化工原理 复习 总结 考点
化工原理基本知识点总结

化工原理基本知识点总结化工原理,是指运用基本化学原理和物理原理,研究物质的本质、结构、性质以及相互作用等方面的学科。
在化工生产过程中,化工原理是一个关键环节,因此,对于化工从业人员来说,必须熟练掌握化工原理的基本知识点。
一、化学反应化学反应是化学过程中最基本的概念之一。
化学反应指两种或两种以上物质发生作用,最终生成新的物质。
如下面这个例子:2H2 + O2 → 2H2O这是一个简单的化学反应方程式。
其中,2H2和O2是反应物,2H2O则是生成物。
化学反应的速率受很多因素的影响,如反应物浓度、温度、催化剂等。
在工业生产中,为了加快反应速率,常常使用催化剂或加热等方法。
二、物理性质物理性质是指物质固有的、不随化学变化而改变的性质。
例如,半径、密度、硬度、颜色等都是物理性质。
其中,密度是物质不变的基本性质之一,它可以帮助我们分辨不同种类的物质。
三、热力学热力学是研究物质在温度、压力、体积等方面的物理变化,以及这些变化背后的热量和功的关系。
在热力学中,有很多基本概念需要掌握,如焓、熵、自由能等。
其中,焓指的是热力学过程中,压力下单位质量物质所含的能量。
熵是衡量物质混乱程度的指标,也是一种能量形式。
自由能则是热力学过程中,可以利用的最大能量。
四、电化学电化学是研究化学反应中电子转移的现象和机理的学科。
在电化学中,有两个基本概念:氧化和还原。
氧化是指物质失去电子,还原则是指物质获得电子。
在电池中,氧化和还原同时进行,从而产生电流。
五、化工流程化工流程是工业化学工程的核心。
化工流程包括物料输入、反应和产物输出等环节。
在化工流程中,需要考虑到工艺设计、设备选型、安全防护等因素,以确保生产过程的正常进行。
六、分离技术分离技术是化工生产中常用的技术之一,包括蒸馏、萃取、结晶、膜分离等方法。
分离技术用于将反应产物中的目标物质分离出来,以便进行下一步的操作。
七、化学工艺设计化学工艺设计是指在化工生产过程中,根据物料特性和反应要求,制定出合理的工艺方案,并确定所需的设备和工艺条件。
基础化工原理知识点总结

基础化工原理知识点总结化工是现代工业的重要分支之一,它主要研究和应用物质转化的基本原理和操作技术。
化工过程中涉及到许多基础原理,包括化学反应、物质传递、控制系统等等。
本文将从基础化工原理的角度,对化工过程中的一些重要知识点进行总结,以帮助读者更好地理解化工原理。
一、化学反应原理1. 化学反应动力学化学反应动力学是研究化学反应速率和反应机理的科学。
化学反应速率受到温度、浓度、催化剂等因素的影响。
2. 化学平衡化学反应达到平衡时,反应物和生成物的浓度不再发生变化。
平衡常数K描述了反应的平衡状态,K的大小和方向能够表示反应的趋势。
3. 反应热力学反应热力学研究热力学性质对反应进行计算分析的一门学科。
它对气相、溶液中化学反应进行了详细研究。
4. 催化剂作用原理催化剂是一种能够提高反应速率的物质,通过提供新的反应路径,使得反应更容易进行。
二、质量传递原理1. 扩散扩散是物质在不均一介质中沿浓度梯度方向传播的过程。
扩散的速率取决于浓度梯度的大小和物质的扩散系数。
2. 质量传递系数质量传递系数是描述物质在传递过程中的速率的参数。
它受到传质物理性质和传质过程条件的影响。
3. 蒸馏蒸馏是利用液体和气体之间的相变进行分离的工艺。
在蒸馏过程中,液体被加热使其蒸发,然后再冷凝为液体。
4. 吸附吸附是指物质在其表面上被其它物质捕捉的过程。
吸附过程可以应用于分离、净化和催化等工艺中。
三、动力学原理1. 流体力学流体力学是研究流体在运动和静止时的力学行为的科学。
它包括了流体静力学和流体动力学两个方面。
2. 混合与搅拌混合与搅拌是化工过程中常见的操作。
它的目的是将不同物质混合均匀,以便进行后续的反应或分离。
3. 传热原理传热是热能在物体之间传递的过程。
传热可以通过传导、对流和辐射三种方式进行。
四、控制系统原理1. 反馈控制反馈控制是一种通过不断监测系统输出并与目标值进行比较,以调整输入来保持系统稳定的控制方式。
2. PID控制器PID控制器是一种常用的控制算法,它由比例、积分和微分三个部分组成,可以对系统进行精确的控制。
化工原理知识点总结

化工原理知识点总结化工原理是化学工程学科的基础,它涉及到物质的转化、物质的相互作用以及反应工程等方面的知识。
