大学物理(第五版)常用公式总集
(word完整版)大学物理公式总结,推荐文档

第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t△r =dt dr1.3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gyv at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=gav 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式总结

大学物理公式总结引言:大学物理是自然科学中的一门基础学科,掌握物理公式是学好物理的关键。
物理公式是在长期实验和理论研究的基础上总结、归纳出来的。
在这篇文章中,我将为大家总结一些常见的大学物理公式,并简要介绍这些公式的应用。
1. 动力学公式:1.1 牛顿第二定律:F = ma(F代表力,m代表物体质量,a代表物体加速度)牛顿第二定律是经典力学的基石,描述了物体受到的力和其加速度之间的关系。
它可以用于解释物体在受力作用下的运动状态。
1.2 动能公式:K = (1/2)mv^2(K代表动能,m代表物体质量,v代表物体速度)动能公式是描述物体动能与质量以及速度之间关系的公式。
它告诉我们,当物体速度增加时,其动能也会增加。
1.3 势能公式:U = mgh(U代表势能,m代表物体质量,g代表重力加速度,h代表物体高度)势能公式是描述物体势能与质量、重力加速度以及高度之间关系的公式。
它可以用于解释物体在重力场中的储能情况。
2. 热力学公式:2.1 热力学第一定律:Q = ΔU + W(Q代表系统吸收的热量,ΔU代表系统内能的变化,W代表系统对外界做的功)热力学第一定律描述了系统内能的变化与热量和功之间的关系。
根据这个公式,我们可以推导出热功定理和热机效率等重要概念。
2.2 热容公式:Q = mcΔT(Q代表系统吸收的热量,m代表物体质量,c代表物质的比热容,ΔT代表温度变化)热容公式描述了物体吸收的热量与其质量、比热容和温度变化之间的关系。
它可以用于计算物体在受热或冷却过程中需要吸收或释放的热量。
3. 电磁学公式:3.1 库仑定律:F = k * (|q1 * q2| / r^2)(F代表电场力,k代表库仑常数,q1和q2代表电荷量,r代表距离)库仑定律描述了两个电荷之间的相互作用力与它们的电荷量以及距离之间的关系。
这个定律是电磁学的基础之一,用于解释电荷之间的相互作用。
3.2 电路定律:3.2.1 欧姆定律:V = IR(V代表电压,I代表电流,R代表电阻)欧姆定律是描述电路中电压、电流和电阻之间关系的基本定律。
大学物理公式总结(全面-易懂)

目录 CONTENT
• 力学 • 热学 • 电磁学 • 光学 • 量子物理
01
力学
牛顿运动定律
牛顿第一定律
01
一个物体将保持其静止状态或匀速直线运动状态,除非有外力
作用于它。
牛顿第二定律
02
物体的加速度与作用在它上面的力成正比,与它的质量成反比。
牛顿第三定律
03
作用力和反作用力总是大小相等、方向相反,作用在同一条直
B=μ0*H,其中B是磁感应强度,μ0是真空中的磁导率,H是磁场强度。磁感应强度描述了磁场对电流和磁体的 作用力。
法拉第电磁感应定律
总结词
描述当磁场发生变化时,会在导体中产生电动势的规律。
详细描述
E=N*dΦ/dt,其中E是电动势,N是线圈匝数,dΦ/dt是磁通量 随时间的变化率。法拉第电磁感应定律表明,当磁场发生变化 时,会在导体中产生电动势,从而产生电流。
薛定谔方程
总结词
描述量子力学中粒子状态的偏微分方程。
详细描述
薛定谔方程是量子力学的基本方程之一,用 于描述一个量子系统的状态随时间的变化。 它是一个非相对论的波动方程,可以用来计 算波函数的概率幅和概率密度。
感谢您的观看
THANKS中p是动量,m是质量,v 是速度。
冲量
I = Ft,其中I是冲量,F是力,t是时 间。
角动量
• 角动量:L = mvr,其中L是角动量,m是质量,v 是速度,r是物体到旋转中心的距离。
万有引力定律
• 万有引力定律:两个物体之间的引力与它们的质量成正比, 与它们之间的距离的平方成反比。
衍射公式
$I = I_0 left| frac{sin(pi frac{a}{lambda})}{pi frac{a}{lambda}} right|^2$
大学物理公式总结

大学物理公式总结大学物理是一门重要的自然科学学科,是理工科学生必修的一门课程。
掌握物理公式是学习和理解物理学概念的基础,也是解决物理问题的关键。
本文将对大学物理中常用的一些重要公式进行总结,并给出简要的解释和应用示例。
1. 运动学公式1.1 速度公式v = Δx / Δt其中v表示物体的速度,Δx表示物体在Δt时间内所经过的位移。
1.2 加速度公式a = Δv / Δt其中a表示物体的加速度,Δv表示物体在Δt时间内所改变的速度。
1.3 牛顿第一定律F = ma其中F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
1.4 牛顿第二定律F = mΔv / Δt其中F表示作用在物体上的力,m表示物体的质量,Δv表示物体在Δt时间内所改变的速度。
1.5 速度-时间关系v = u + at其中v表示物体的末速度,u表示物体的初始速度,a表示物体的加速度,t表示时间。
2. 力学公式2.1 动能公式K = 1/2 mv^2其中K表示物体的动能,m表示物体的质量,v表示物体的速度。
2.2 势能公式U = mgh其中U表示物体的势能,m表示物体的质量,g表示重力加速度,h表示物体的高度。
2.3 弹性势能公式U = 1/2 kx^2其中U表示物体的弹性势能,k表示弹簧的弹性系数,x表示弹簧的伸长量。
2.4 万有引力公式F = Gm1m2 / r^2其中F表示物体之间的引力,G为万有引力常数,m1和m2表示两个物体的质量,r表示两个物体之间的距离。
3. 热学公式3.1 热传导公式Q = kA(ΔT / d)其中Q表示热量传导的速率,k表示该物质的导热系数,A表示传热的面积,ΔT表示温度差,d表示传热距离。
3.2 热能公式Q = mcΔθ其中Q表示物体的热量,m表示物体的质量,c表示物体的比热容,Δθ表示物体的温度变化。
3.3 热功定理W = ΔQ其中W表示系统对外做的功,ΔQ表示系统所吸收或排放的热量。
大学物理公式总结

