3ab= a 2b −ab ,当 a =3,b =−13 时,原式= 32×(−13)−3×(−13)= −3+1= −2.【解析】【分析】先去括号,合并同类项,再代值计算即可.22.已知2x m y2与-3xy n是同类项,试计算下面代数式的值:m-(m2n+3m-4n)+(2nm2-3n).【答案】解:原式=m-m2n-3m+4n+2nm2-3n,=-2m+n+m2n,∵2x m y2与-3xy n是同类项,∴m=1,n=2.∴原式=-2×1+2+12×2,=-2+2+2,=2.【解析】【分析】先利用去括号法则、合并同类项法则先化简,再根据同类项定义求得m=1,n=2,将此代入化简之后的代数式,计算即可得出答案.23.若关于x,y的多项式my3+3nx2y+2y3-x2y+y不含三次项,求2m+3n的值.【答案】解:my3+3nx2y+2y3-x2y+y=(m+2)y3+(3n-1)x2y+y.∵此多项式不含三次项,∴m+2=0,3n-1=0,∴m=-2,n=13,∴2m+3n=2×(-2)+3× 13,=-4+1,=-3.【解析】【分析】根据合并同类项法则先计算,再依据题意不含三次项可得m+2=0,3n-1=0,解得m、n的值,将m、n的值代入2m+3n计算即可得出答案.四、解答题(共3题;共33分)24.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1.”甲同学把“x=12”错抄成“x=-12”,但他计算的结果也是正确的,试说明理由,并求出正确结果.【答案】解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3) =2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=12,y=-1时,原式=-2×(-1)3=2.【解析】【分析】原式去括号合并得到结果,即可作出判断.25.已知A=2x2+3xy﹣2x﹣1,B=x2﹣xy﹣1.(1)化简:4A﹣(2B+3A),将结果用含有x、y的式子表示;(2)若式子4A﹣(2B+3A)的值与字母x的取值无关,求y3+ 7125A﹣14125B的值.【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)=5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= 25.则y3+ 7125A- 14125B=y3+ 7125(A-2B)=y3+ 7125×1= 8125+ 7125= 15125= 325.【解析】【分析】(1)由题意把A、B的值代入代数式,用去括号法则和合并同类项法则计算即可求解;(2)由(1)中的结果合并同类项,把含x的项合并在一起,根据代数式的值与字母x的值取值无关可得含x的项的系数为0可得关于y的方程,解方程可得y的值,则所求代数式的值可求解.26.观察下列等式:11×2=1﹣12,12×3= 12﹣13,13×4= 13﹣14,….将以上三个等式两边分别相加得:11×2+ 12×3+ 13×4=1﹣12+ 12﹣13+ 13﹣14=1﹣14= 34.(1)猜想并写出:1n(n+1)=________.(2)直接写出下列各式的计算结果:① 11×2+ 12×3+ 13×4+…+ 12016×2017=________;② 11×2+ 12×3+ 13×4+…+ 1n(n+1)=________.(3)探究并计算:12×4+ 14×6+ 16×8+…+ 12014×2016.【答案】(1)1n −1n+1(2)20162017;nn+1(3)解:∵1n(n+2)=12(1n−1n+2)原式=12(12−14)+12(14−16)+⋯12(12014−12016)=12(12−12016)=10074032【解析】【解答】解:(1)由题意可知:1n(n+1)= 1n﹣1n+1;(2)①原式=(1﹣12)+(12﹣13)+(13﹣14)+…+(12016﹣12017)=1﹣12017= 20162017,②原式═(1﹣12)+(12﹣13)+(13﹣14)+…+(1n﹣1n+1)=1﹣1n+1= nn+1【分析】(1)根据观察题干,观察出=1n1n(n+1)-1n+1。