在化工工程的学习和实践中,我们需要掌握一些重要的化工原理知识点。
本文将对化工原理的一些重要知识点进行总结,以帮助读者更好地理解和运用这些知识。
一、反应速率反应速率是化学反应在单位时间内发生的变化量,是衡量反应快慢的重要指标。
反应速率与反应物浓度、温度、压力等因素有关。
通过调控反应物浓度、温度等条件,可以改变反应速率。
了解反应速率可以帮助我们设计和优化反应工艺。
二、化学平衡化学平衡是指在化学反应中,正向反应和反向反应同时进行,且反应物和生成物的浓度不再发生变化。
化学平衡的达到和维持是通过控制温度、压力和物质浓度等条件来实现的。
理解化学平衡可以帮助我们进行化工反应的控制和工艺的优化。
三、热力学热力学是研究热量和功与物质转化与变化关系的学科。
其中,熵是一个非常重要的概念。
它表示了系统的无序程度,可以衡量系统内部的能量分布。
热力学可以帮助我们预测和计算化学反应的能量变化,以及判断一个化学反应是否可行。
四、物质平衡物质平衡是指在化工过程中,通过对物料和能量的输入和输出进行平衡计算,以达到化工过程的稳定和高效。
通过物质平衡计算,我们可以确定所需的原料用量、催化剂用量以及产品产量等重要参数,从而帮助我们进行过程设计和工艺优化。
五、传热传热是指物体之间热量的传递过程。
在化工过程中,通过控制和优化传热方式,可以提高反应速率、改善产物纯度,以及降低能源消耗等。
了解传热原理可以帮助我们设计合理的传热设备和加热方式,提高化工过程的效率。
六、传质传质是指物质在不同相之间的传递过程。
在化工工程中,往往需要在两相之间传质,以实现反应物质的接触和反应。
通过控制传质速率和传质方式,可以提高反应效率和选择性,进一步优化化工工艺。
七、催化剂催化剂是指在反应中增加反应速率,但自身不参与反应消耗的物质。
催化剂可以提高反应速率、改善产物选择性、降低反应温度等。
化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点(完美版)————————————————————————————————作者:————————————————————————————————日期:ﻩ第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。
此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计 gR p p )(021ρρ-=-倾斜液柱压差计 微差压差计ﻩ ﻩﻩﻩ ﻩﻩ二、流体动力学● 流量质量流量 m S kg /s m S =V S ρ体积流量 V S m3/s质量流速 G kg/m2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。
化工原理知识点总结高中

化工原理知识点总结高中一、化工原理概述化工原理是指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。
化工原理是化学工程技术理论的基础和核心部分,是指导化学工程技术实践的理论方法和原则,它主要研究物质的结构、性质、组成、变化规律与化工产品的生产过程。
二、化工原理的基本概念1.化工原理的定义:指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。
2.反应工程:是利用化学变化来制造产品的过程。
反应器是进行反应工程的装置。
3.传热传质:为了促进和加快反应,通常需要在反应器内进行传热和传质过程。
4.质量平衡:是指在化学工艺反应过程中,原料、副产品和产品在重量上的平衡。
5.能量平衡:是指在反应工程中,热量在不同介质和各个反应阶段之间的平衡。
6.物料平衡:是指物料在工艺流程中的平衡问题,包括物料的投入、物料的输出和物料的转化系数。
7.反应工程的主要工艺过程有:加工、分离、纯化、反应、稀释、搅拌、传递等。
8.质量传递:物质在不同相之间的传递。
9.反应速率:反应速率是化学反应中的物质质量改变与时间改变的比例关系。
三、物质结构和性质1.物质的结构:物质的结构主要指化合物和元素的分子结构和晶体结构。
2.物质的性质:物质的性质是指物质的物理性质和化学性质。
3.常用的物质的性质有:密度、粘度、比热、导热系数、溶解度、流变性。