一、力学1.1 运动学at2位移:x=x0+v0t+12速度:v=v0+at加速度:a=ΔvΔt角速度:ω=ΔθΔt圆周运动的线速度与角速度关系:v=ωr周期:T=2πrv频率:f=1T1.2 动力学牛顿第二定律:F=ma功:W=Fxmv2动能:E k=12势能:E p=mgℎ机械能:E=E k+E p功率:P=Fv冲量:I=Ft动量:p=mv动量守恒定律:p1+p2=p1′+p2′碰撞的恢复系数:e=v′relv rel1.3 刚体运动转动惯量:I=ml2角动量:L=IωIω2转动动能:E k=12二、电磁学2.1 静电学电场强度:E=Fq 电势差:U=Ed高斯定律:∮E⃗S ⋅dA=Q encε0电容:C=QU电势:V=KQr2.2 稳恒电流场欧姆定律:I=UR电阻:R=LσS电阻率:σ=1R⋅S焦耳定律:Q=I2Rt2.3 磁场磁感应强度:B=μ0I2πr安培环路定律:∮B⃗L⋅dl=μ0I enc磁通量:Φ=B⋅A磁通量量子:Φ0=2πℏe磁场对运动电荷的作用力:F=qvB 洛伦兹力:F=q(v×B⃗ )磁矩:μ=I⋅A2.4 电磁感应法拉第电磁感应定律:ε=−dΦdt楞次定律:L dIdt+M⋅B⃗ ×I=F自感:L=N⋅μ0⋅Al互感:M=N⋅μ0⋅Al三、热学3.1 热力学基本定律热力学第零定律:绝对零度不可达到热力学第一定律:dU=TdS−PdV 热力学第二定律:熵增原理克劳修斯定律:dS=qT开尔文-普朗克关系式:E=ℎν3.2 热传导傅里叶定律:J=−kL ⋅dT dx热导率:k=QLm⋅ΔT斯特藩-玻尔兹曼定律:P=σAT43.3 理想气体状态方程四、波动与光学4.1 波动波动方程:y=Asin(kx−ωt+ϕ)波速:v=波长周期相位:ϕ=2πx波长群速度:v g=dωdk衍射公式:sinθ=12波长障碍物尺寸干涉公式:y=2sin(ωt+ϕ0)cos(ωt+ϕ0)=sin(2ωt+2ϕ0)4.2 光学反射定律:入射角等于反射角折射定律:n1sinθ1=n2sinθ2光速:c=2πRT光的波动说:E=ℎν光电效应方程:E k=ℎν−W0旋光性:Δϕ=2α⋅Δλ五、量子力学5.1 基本公式Ψ=ĤΨ薛定谔方程:iℏððt海森堡不确定性原理:ΔxΔp≥ℏ2泡利不相容原理:一个原子中最多有两个电子具有相同的量子态n2能级公式:E n=−m2l25.2 量子态叠加与测量量子态叠加:Ψ=αΨ1+βΨ2测量公式:P(λ)=|⟨λ|Ψ⟩|21.在学习大学物理时,要注重理论知识与实际应用相结合,通过解决实际问题来加深对物理概念的理解。
大学物理 上册(第五版)重点总结归纳及试题详解 第一章 质点运动学

第一章 质点运动学一、 基本要求1. 掌握位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量。
2.能借助于直角坐标系计算质点在平面内运动时的速度和加速度。
3.能计算质点作圆周运动时的角速度和角加速度,切向和法向加速度。
4.理解伽利略坐标变换和速度变换。
二、 基本内容1. 位置矢量(简称位矢)位置矢量,表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段r 表示。
r 的端点表示任意时刻质点的空间位置。
r 同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标系的方位。
位矢是描述质点运动状态的物理量之一。
注意:(1)瞬时性:质点运动时,其位矢是随时间变化的,即()t =r r ;(2)相对性:用r 描述质点位置时,对同一质点在同一时刻的位置,在不同坐标系中r 表达形式可以是不相同的。
它表示了r 的相对性,也反映了运动描述的相对性;(3)矢量性:r 为矢量,它有大小,有方向,服从几何加法。
在直角坐标系Oxyz 中x y z =++r i j k==r rr z r y r x ===γβαcos ,cos ,cos质点的运动方程为 ()()()()t x t y t z t ==++r r i j k (矢量式)或()()()⎪⎩⎪⎨⎧===t z z t y y t x x (标量式)。
2.位移()(),t t t x y z ∆=+∆-=∆+∆+∆r r r i j k ∆r 的模∆=r注意:(1)∆r 与r ∆的区别:前者表示质点位置变化,是矢量,同时反映位置变化的大小和方位;后者是标量,反映质点位置离开坐标原点的距离的变化。
(2)∆r 与s ∆的区别:s ∆表示t ~t t ∆+时间内质点通过的路程,是标量,只有质点在直线直进时两者的大小相等或当0→∆t 时,s ∆=∆r 。
3. 速度d dt=rv ,是质点位置矢量对时间的变化率。
在直角坐标系中x y z d dx dy dz dt dt dt dt==++=++v v v v r i j k i j kv 的大小:===v vv 的方向:在直线运动中,0>v 表示质点沿坐标轴正向运动,0<v 表示质点沿坐标轴负向运动;在曲线运动中,v 沿曲线上各点切线,指向质点前进的一方。
大学物理公式总结归纳
大学物理公式总结归纳物理学作为自然科学的一支重要学科,研究物质、能量以及它们之间的相互作用规律。
在学习和应用物理学的过程中,公式是不可或缺的工具。
本文将对大学物理中一些重要的公式进行总结归纳,并介绍它们的应用场景和实际意义。
1. 力学1.1 牛顿第二定律F = ma在这个公式中,F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
这个公式描述了力对物体运动状态的影响,它是经典力学的基础。
1.2 弹力公式F = kx这个公式描述了弹簧对物体施加的力。
F代表弹力,k代表弹簧的劲度系数,x代表弹簧伸长或压缩的距离。
它在弹簧振动、弹簧秤等实际应用中起到了重要作用。
1.3 动量定理FΔt = Δp这个公式描述了物体所受力的变化率与物体动量的变化率之间的关系。
F代表物体所受的力,Δt代表时间间隔,Δp代表物体动量的变化量。
动量定理在撞击碰撞等问题中有广泛应用。
2. 电磁学2.1 库仑定律F = k|q1q2|/r^2这个公式描述了两个电荷之间的力的作用关系。
F代表电荷之间的力,q1、q2分别代表两个电荷的电量,r代表它们之间的距离。
库仑定律是静电学的基本定律,对于电场、电势等问题的研究具有重要意义。
2.2 电流强度公式I = Q/Δt这个公式描述了单位时间内通过导线的电荷量与电流强度的关系。
I 代表电流强度,Q代表单位时间内通过导线的电荷量,Δt代表时间间隔。