四、化学平衡及反应热1.化学反应平衡:在化学反应中,生成物的浓度与反应物的浓度之间的关系的平衡。
2.平衡常数:平衡常数是反应速率常数与逆反应速率常数之比。
3.反应热:反应热是指在化学反应过程中释放或吸收的热量。
五、化学工程热力学1.热力学基本概念:热力学是研究物质的能量及其转化形式、热运动规律和物质之间的相互转化规律的科学。
2.热力学基本定律:热力学的基本定律有:热力学第一定律、热力学第二定律和热力学第三定律。
化工原理知识点总结pdf

化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。
本章将针对化工原理的基础知识进行总结。
1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。
化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。
1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。
在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。
1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。
物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。
1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。
动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。
1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。
质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。
1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。
界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。
第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。
本章将总结化工反应原理的基本知识。
2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。
化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。
化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。
化工原理各章节知识点总结

化工原理各章节知识点总结化工原理是化学工程与技术的基础课程之一,主要涉及物质的物理性质、能量转化、传质现象、化学反应等方面的知识。
下面是化工原理各章节知识点的总结。
第一章:化工基本概念与物质的物理性质1.1化学工程与化学技术的发展历史与现状1.2化工过程及其特点1.3物质的物理性质-物质的密度、比重、相对密度-物质的表观密度、气体密度-物质的粘度、表面张力、折射率-物质的热容、导热系数、热膨胀系数-物质的流变性质第二章:能量转化与传递2.1能量的基本概念2.2热力学第一定律2.3热力学第二定律2.4热力学第三定律2.5热力学循环第三章:物质的传递过程3.1传质的基本概念与分类3.2质量传递平衡方程3.3传质速率和传质通量3.4界面传质-液-气界面传质-液-液界面传质-固-液界面传质-固-气界面传质3.5传质过程中的最速传质与弛豫时间第四章:化工流体的流动4.1流体的基本性质4.2流体的流动类别4.3流体的流动方程-流体的质量守恒方程-流体的动量守恒方程-流体的能量守恒方程4.4流体内运动的基本规律-斯托克斯定律-流体的相对运动-流体的运动粘度4.5流体的管道流动-管道内的雷诺数-管道的流动阻力第五章:多元物系中物质的平衡与分离5.1多元物系基本概念5.2雾滴定律5.3吸附平衡5.4蒸汽液平衡5.5溶液中的平衡情况5.6气相-液相-固相三相平衡第六章:化学反应与反应工程6.1化学反应动力学6.2化学平衡6.3化学反应速率6.4反应器的基本类型-批次反应器-连续流动反应器-均质反应器-非均质反应器6.5反应器的设计与操作以上是化工原理各章节的知识点总结,涵盖了物理性质、能量转化、传质现象、化学反应等方面的内容。
这些知识点是化学工程与技术的基础,对于理解和应用化工原理具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体流动–––底子概念与底子道理 一、流体静力学底子方程式 )(2112zzgpp
或 ghpp0 注意:1、应用条件:静止的连通着的同一种持续的流体。 2、压强的暗示方法:绝压—大气压=表压 表压常由压强表来测量; 大气压—绝压=真空度 真空度常由真空表来测量。 3、压强单元的换算: 1atm=760mmHg=10.33mH22 4、应用:程度管路上两点间压强差与U型管压差计读数R的关系: gRppA)(21
处于同一程度面的液体,维持等压面的条件必需时静止、持续和同一种液体。
二、定态流动系统的持续性方程式––––物料衡算式 常数常数uAAuAuwsA222111,
常数常数uAAuAuVsA2211, 21221221///,ddAAuuA圆形管中流动常数
三、定态流动的柏努利方程式––––能量衡算式 1kg流体:fhuPgZWeuPgZ22222111 [J/kg] 讨论点:1、流体的流动满足持续性假设。 2、抱负流体,无外功输入时,机械能守恒式:
3、可压缩流体,当Δp/p1<20%,仍可用上式,且ρ=ρm。 4、注意运用柏努利方程式解题时的一般步调,截面与基准面拔取的原那么。 5、流体密度ρ的计算: 抱负气体ρ=PM/RT 混合气体 vnnvvmxxx2211
混合液体 nwnwmwmxxx2211 上式中:vix––––体积分率;wix––––质量分率。 6、gz,u2/2,p/ρ三项暗示流体本身具有的能量,即位能、动能和静压能。∑hf为流经系统的能量损掉。We为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。输送设备有效功率Ne=We·ωs,轴功率N=Ne/η〔W〕
7、1N流体 feHgugpZH22 [m] 〔压头〕
2222222111
uPgZuPgZ1m3流体 ffafehpphupghW而22, 四、柏努利式中的∑hf I. 流动类型: 1、雷诺准数Re及流型 Re=duρ/μ=du/ν,μ为动力粘度,单元为[Pa·S];ν=μ/ρ为运动粘度,单元[m2/s]。 层流:Re≤2000,湍流:Re≥4000;20002、牛顿粘性定律 τ=μ(du/dy) 气体的粘度随温度升高而增加,液体的粘度随温度升高而降低。 3、流型的比较:①质点的运动方式; ②速度分布,层流:抛物线型,平均速度为最大速度的0.5倍; 湍流:碰撞和混和使速度平均化。 ③阻力,层流:粘度内摩擦力, 湍流:粘度内摩擦力+湍流切应力。 II. 流体在管内流动时的阻力损掉 'fffhhh [J/kg]
1、直管阻力损掉hf ffpudlh22 范宁公式(层流、湍流均适用). 层流:23264)(dluhRRffee或即 哈根—泊稷叶公式。 湍流区〔非阻力平方区〕:),(dRfe;高度湍流区〔阻力平方区〕:)(df,具体的定性关系拜见摩擦因数图,并定量阐发hf与u之间的关系。 推广到非圆型管润湿周边长流通截面积44Herdd 注:不克不及用de来计算截面积、流速等物理量。 2、局部阻力损掉hf ` ①阻力系数法,5.00.122'cefuh
②当量长度法,22'udlhef 注意:截面取管出口表里侧,对动能项及出口阻力损掉项的计算有所不同。 当管径不变时,2))((2udllhfe 流体在变径管中作不变流动,在管径缩小的处所其静压能减小。流体在等径管中作不变流动流体由于流动而有摩擦阻力损掉,流体的流速沿管长不变。流体流动时的摩擦阻力损掉hf所损掉的是机械能中的静压能项。完全湍流〔阻力平方区〕时,粗拙管的摩擦系数数值只取决于相对粗拙度。 水由敞口恒液位的高位槽通过一管道流向压力恒定的反响器,当管道上的阀门开度减小时,水流量将减小,摩擦系数增大,管道总阻力不变。 五、管路计算 I. 并联管路:1、321VVVV 2、321ffffhhhh 各支路阻力损掉相等。 即并联管路的特点是:〔1〕并联管段的压强降相等;〔2〕主管流量等于并联的各管段流量之和;〔3〕并联各管段中管子长、直径小的管段通过的流量小。 II.分支管路:1、321VVVV 2、分支点处至各支管终了时的总机械能和能量损掉之和相等。