电流强度是电路中一个基本的物理量,在电路分析和设计中被广泛应用。
2.3 电磁感应定律ε = -dΦ/dt这个公式描述了磁场变化引起的感应电动势。
ε代表感应电动势,dΦ/dt代表磁通量对时间的变化率。
根据电磁感应定律,电磁感应现象得到解释,并应用于发电机、变压器等设备的设计与实际运用。
3. 热学3.1 热传导公式Q = kAΔT/Δx这个公式描述了物质在热传导过程中的热量传递。
Q代表热量,k代表热导率,A代表传热面积,ΔT代表温度差,Δx代表传热距离。
(word完整版)大学物理公式大全(大学物理所有的公式应有尽有),推荐文档
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=gav 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
(完整word)大学物理公式大全(大学物理所有的公式应有尽有)(可编辑修改)
(完整word)大学物理公式大全(大学物理所有的公式应有尽有)(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)大学物理公式大全(大学物理所有的公式应有尽有)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为(完整word)大学物理公式大全(大学
物理所有的公式应有尽有)(word 版可编辑修改)的全部内容。
大学物理公式总结归纳
第一章 质点运动学和牛顿运动定律平均速度 v =t△△r1.2 瞬时速度 v=lim△t →△t △r =dtdr速度v=dtds==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度加速度a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 速度随坐标变化公式:v 2-v 02=2ax-x 0 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=g av 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态.牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同.1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线.万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 F=G221rm m G 为万有引力称量=×10-11N •m 2/kg 2重力 P=mg g 重力加速度 重力 P=G2r Mm有上两式重力加速度g=G2rM物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变胡克定律 F=—kx k 是比例常数,称为弹簧的劲度系数最大静摩擦力 f 最大=μ0N μ0静摩擦系数 滑动摩擦系数 f=μN μ滑动摩擦系数略小于μ0 第二章 守恒定律 动量P=mv 牛顿第二定律F=dtdPdt mv d =)( 动量定理的微分形式 Fdt=mdv=dmv F=ma=mdtdv ⎰21t t Fdt =⎰21)(v v mv d =mv 2-mv 1 冲量 I= ⎰21t t Fdt动量定理 I=P 2-P 1平均冲力F 与冲量 I=⎰21t t Fdt =F t 2-t 1平均冲力F =12t t I -=1221t t Fdt t t -⎰=1212t t mv mv --质点系的动量定理 F 1+F 2△t=m 1v 1+m 2v 2—m 1v 10+m 2v 20左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量 质点系的动量定理:∑∑∑===-=ni ni i i ni ii ivm v m t F 111△作用在系统上的外力的总冲量等于系统总动量的增量质点系的动量守恒定律系统不受外力或外力矢量和为零∑=n i ii v m 1=∑=ni i i vm 1=常矢量mvR R p L =•=圆周运动角动量 R 为半径mvd d p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离φsin mvr L = 同上φsin Fr Fd M == F 对参考点的力矩 F r M •= 力矩dtdL M = 作用在质点上的合外力矩等于质点角动量的时间变化率⎪⎭⎪⎬⎫==常矢量L dt dL 0如果对于某一固定参考点,质点系所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变.质点系的角动量守恒定律∑∆=ii i r m I 2 刚体对给定转轴的转动惯量αI M = 刚体的合外力矩刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律. ⎰⎰==vmdv r dm r I ρ22 转动惯量 dv 为相应质元dm 的体积元,p 为体积元dv 处的密度ωI L = 角动量dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量dL Mdt =冲量距000ωωI I L L dL Mdt LL tt -=-==⎰⎰常量==ωI L θcos Fr W =r F W •=力的功等于力沿质点位移方向的分量与质点位移大小的乘积ds F dr F dW W b L a b L a b L a ab θcos )()()(⎰=•⎰=⎰=n b L a b L a WW W dr F F F dr F W +++=•++⎰=•⎰= 2121)()()(合力的功等于各分力功的代数和tWN ∆∆=功率等于功比上时间 dtdWt W N t =∆∆=→∆0limv F v F tsF N t •==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积2022121mv mv mvdv W v v -=⎰=功等于动能的增量221mv E k =物体的动能k k E E W -=合力对物体所作的功等于物体动能的增量动能定理 )(b a ab h h mg W -=重力做的功 )()(ba b a ab r GMmr GMm dr F W ---=•⎰=万有引力做的功222121b ab a ab kx kx dr F W -=•⎰=弹性力做的功p p p E E E W baab∆-=-=保势能定义mgh E p =重力的势能表达式r GMmE p -=万有引力势能221kx E p =弹性势能表达式k k E E W W -=+内外质点系动能的增量等于所有外力的功和内力的功的代数和质点系的动能定理k k E E W W W -=++非内保内外保守内力和不保守内力p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量)()(00p k p k E E E E W W +-+=+非内外p k E E E +=系统的动能k 和势能p 之和称为系统的机械能0E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和功能原理常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律.02022121mgh mv mgh mv +=+重力作用下机械能守恒的一个特例20202221212121kx mv kx mv +=+弹性力作用下的机械能守恒第三章 气体动理论1毫米汞柱等于 1mmHg=1标准大气压等户760毫米汞柱1atm=760mmHg=×105Pa 热力学温度 T=+t气体定律==222111T V P T V P 常量 即 TV P =常量阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同.在标准状态下,即压强P 0=1atm 、温度T 0=时,1摩尔的任何气体体积均为v 0= L/mol罗常量 N a =1023 mol -1普适气体常量R 00T v P ≡ 国际单位制为: J/压强用大气压,体积用升×10-2 理想气体的状态方程: PV=RT M Mmolv=molM M质量为M,摩尔质量为M mol 的气体中包含的摩尔数R 为与气体无关的普适常量,称为普适气体常量 理想气体压强公式 P=231v mn n=VN为单位体积中的平均分字数,称为分子数密度;m 为每个分子的质量,v 为分子热运动的速率P=VNn nkT T N R V N mV N NmRT V M MRT A A mol ====(为气体分子密度,R 和N A 都是普适常量,二者之比称为波尔兹常量k=K J N RA/1038.123-⨯= 气体动理论温度公式:平均动能kT t 23=ε平均动能只与温度有关完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度.双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度 分子自由度数越大,其热运动平均动能越大.每个具有相同的品均动能kT 21 kT i t 2=ε i 为自由度数,上面3/2为一个原子分子自由度1摩尔理想气体的内能为:E 0=RT ikT N N A A 221==ε 质量为M,摩尔质量为M mol 的理想气体能能为E=RT iM M E M M E mol mol 200==υ气体分子热运动速率的三种统计平均值最概然速率就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在p υ附近的单位速率间隔内的分子数百分比最大mkTm kT p 41.12≈=υ温度越高,p υ越大,分子质量m 越大p υ因为k=A N R和mNA=Mmol 所以上式可表示为molmol A p M RTM RT mN RTmkT 41.1222≈===υ平均速率molmol M RTM RT m kT v 60.188≈==ππ 方均根速率molmol M RT M RT v 73.132≈=三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章 热力学基础热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W ’和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E 2-E 1W ’+Q= E 2-E 1Q= E 2-E 1+W 注意这里为W 同一过程中系统对外界所做的功Q>0系统从外界吸收热量;Q<0表示系统向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功dQ=dE+dW 系统从外界吸收微小热量dQ,内能增加微小两dE,对外界做微量功dW平衡过程功的计算dW=PS dl =P dVW=⎰21V V PdV平衡过程中热量的计算Q =)(12T T C M Mmol-C为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的热量等压过程:)(12T T C M MQ p molp -= 定压摩尔热容量等容过程:)(12T T C M MQ v molv -= 定容摩尔热容量内能增量 E 2-E 1=)(212T T R iM Mmol -dE等容过程2211 T P T P V RM M T P mol ===或常量 Q v =E 2-E 1=)(12T T C M Mv mol-等容过程系统不对外界做功;等容过程内能变化等压过程2211 T V T V P RM M T V mol ===或常量 )()(121221T T R M M V V P PdV W V V mol⎰-=-== W E E Q P +-=12等压膨胀过程中,系统从外界吸收的热量中只有一部分用于增加系统的内能,其余部分对于外部功R C C v p =- 1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R 的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功.泊松比 vp C C =γR i C R i C p v 222+==ii C C vp 2+==γ 等温变化2211 V P V P RT M MPV mol===或常量 121211ln lnV V RT M M W V V V P W mol ==或 等温过程热容量计算:12ln V V RT M MW Q mol T ==全部转化为功 绝热过程三个参数都变化γγγ2211 V P V P PV ==或常量绝热过程的能量转换关系⎥⎦⎤⎢⎣⎡--=-12111)(11r V V V P W γ )(12T T C M MW v mol--= 根据已知量求绝热过程的功 W循环=21Q Q - Q2为热机循环中放给外界的热量热机循环效率 1Q W 循环=η Q 1一个循环从高温热库吸收的热量有多少转化为有用的功121211Q Q Q Q Q -=-=η< 1 不可能把所有的热量都转化为功 制冷系数 212'2Q Q Q W Q -==循环ω Q2为从低温热库中吸收的热量第五章 静电场库仑定律:真空中两个静止的点电荷之间相互作用的静电力F的大小与它们的带电量q 1、q 2的乘积成正比,与它们之间的距离r 的二次方成反比,作用力的方向沿着两个点电荷的连线.221041r q q F πε=基元电荷:e=C 1910-⨯ ;0ε真空电容率=1210-⨯ ;41πε=910⨯rr q q F ˆ412210πε=库仑定律的适量形式 场强 0q F E =r r Q q F E 3004πε==r 为位矢 电场强度叠加原理矢量和电偶极子大小相等电荷相反场强E 3041r Pπε-= 电偶极距P=ql电荷连续分布的任意带电体⎰⎰==rr dq dE E ˆ4120πε 均匀带点细直棒θπελθcos 4cos 20ldxdE dE x == θπελθsin 4sin 20ldxdE dE y == []j sos a i a rE )(cos )sin (sin 40ββπελ-+-=无限长直棒 j rE 02πελ=dSd E EΦ=在电场中任一点附近穿过场强方向的单位面积的电场线数电通量θcos EdS EdS d E ==ΦdS E d E •=Φ ⎰⎰•=Φ=ΦsE E dS E d⎰•=ΦsE dS E 封闭曲面高斯定理:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的01ε⎰∑=•S q dS E 01ε 若连续分布在带电体上=⎰Qdq 01ε) ˆ4120R r r rQ E 〉=(πε 均匀带点球就像电荷都集中在球心E=0 r<R 均匀带点球壳内部场强处处为零2εσ=E 无限大均匀带点平面场强大小与到带点平面的距离无关,垂直向外正电荷)11(400ba ab r r Qq A -=πε 电场力所作的功 ⎰=•Ldl E 0 静电场力沿闭合路径所做的功为零静电场场强的环流恒等于零电势差 ⎰•=-=ba b a ab dl E U U U 电势⎰•=无限远aa dl E U 注意电势零点)(b a ab ab U U q U q A -=•= 电场力所做的功rrQ U ˆ40πε=带点量为Q 的点电荷的电场中的电势分布,很多电荷时代数叠加,注意为r∑==ni ii a r q U 104πε电势的叠加原理⎰=Qa r dqU 04πε 电荷连续分布的带电体的电势rr PU ˆ430πε=电偶极子电势分布,r 为位矢,P=ql21220)(4x R Q U +=πε 半径为R 的均匀带电Q 圆环轴线上各点的电势分布W=qU 一个电荷静电势能,电量与电势的乘积E E 00εσεσ==或 静电场中导体表面场强U qC = 孤立导体的电容 U=RQ 04πε 孤立导体球R C 04πε= 孤立导体的电容 21U U qC -=两个极板的电容器电容dS U U qC 021ε=-=平行板电容器电容)ln(2120R R L U QC πε==圆柱形电容器电容R2是大的rUU ε=电介质对电场的影响0U U C C r ==ε 相对电容率 dSdC C r r εεεε===00 ε= 0εεr 叫这种电介质的电容率介电系数充满电解质后,电容器的电容增大为真空时电容的r ε倍.平行板电容器rE E ε0=在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的r ε1E=E 0+E /电解质内的电场 省去几个2033r R DE r εερε==半径为R 的均匀带点球放在相对电容率r ε的油中,球外电场分布2221212CU QU C Q W ===电容器储能 第六章 稳恒电流的磁场dtdqI =电流强度单位时间内通过导体任一横截面的电量j dS dI j ˆ垂直=电流密度 安/米2⎰⎰•==SSdS j jd I θcos 电流强度等于通过S 的电流密度的通量dtdqdS j S-=•⎰电流的连续性方程 ⎰•SdS j =0 电流密度j 不与与时间无关称稳恒电流,电场称稳恒电场.⎰+-•=dl E K ξ 电源的电动势自负极经电源内部到正极的方向为电动势的正方向⎰•=LK dl E ξ电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功.在电源外部E k =0时,就成了qvF B max=磁感应强度大小 毕奥-萨伐尔定律:电流元Idl 在空间某点P 产生的磁感应轻度dB 的大小与电流元Idl 的大小成正比,与电流元和电流元到P 电的位矢r 之间的夹角θ的正弦成正比,与电流元到P 点的距离r 的二次方成反比.20sin 4r Idl dB θπμ=πμ40为比例系数,A m T •⨯=-70104πμ为真空磁导率⎰-==)cos (4sin 421020θθπμθπμcon R IrIdl B 载流直导线的磁场R 为点到导线的垂直距离RIB πμ40=点恰好在导线的一端且导线很长的情况RIB πμ20=导线很长,点正好在导线的中部232220)(2χμ+=R IR B 圆形载流线圈轴线上的磁场分布RIB 20μ=在圆形载流线圈的圆心处,即x=0时磁场分布302xISB πμ≈在很远处时 平面载流线圈的磁场也常用磁矩P m ,定义为线圈中的电流I 与线圈所包围的面积的乘积.磁矩的方向与线圈的平面的法线方向相同.ISn P m = n 表示法线正方向的单位矢量.NISn P m = 线圈有N 匝 3024xP B mπμ=圆形与非圆形平面载流线圈的磁场离线圈较远时才适用RIB απϕμ40=扇形导线圆心处的磁场强度 RL=ϕ为圆弧所对的圆心角弧度nqvS QI ==t△ 运动电荷的电流强度 20ˆ4rrqv B ⨯=πμ 运动电荷单个电荷在距离r 处产生的磁场dS B ds B d •==Φθcos 磁感应强度,简称磁通量单位韦伯Wb⎰•=ΦSm dS B 通过任一曲面S 的总磁通量⎰=•SdS B 0 通过闭合曲面的总磁通量等于零I dl B L0μ=•⎰ 磁感应强度B 沿任意闭合路径L 的积分⎰∑=•LI dl B 内0μ在稳恒电流的磁场中,磁感应强度沿任意闭合路径的环路积分,等于这个闭合路径所包围的电流的代数和与真空磁导率0μ的乘积安培环路定理或磁场环路定理I lNnI B 00μμ== 螺线管内的磁场rIB πμ20=无限长载流直圆柱面的磁场长直圆柱面外磁场分布与整个柱面电流集中到中心轴线同rNIB πμ20=环形导管上绕N 匝的线圈大圈与小圈之间有磁场,之外之内没有θsin BIdl dF =安培定律:放在磁场中某点处的电流元Idl,将受到磁场力dF,当电流元Idl 与所在处的磁感应强度B 成任意角度θ时,作用力的大小为:B Idl dF ⨯= B 是电流元Idl 所在处的磁感应强度.⎰⨯=LB Idl Fθsin IBL F = 方向垂直与导线和磁场方向组成的平面,右手螺旋确定aI I f πμ22102=平行无限长直载流导线间的相互作用,电流方向相同作用力为引力,大小相等,方向相反作用力相斥.a 为两导线之间的距离.aI f πμ220= I I I ==21时的情况θθsin sin B P ISB M m •== 平面载流线圈力矩B P M m ⨯= 力矩:如果有N 匝时就乘以N6.42 θsin qvB F = 离子受磁场力的大小垂直与速度方向,只改变方向不改变速度大小B qv F ⨯= F 的方向即垂直于v 又垂直于B,当q 为正时的情况)(B v E q F ⨯+= 洛伦兹力,空间既有电场又有磁场Bm q vqB mv R )(==带点离子速度与B 垂直的情况做匀速圆周运动qBmv R T ππ22==周期 qBmv R θsin =带点离子v 与B 成角θ时的情况.做螺旋线运动qBmv h θπcos 2= 螺距 dBIR U HH=霍尔效应.导体板放在磁场中通入电流在导体板两侧会产生电势差vBl U H = l 为导体板的宽度dBI nq U H 1=霍尔系数nq R H 1=由此得到公式B Br =μ 相对磁导率加入磁介质后磁场会发生改变大于1顺磁质小于1抗磁质远大于1铁磁质'0B B B +=说明顺磁质使磁场加强'0B B B -=抗磁质使原磁场减弱)(0S LI NI dl B +=•⎰μ 有磁介质时的安培环路定理 I S 为介质表面的电流NI I NI S μ=+ r μμμ0=称为磁介质的磁导率∑⎰=•内I dl BLμH B μ= H 成为磁场强度矢量⎰∑=•LI dl H 内 磁场强度矢量H 沿任一闭合路径的线积分,等于该闭合路径所包围的传导电流的代数和,与磁化电流及闭合路径之外的传导电流无关有磁介质时的安培环路定理nI H =无限长直螺线管磁场强度 nI nI H B r μμμμ0===无限长直螺线管管内磁感应强度大小第七章 电磁感应与电磁场电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,回路中就产生感应电动势.楞次定律:闭合回路中感应电流的方向,总是使得由它所激发的磁场来阻碍感应电流的磁通量的变化任一给定回路的感应电动势ε的大小与穿过回路所围面积的磁通量的变化率dt d m Φ成正比dt d Φ=ξ dt d Φ-=ξdtd Ndt d Φ-=ψ-=ξ ψ叫做全磁通,又称磁通匝链数,简称磁链表示穿过过各匝线圈磁通量的总和Blv dt dx Bl dt d -=-=Φ-=ξ动生电动势 B v ef E mk ⨯=-=作用于导体内部自由电子上的磁场力就是提供动生电动势的非静电力,可用洛伦兹除以电子电荷⎰⎰++•⨯=•=__)(dl B v dl E k ξBlv dl B v ba =•⨯=⎰)(ξ 导体棒产生的动生电动势θξsin Blv = 导体棒v 与B 成一任一角度时的情况⎰•⨯=dl B v )(ξ磁场中运动的导体产生动生电动势的普遍公式IBlv I P =•=ξ 感应电动势的功率 t NBS ωωξsin =交流发电机线圈的动生电动势ωξNBS m = 当t ωsin =1时,电动势有最大值m ξ 所以可为t m ωωξξsin =⎰•-=s dS dtdBξ 感生电动势 ⎰•=LE dl 感ξ感生电动势与静电场的区别在于一是感生电场不是由电荷激发的,而是由变化的磁场所激发;二是描述感生电场的电场线是闭合的,因而它不是保守场,场强的环流不等于零,而静电场的电场线是不闭合的,他是保守场,场强的环流恒等于零.1212I M =ψ M 21称为回路C 1对C2额互感系数.由I1产生的通过C2所围面积的全磁通2121I M =ψM M M ==21回路周围的磁介质是非铁磁性的,则互感系数与电流无关则相等1221I I M ψ=ψ= 两个回路间的互感系数互感系数在数值上等于一个回路中的电流为1安时在另一个回路中的全磁通dt dI M12-=ξ dtdIM 21-=ξ 互感电动势dtdI dtdI M 2112ξξ-=-= 互感系数LI =ψ 比例系数L 为自感系数,简称自感又称电感IL ψ=自感系数在数值上等于线圈中的电流为1A 时通过自身的全磁通dtdIL-=ξ 线圈中电流变化时线圈产生的自感电动势dtdI L ξ-=V n L 20μ=螺线管的自感系数与他的体积V 和单位长度匝数的二次方成正比221LI W m =具有自感系数为L 的线圈有电流I 时所储存的磁能V n L 2μ= 螺线管内充满相对磁导率为r μ的磁介质的情况下螺线管的自感系数nI B μ=螺线管内充满相对磁导率为rμ的磁介质的情况下螺线管内的磁感应强度221H w m μ=螺线管内单位体积磁场的能量即磁能密度⎰=V m BHdV W 21磁场内任一体积V 中的总磁场能量r NIH π2=环状铁芯线圈内的磁场强度 22RIrH π=圆柱形导体内任一点的磁场强度 第八章 机械振动022=+kx dtxd m 弹簧振子简谐振动2ω=mkk 为弹簧的劲度系数 0222=+x dtxd ω弹簧振子运动方程)cos(ϕω+=t A x 弹簧振子运动方程)sin('ϕω+=t A x 2'πϕϕ+=)sin(ϕωω+-==t A dtdx u 简谐振动的速度x a 2ω-=简谐振动的加速度 πω2=T ωπ2=T 简谐振动的周期T1=ν简谐振动的频率πνω2= 简谐振动的角频率弧度/秒 ϕcos 0A x = 当t=0时ϕωsin 0A u =-22020ωu x A += 振幅00x u tg ωϕ-= 00x uarctg ωϕ-= 初相 )(sin 21212222ϕωω+==t mA mu E k 弹簧的动能)cos(2121222ϕωω+==t kA kx E p 弹簧的弹性势能222121kx mu E += 振动系的总机械能2222121kA A m E ==ω总机械能守恒)cos(ϕω+=t A x 同方向同频率简谐振动合成,和移动位移)cos(212212221ϕϕ-++=A A A A A 和振幅22112211cos cos sin sin ϕϕϕϕϕA A A A tg ++=第九章 机械波9.1 νλλ==Tv 波速v 等于频率和波长的乘积介质的杨氏弹介质的切变弹性模量纵波横波ρρN Yv Nv ==固体 ρBv =纵波 B 为介质的荣变弹性模量在液体或气体中传播)(cos λωxt A y -= 简谐波运动方程)(2cos )(2cos )(2cos x vt A x T t A x vt A y -=-=-=λπλπλπ νλ=v 速度等于频率乘以波长简谐波运动方程的几种表达方式 )(2)(1212x x vv --=∆--=∆λπϕχχωϕ或简谐波波形曲线P2与P1之间的相位差负号表示p2落后)(2cos )(2cos )(cos λπλπωx T t A x vt A v x t A y +=+=+=沿负向传播的简谐波的方程)(sin 21222vx t VA E k -∆=ωωρ 波质点的动能)(sin )(21222vx t A V E P -∆=ωωρ波质点的势能)(sin 21222vx t VA E E p k -∆==ωωρ波传播过程中质元的动能和势能相等)(sin 222vxt VA E E E p k -∆=+=ωωρ质元总机械能)(sin 222vx t A V E -=∆=ωωρε波的能量密度2221ωρεA =波在一个时间周期内的平均能量密度vS ε=P 平均能流2221ωρεvA v I == 能流密度或波的强度 0logI IL = 声强级 )cos(21ϕω+=+=t A y y y 波的干涉,2,1,02)(2)(1212=±=---=∆k k r r πλπϕϕϕ波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最大,3,2,1,0)12()(2)(1212=+±=--=∆-k k r r πλπϕϕϕ波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最小,2,1,0,2221=±=-=k k r r λδ两个波源的初相位相同时的情况,2,1,0,2)12(21=+±=-=k k r r λδ第十章 电磁震荡与电磁波0122=+q LC dtq d 无阻尼自由震荡有电容C 和电感L 组成的电路)cos(0ϕω+=t Q q )sin(0ϕω+-=t I ILC 1=ω LC T π2= LC121πυ=震荡的圆频率角频率、周期、频率 με00B E =电磁波的基本性质电矢量E,磁矢量BB E με1=和磁导率分别为介质中的电容率和με)(212μεBE W W W m e +=+= 电磁场的总能量密度EB v W S μ1=•= 电磁波的能流密度με1=v第十一章 波动光学12r r -=δ 杨氏双缝干涉中有S 1,S 2发出的光到达观察点P 点的波程差2221)2(D d x r +-= D 为双缝到观测屏的距离,d 为两缝之间的距离,r1,r2为S1,S2到P 的距离 Ddx •=δ 使屏足够远,满足D 远大于d 和远大于x 的情况的波程差D dx •=∆λπϕ2相位差)2,1,0( ±±==k dDk x λ 各明条文位置距离O 点的距离屏上中心节点 )2,1,0(2)12( ±±=•+=k d D k x λ各暗条文距离O 点的距离 λdDx =∆ 两相邻明条纹或暗条纹间的距离 明条纹)2,1,0(222==+=k kh λλδ 劈尖波程差 2sin λθ=l 两条明暗条纹之间的距离l相等R k r k λ= 牛顿环第k 几暗环半径R 为透镜曲率半径2λ•=∆N d 迈克尔孙干涉仪可以测定波长或者长度N 为条纹数,d 为长度时为暗纹中心)3,2,1(22sin =±=k ka λϕ 单缝的夫琅乔衍射 ϕ为衍射角,a 为缝宽时为明纹中心))( 3,2,1(22sin =+±=k k a λϕaλϕϕ=≈sin 半角宽度 af ftg x λϕ22≈=∆单缝的夫琅乔衍射中央明纹在屏上的线宽度 Dm λθδθ22.1=<如果双星衍射斑中心的角距离m δθ恰好等于艾里斑的角半径即此时,艾里斑虽稍有重叠,根据瑞利准则认为此时双星恰好能被分辨,m δθ成为最小分辨角,其倒数 λδθ22.11Dm R ==叫做望远镜的分辨率或分辨本领与波长成反比,与透镜的直径成正比)3,2,1,0(sin =±=k k d λϕ 光栅公式满足式中情况时相邻两缝进而所有缝发出的光线在透镜焦平面上p 点会聚时将都同相,因而干涉加强形成明条纹a I I 20cos = 强度为I0的偏振光通过检偏器后强度变为第十二章 狭义相对论基础 2')(1c v l l -= 狭义相对论长度变换 2')(1c v t t -∆=∆狭义相对论时间变换 2''1cvu v u u x x x ++= 狭义相对论速度变换 20)(1c v m m -= 物体相对观察惯性系有速度v 时的质量dm c dE k 2= 动能增量202c m mc E k -= 动能的相对论表达式 200c m E = 2mc E =物体的静止能量和运动时的能量 爱因斯坦纸能关系式420222c m p c E +=相对论中动量和能量的关系式p=E/c第十三章 波和粒子 2021m mv eV = V 0为遏制电压,e 为电子的电量,m 为电子质量,v m 为电子最大初速 A hv mv eV m -==2021 h 是一个与金属无关的常数,A 是一个随金属种类而不同的定值叫逸出功.遏制电压与入射光的强度无关,与入射光的频率v 成线性关系 A mv hv m +=221 爱因斯坦方程 22c hv c m ==ε光 光子的质量 λh c hv c m p ==•=光光子的动量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 热量:CRTMQ其中:摩尔热容量C与过程有关,等容热容量Cv与等压热容量
Cp之间的关系为:Cp= Cv+R
2. 压强:ntSISFP32
3. 分子平均平动能:kT23;理想气体内能:RTsrtME)2(2
4. 麦克斯韦速率分布函数:NdVdNVf)((意义:在V附近单位速度间隔内的分子数所
占比率)
5. 平均速率:RTNdNdVVVfVV80)(
方均根速率:RTV22;最可几速率:RTpV3
6. 熵:S=KlnΩ(Ω为热力学几率,即:一种宏观态包含的微观态数)
7. 电场强度:E=F/q0 (对点电荷:rrqEˆ420)
8. 电势:aardEU(对点电荷rqU04);电势能:Wa=qUa(A= –ΔW)
9. 电容:C=Q/U ;电容器储能:W=CU2/2;电场能量密度ωe=ε0E2/2
10. 磁感应强度:大小,B=Fmax/qv(T);方向,小磁针指向(S→N)。
定律和定理
1. 理想气体状态方程:RTMPV或P=nkT(n=N/V,k=R/N0)
2. 能量均分原理:在平衡态下,物质分子的每个自由度都具有相同的平均动能,其大小
都为kT/2。
3. 热力学第一定
律:ΔE=Q+A
10.热力学第二定律:
孤立系统:ΔS>0
(熵增加原理)
11. 库仑定律:
rrQqkFˆ2
(k=1/4πε0)
12. 高斯定理:0qSdE(静电场是有源场)→无穷大平板:E=ζ/2ε0
13. 环路定理:0ldE (静电场无旋,因此是保守场)
克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其它影响。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其它影响。
实质:在孤立系统内部发生的过程,总是由热力学概率小的宏观状态向热力学
概率大的状态进行。亦即在孤立系统内部所发生的过程总是沿着无序性
增大的方向进行。
14. 毕奥—沙伐尔定律:204ˆrrlIdBd
直长载流导线:)cos(cos4210rIB
无限长载流导线:rIB20
载流圆圈:RIB20,圆弧:220RIB
大学物理(下)公式集
电磁学
1. 定义:
①E和B:
F=q(E+V×B
)洛仑兹公式
②电势:rrdEU
电势差:ldEU 电动势:ldK(qFK非静电)
③电通量:SdEe磁通量:SdBB磁通链:ΦB=NφB单位:韦伯
(Wb)
p
=ql
④电偶极矩:
m
=IS=ISnˆ
磁矩:
⑤电容:C=q/U 单位:法拉(F)
*自感:L=Ψ/I 单位:亨利(H)
*互感:M=Ψ21/I1=Ψ12/I2 单位:亨利(H)
⑥电流:I =dtdq; *位移电流:ID =ε0dtde 单位:安培(A)
⑦*能流密度:
BES
1
2. 实验定律
θ
2
I
r P o R
θ
1
I
E=F
/q0 单位:N/C =V/m
B=Fmax/qv;方向,小磁针指向(S→N);单位:特斯拉(T)=104高斯(G)
Θ ⊕
-q l +q
S m
E
S
B
① 库仑定律:0204rrQqF②毕奥—沙伐尔定律:204ˆrrlIdBd③安培定律:
dF=Ild×B
④电磁感应定律:ε感= –dtdB 动生电动势:ldBV)(
感生电动势:ldEi(Ei为感生电场)
*⑤欧姆定律:U=IR(E=ρj)其中ρ为电导率
3. *定理(麦克斯韦方程组)
电场的高斯定理:0qSdE 0qSdE静(E静是有源场)
0SdE
感
(E感是无源场)
磁场的高斯定理:0SdB 0SdB(B稳是无源场)
0SdB
(B感是无源场)
电场的环路定理:dtdldEB 0ldE静 (静电场无旋)
dtdldE
B
感
(感生电场有旋;变化的磁场产生感
生电场)
安培环路定理:dIIldB00 IldB0稳 (稳恒磁场有旋)
dt
d
ldBe00
感
(变化的电场产生感生磁
场)
4. 常用公式
①无限长载流导线:rIB20 螺线管:B=nμ0I
② 带电粒子在匀强磁场中:半径qBmVR周期qBmT2
磁矩在匀强磁场中:受力F=0;受力矩BmM
③电容器储能:Wc=21CU2 *电场能量密度:ωe=21ε0E2 电磁场能量密度:ω=21ε
0
E2+021B2
*电感储能:WL=21LI2 *磁场能量密度:ωB=021B2 电磁场能流密度:S=ωV
④ *电磁波:C=001=3.0×108m/s 在介质中V=C/n,频率f=ν=0021
2kπ 极大(明纹)
(2k+1)π极小(暗纹)
kλ 极大(明纹)
(2k+1)λ/2极小(暗纹)
波动学
1. 定义和概念
简谐波方程: x处t时刻相位
振幅
ξ=Acos(ωt+φ-2πx/λ) 简谐振动方程:ξ=Acos(ωt+φ)
波形方程:ξ=Acos(2πx/λ+φ′)
相位Φ——决定振动状态的量
振幅A——振动量最大值 决定于初态 x0=Acosφ
初相φ——x=0处t=0时相位 (x0,V0) V0= –Aωsinφ
频率ν——每秒振动的次数
圆频率ω=2πν 决定于波源如: 弹簧振子ω=mk/
周期T——振动一次的时间 单摆ω=lg/
波速V——波的相位传播速度或能量传播速度。决定于介质如: 绳V=/T 光速
V=C/n
空气V=/B
波的干涉:同振动方向、同频率、相位差恒定的波的叠加。
光程:L=nx(即光走过的几何路程与介质的折射率的乘积。
相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。
拍:频率相近的两个振动的合成振动。
驻波:两列完全相同仅方向相反的波的合成波。
多普勒效应:因波源与观察者相对运动产生的频率改变的现象。
衍射:光偏离直线传播的现象。
自然光:一般光源发出的光
偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。
部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。
2. 方法、定律和定理
① 旋转矢量法:
如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为
φ以ω逆时针旋转的矢量A在x方向的投影。
相干光合成振幅:
A=cos2212221AAAA
其中:Δφ=φ1-φ2–2(r2–r1)当Δφ=
当φ1-φ2=0时,光程差δ=(r2–r1)=
A
ω φ
o x
A
A1 A
2
o x
振动量 (
位
移) 0点处相
位 0点处初
相
x处落后0点的
相
位
② 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向)
③ 菲涅尔原理:波面子波相干叠加确定其后任
一点的振动。
I1 θ I2 马吕斯定律