六、柏式在流量测量中的运用 1、毕托管用来测量管道中流体的点速度。 2、孔板流量计为定截面变压差流量计,用来测量管道中流体的流量。随着Re增大其孔流系数C0先减小,后保持为定值。 3、转子流量计为定压差变截面流量计。注意:转子流量计的校正。 测流体流量时,随流量增加孔板流量计两侧压差值将增加,假设改用转子流量计,随流量增加转子两侧压差值将不变。 离心泵–––––底子概念与底子道理 一、工作道理 底子部件:叶轮〔6~12片后弯叶片〕;泵壳〔蜗壳〕〔集液和能量转换装置〕;轴封装置〔填料函、机械端面密封〕。 道理:借助高速旋转的叶轮不竭吸入、排出液体。 注意:离心泵无自吸能力,因此在启动前必需先灌泵,且吸入管路必需有底阀,否那么将发生“气缚〞现象。 某离心泵运行一年后如发现有气缚现象,那么应查抄进口管路是否有泄漏现象。
二、性能参数及特性曲线 1、压头H,又称扬程 fHgpZH
2、有效功率 )(102kwHQNHgQWNsee轴功率 3、离心泵的特性曲线通常包罗 QQNQH,,曲线,这些曲线暗示在必然转速下输送某种特定的液体时泵的性能。由QN线上可看出:0Q时,minNN,所以启动泵和停泵都应关闭泵的出口阀。 离心泵特性曲线测定尝试,泵启动后出水管不出水,而泵进口处真空表指示真空度很高,可能呈现的故障原因是吸入管路堵塞。 假设被输送的流体粘度增高,那么离心泵的压头减小,流量减小,效率减小,轴功率增大。
三、离心泵的工作点 1、泵在管路中的工作点为离心泵特性曲线〔QH〕与管路特性曲线〔eeQH〕的
交点。管路特性曲线为:2eeBQKH。 2、工作点的调节:既可改变QH来实现,又可通过改变eeQH来实现。具体办法有改变阀门的开度,改变泵的转速,叶轮的直径及泵的串、并联操作。 离心泵的流量调节阀安装在离心泵的出口管路上,开大该阀门后,真空表读数增大,压力表读数减小,泵的扬程将减小,轴功率将增大。 两台同样的离心泵并联压头不变而流量加倍,串联那么流量不变压头加倍。
四、离心泵的安装高度Hg 为防止气蚀现象的发生,离心泵的安装高度≤Hg,注意气蚀现象发生的原因。
1.1021'2fsHguHHg 'sH为操作条件下的允许吸上真空度,m
10fH为吸入管路的压头损掉,m。
2. 10fvaHhgppHg h 允许气蚀余量,m ap液面上方压强,Pa; vp操作温度下的液体饱和蒸汽压,Pa。
离心泵的安装高度超过允许安装高度时会发生气蚀现象。 传 热–––底子概念和底子理论 传热是由于温度差引起的能量转移,又称热传递。由热力学第二定律可知,但凡有温度差存在时,就必然发生热从高温处传递到低温处。 按照 传热机理的不同,热传递有三种底子方式:热传导〔导热〕、热对流〔对流〕和热辐射。热传导是物体各局部之间不发生相对位移,仅借分子、原子和自由电子等微不雅粒子的热运动而引起的热量传递;热对流是流体各局部之间发生相对位移所引起的热传递过程〔包罗 由流体中遍地的温度不同引起的自然对流和由外力所致的质点的强制运动引起的强制对流〕,流体流过固体外表时发生的对流和热传导联合作用的传热过程称为对传播热〔给热〕;热辐射是因热的原因而发生的电磁波在空间的传递。任何物体只要在绝对零度以上,都能发射辐射能,只是在高温时,热辐射才能成为主要的传热方式。传热可依靠此中的一种方式或几种方式同时进行。 传热速率Q是指单元时间通过传热面的热量〔W〕;热通量q是指每单元面积的传热速率〔W/m2〕。
一、热传导 1.导热底子方程––––傅立叶定律
ntdSdQ
λ––––导热系数,表征物质导热能力的大小,是物质的物理性质之一,单元为W/〔m·℃〕。纯金属的导热系数一般随温度升高而降低,气体的导热系数随温度升高而增大。 式中负号暗示热流标的目的总是和温度剃度的标的目的相反。 2.平壁的不变热传导 单层平壁:
RtSbttQ
21
多层〔n层〕平壁: niniiinRtSbttQ11
11
公式说明导热速率与导热鞭策力〔温度差〕成正比,与导热热阻〔R〕成反比。 由多层等厚平壁构成的导热壁面中所用材料的导热系数愈大,那么该壁面的热阻愈小,其两侧的温差愈小,但导热速率不异。 2.圆筒壁的不变热传导 单层圆筒壁:
RtSbttQm
21
或
1221
ln
)(2rrttlQ
当S2/S12时,用对数平均值,即: