人教版九年级数学下册 26.1.1《反比例函数》说课讲稿

合集下载

人教版数学九年级下册26.1.1《反比例函数》教学设计

人教版数学九年级下册26.1.1《反比例函数》教学设计

人教版数学九年级下册26.1.1《反比例函数》教学设计一. 教材分析《反比例函数》是人教版数学九年级下册第26章第一节的内容,主要介绍了反比例函数的定义、性质及图象。

这一节内容是学生在学习了正比例函数和一次函数的基础上进行的,是进一步深化函数知识的重要环节,也为后续学习函数的应用打下了基础。

二. 学情分析九年级的学生已经具备了一定的函数知识,能够理解正比例函数和一次函数的概念和性质。

但是,对于反比例函数这一概念,学生可能较难理解,需要通过具体实例和生活实际来帮助学生理解和掌握。

三. 教学目标1.了解反比例函数的定义和性质。

2.能够绘制反比例函数的图象。

3.能够运用反比例函数解决实际问题。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的绘制。

五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索。

2.利用信息技术手段,如多媒体演示和数学软件,帮助学生直观理解反比例函数的性质和图象。

3.结合实际例子,让学生感受反比例函数在生活中的应用。

六. 教学准备1.多媒体演示文稿。

2.数学软件。

3.实际例子和问题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60千米/小时的速度行驶,行驶1小时后,剩余路程与速度之间的关系是什么?”引导学生思考和讨论。

2.呈现(10分钟)利用多媒体演示文稿,呈现反比例函数的定义和性质,引导学生直观理解。

同时,利用数学软件,展示反比例函数的图象,让学生感受反比例函数的特点。

3.操练(10分钟)让学生利用数学软件,自己绘制一些反比例函数的图象,加深对反比例函数性质的理解。

同时,让学生解答一些与反比例函数有关的问题,巩固所学知识。

4.巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的概念和性质。

5.拓展(10分钟)让学生思考和讨论反比例函数在实际生活中的应用,如广告宣传、经济分析等,引导学生将所学知识运用到实际中。

(初三数学教案)人教版初中九年级数学下册第26章反比例函数26.1.1 反比例函数教学设计

(初三数学教案)人教版初中九年级数学下册第26章反比例函数26.1.1 反比例函数教学设计

26.1 反比例函数26.1.1反比例函数一、教学目标【知识与技能】1.理解并掌握反比例函数的概念和意义;2.会判断一个给定的函数是否为反比例函数,并能根据实际问题和已知条件用待定系数法求出反比例函数的解析式.【过程与方法】通过对反比例函数的研究,感悟反比例函数的概念,体会函数思想的应用。

【情感态度与价值观】从现实情境和已有知识经验出发,研究两个变量之间的相互关系,进一步理解常量和变量之间的辩证关系,体验数学来源于生活,激发学生学习数学的热情和兴趣.二、课型新授课三、课时1课时四、教学重难点【教学重点】理解反比例函数的概念,会求反比例函数关系式.【教学难点】反比例函数解析式的确定.五、课前准备教师:课件.六、教学过程(一)导入新课(出示课件2)教师问:什么是函数?学生答:一般地,在一个变化过程中,如果有两个变量x与y ,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.教师问:什么是一次函数?什么是正比例函数?学生答:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫作一次函数.一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫作比例系数.当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?(二)探索新知知识点1:反比例函数的定义下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式. (出示课件4-5)(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一块面积为1000m 2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.68×104km 2,人均占有面积S(单位:km 2/人)随全市总人口n(单位:人)的变化而变化.小组合作交流,再进行全班性的问答. ⑴1463v t =;⑵1000y x =;⑶. S = 1.68×104n 教师问:这三个函数解析式有什么共同点?你能否根据这一类函数的共同特点,类比正比例函数写出这种函数的一般形式?(出示课件6) 学生答:都是y k x=的形式,其中k 是非零常数.教师问:这种函数叫反比例函数,那么什么是反比例函数? 归纳:一般地,形如y k x =(k 为常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.教师问:自变量x 的取值范围是什么?(出示课件7)学生答:因为x 作为分母,不能等于零,因此自变量x 的取值范围是所有非零实数.教师问:在实际问题中自变量x 的取值范围是什么?学生思考后教师总结:要根据具体情况来确定.例如,在前面得到的第二个解析式1000y x =,x 的取值范围是x >0,且当x 取每一个确定的值时,y 都有唯一确定的值与其对应.教师问:形如1-=kx y (k ≠0)的式子是反比例函数吗?式子k xy =(k ≠0)呢?(出示课件8)学生独立思考后,全班交流.然后教师强调:反比例函数的三种表达方式:(注意k ≠0)xk y =;1-=kx y ;k xy =. 出示课件9-10,学生独立思考后口答,教师订正.考点1 利用反比例函数的定义求字母的值.例 已知函数y =(2m 2+m -1)x2m 2+3m -3是反比例函数,求m 的值.(出示课件11)学生独立思考后,教师板演:解:因为y =(2m 2+m -1)x2m 2+3m -3是反比例函数,所以222m +3 m-3=-1,2m + m-10,⎧⎪⎨≠⎪⎩ 解得m=-2.归纳总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可,如本题中x 的次数为-1,且系数不等于0.出示课件12,学生独立解决,教师巡视,查看学生完成的情况,并给予及时引导.考点2 利用待定系数法求反比例函数的解析式.例 已知y 是x 的反比例函数,并且当x=2时,y=6.(1)写出y 关于x 的函数解析式;(2)当x=4时,求y 的值.(出示课件13)师生分析:因为y 是x 的反比例函数,所以设y k x =.把x=2和y=6代入上式,就可求出常数k 的值.学生板演:解:(1)设y k x =.因为当 x=2时,y=6,所以有62k =,解得k=12. 因此12y .x= (2)把x=4代入12y x =,得12y 3.4== 归纳总结:用待定系数法求反比例函数解析式的一般步骤是:(出示课件14)(1)设,即设所求的反比例函数解析式为y k x =(k ≠0);(2)代,即将已知条件中对应的x 、y 值代入y k x =中得到关于k 的方程.(3)解,即解方程,求出k 的值.(4)定,即将k 值代入y k x=中,确定函数解析式.出示课件15,学生独立解决,一生板演.知识点2:建立反比例函数的模型解答问题人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄.当车速为50km/h 时,视野为80度,如果视野f(度) 是车速v(km/h)的反比例函数,求f 关于v 的函数解析式,并计算当车速为100km/h 时视野的度数.(出示课件16)学生理解题意,尝试解决,教师板演并强调书写步骤: 解:设k f v=.由题意知,当v=50时,f=80, 所以8050k =, 解得k=4000. 因此4000.f v= 当v=100时,f=40.所以当车速为100km/h 时,视野为40度.出示课件17,学生独立解决,教师加以订正.(三)课堂练习(出示课件18-25)练习课件第18-25页题目,约用时20分钟(四)课堂小结(出示课件26)本节课你有哪些收获?你还有什么困惑吗?(引导学生思考答复)师生一起提炼本节课的重要知识和必须掌握的技能:1.一般地,形如y k x=(k 是常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.2.反比例函数的三种表达方式:(注意k ≠0)x k y =;1-=kx y ;k xy =. 3.用待定系数法求反比例函数解析式的一般步骤是:(1)设,即设所求的反比例函数解析式为y kx=(k ≠0);(2)代,即将已知条件中对应的x 、y 值代入y k x =中得到关于k 的方程.(3)解,即解方程,求出k 的值.(4)定,即将k 值代入y k x =中,确定函数解析式.(五)课前预习预习下节课(26.1.2第1课时)的相关内容.了解反比例函数的图象及性质.七、课后作业1、教材第3页练习第2,3题.2、七彩课堂第5~6页第1,2,6,8题.八、板书设计26.1.1反比例函数1.反比例函数的定义:一般地,形如y k x=(k 是常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数.2.反比例函数的形式:(1)y =k x (k ≠0);(2)y =kx -1(k ≠0);(3)xy =k (k ≠0).3.确定反比例函数的解析式:待定系数法.九、教学反思让学生从生活实际中发现数学问题,从而引入学习内容,这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景.因为反比例函数这一部分内容与正比例函数相似,在教学过程中,以学生学习的正比例函数为基础,在学生之间创设相互交流、相互合作、相互帮助的关系,让学生通过充分讨论交流后得出它们的相同点,在此基础上来揭示反比例函数的意义.在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者.。

初中数学反比例函数说课稿(精选5篇)

初中数学反比例函数说课稿(精选5篇)

初中数学反比例函数说课稿(精选5篇)初中数学反比例函数说课稿(精选5篇)作为一名辛苦耕耘的教育工作者,总归要编写说课稿,认真拟定说课稿,说课稿要怎么写呢?下面是小编精心整理的初中数学反比例函数说课稿(精选5篇),欢迎大家分享。

初中数学反比例函数说课稿1一、说教学内容:(一)、本课时的内容、地位及作用:本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数—反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。

函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

(二)、本课题的教学目标:教学目标是教学的出发点和归宿。

因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:1.知识目标(1)、通过对实际问题的探究,理解反比例函数的意义。

(2)、体会反比例函数的不同表示法。

( 3 )、会判别反比例函数。

2.能力目标(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。

(2)、在思考、归纳等过程中,发展学生的合情说理能力。

(3)、让学生会求反比例函数关系式3.情感目标(1)、通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)、理论联系实际,让学生有学有所用的感性认识。

4、本课题的重点、难点和关键:重点:反比例函数的意义;难点:求反比例函数的解析式;关键:如何由实际问题转化为数学模型。

二、说教学方法:本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。

同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。

部审人教版九年级数学下册26.1.1 《反比例函数》教学设计

部审人教版九年级数学下册26.1.1 《反比例函数》教学设计

部审人教版九年级数学下册26.1.1 《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是初中数学的重要内容,主要让学生了解反比例函数的定义、性质及图象。

通过本节的学习,为学生进一步学习高中数学打下基础。

本节内容较为抽象,需要学生具备一定的函数观念和几何想象力。

二. 学情分析九年级的学生已具备一定的函数知识,对正比例函数有一定的了解。

但在学习本节内容时,仍需克服对反比例函数概念和性质的理解困难。

此外,学生对于函数图象的绘制和分析能力有待提高。

三. 教学目标1.理解反比例函数的定义,掌握反比例函数的性质。

2.能够绘制反比例函数的图象,并分析反比例函数图象的特点。

3.能够运用反比例函数解决实际问题。

四. 教学重难点1.反比例函数的定义及性质。

2.反比例函数图象的特点及绘制方法。

五. 教学方法1.采用问题驱动法,引导学生主动探究反比例函数的定义和性质。

2.利用数形结合法,让学生通过绘制反比例函数图象,加深对函数性质的理解。

3.采用案例分析法,让学生运用反比例函数解决实际问题。

六. 教学准备1.准备反比例函数的相关案例,用于课堂分析和练习。

2.准备反比例函数的图象示例,用于讲解和展示。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用一个实际问题引入反比例函数的概念,如:一辆汽车以60千米/小时的速度行驶,行驶1小时后,离出发点的距离是多少?引导学生思考距离与时间的关系,从而引出反比例函数。

2.呈现(10分钟)讲解反比例函数的定义,示例说明反比例函数的表示方法,如y=k/x (k为常数)。

通过示例,让学生了解反比例函数的性质,如x越大,y越小;x越小,y越大等。

3.操练(10分钟)让学生绘制几个反比例函数的图象,并分析图象的特点。

期间,教师可引导学生运用数形结合的思想,加深对反比例函数性质的理解。

4.巩固(10分钟)分析一些实际问题,让学生运用反比例函数解决。

26.1.1 反比例函数 人教版九年级数学下册课件

26.1.1 反比例函数 人教版九年级数学下册课件
v
, y
, S
.
t
x
n
观察以上三个解析式,你觉得它们有什么共同特点?
都具有分式的形式.
其中分子是常数.


一般地,形如 = (k为常数,k ≠ 0) 的函数,叫做反
比例函数.其中 x 是自变量,y 是函数. 为什么?


在反比例函数 = 中,x 的取值范围是什么?
因为 x 作为分母,不能等于零,因此
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x=4 时,求 y 的值.



2
解:(1)设 = . 因为当 x=2时,y=6,所以有 6 = .
解得 k =12. 因此 =
(2)把 x=4 代入 =
12

12

.
,得 =
12
4
=3.
求反比例函数解析式的一般方法是待定系数法.
课堂导入
生活中我们常常通过控制电阻的变化来实现舞台
灯光的效果. 在电压 U 一定时,当 R 变大,电流 I 会
变小,灯光就会变暗;相反,当 R 变小,电流 I 会变
大,灯光就会变亮. 你能写出这些量之间的关系式吗?
新知探究
知识点1:反比例函数的概念
下列问题中,变量间具有函数关系吗?如果有,请写出
的面积 S (cm2)的关系;
解:(1)依题意得 50 =
该函数是反比例函数.
1

3
,则 ℎ =
150

.
结果化为
一般式
1.写出函数解析式表示下列关系,并指出它们各是什么
函数.
(2)玲玲把200元全部用来买营养品送给她妈妈,她所能

人教版九年级数学下册:26.1.1《反比例函数》教学设计2

人教版九年级数学下册:26.1.1《反比例函数》教学设计2

人教版九年级数学下册:26.1.1《反比例函数》教学设计2一. 教材分析《反比例函数》是人教版九年级数学下册第26章的第一节内容,本节主要让学生了解反比例函数的定义、图象和性质。

通过本节的学习,为学生进一步学习其他函数打下基础。

二. 学情分析九年级的学生已经学习了正比例函数和一次函数,对函数的概念和图象有了一定的认识。

但反比例函数与正比例函数和一次函数有很大的区别,学生可能难以理解和接受。

因此,在教学过程中,要注重引导学生从已知知识出发,逐步探索反比例函数的性质。

三. 教学目标1.知识与技能:使学生了解反比例函数的定义,掌握反比例函数的图象和性质,能运用反比例函数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,让学生探索反比例函数的性质,培养学生的观察能力和思维能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生勇于探索、积极思考的科学精神。

四. 教学重难点1.反比例函数的定义及其意义。

2.反比例函数的图象和性质。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.准备反比例函数的相关案例和图片。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题。

七. 教学过程1.导入(5分钟)通过回顾正比例函数和一次函数的知识,引导学生思考:函数的图象和性质有哪些特点?从而引出本节内容——反比例函数。

2.呈现(10分钟)展示反比例函数的定义和图象,让学生观察并分析反比例函数的特点。

同时,通过具体案例,使学生了解反比例函数在实际生活中的应用。

3.操练(10分钟)让学生分组讨论,探索反比例函数的性质。

每组选择一个实例,分析反比例函数的图象和性质,并填写实验报告。

4.巩固(10分钟)根据实验报告,引导学生总结反比例函数的性质。

通过课堂提问,检查学生对反比例函数的理解程度。

5.拓展(10分钟)让学生运用反比例函数解决实际问题,如计算某些商品的售价、分析某些现象的变化规律等。

人教版九年级数学下册:26.1.1《反比例函数》教学设计5

人教版九年级数学下册:26.1.1《反比例函数》教学设计5

人教版九年级数学下册:26.1.1《反比例函数》教学设计5一. 教材分析《反比例函数》是人教版九年级数学下册第26.1.1节的内容,本节主要让学生了解反比例函数的定义,理解反比例函数的图像和性质,并能够运用反比例函数解决实际问题。

本节课的内容是学生在学习了正比例函数和一次函数的基础上进行的,为后续学习更复杂函数打下基础。

二. 学情分析九年级的学生已经具备了一定的函数基础,对于正比例函数和一次函数的概念和性质已经有了一定的了解。

但是,反比例函数的概念和性质相对较为抽象,学生可能难以理解和接受。

因此,在教学过程中,需要引导学生通过观察、思考、操作、交流等活动,逐步理解和掌握反比例函数的概念和性质。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的图像和性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的观察能力、思考能力和交流能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解反比例函数的性质,通过小组合作学习让学生交流和分享学习心得。

六. 教学准备1.准备相关的教学案例和实际问题。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾正比例函数和一次函数的概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)利用多媒体展示反比例函数的图像,让学生观察并描述反比例函数的特点。

同时,给出反比例函数的定义,解释反比例函数的概念。

3.操练(10分钟)让学生通过小组合作学习,探讨反比例函数的性质,如单调性、奇偶性等。

教师给予适当的引导和指导,帮助学生理解和掌握反比例函数的性质。

4.巩固(10分钟)通过解决实际问题,让学生运用反比例函数的知识。

教师可以设置一些具有挑战性的问题,激发学生的思考和探究欲望。

5.拓展(10分钟)让学生进一步探究反比例函数在实际中的应用,如流量问题、速度问题等。

26.1.1 反比例函数 课件 2024-2025学年人教版(2012)九年级下册数学

26.1.1 反比例函数  课件 2024-2025学年人教版(2012)九年级下册数学

4-1.[期末·吉林舒兰市]某工人打算用不锈钢钢条加工一个 面积为8 m2的矩形框架,假设框架的长与宽分别为x m, y m. (1)直接写出y关于x的函数解析式; 解:y=8x.
感悟新知
知4-练
(2)已知这种不锈钢钢条每米6 元,若框架的长比宽多2 m, 则加工这个框架共需花费多少元? 解:∵框架的长比宽多2 m,∴x=y+2.∴y(y+2)=8. 解得y1=2,y2=-4(舍去), ∴框架的长为2+2=4(m).∴2×(2+4)×6=72(元). 答:加工这个框架共需花费72元.
综合应用创新
把x=3代入y=-2x,得y=-2x. 所以y是x的反比例函数,函数解析式为y=-2x. 补全表格如下:
x
-3 -2 -1 -12
1 2
1
2
3
y
2 3
1
2
4 -4 -2 -1 -23
综合应用创新
另解 因为(-1)×2=-2,3×(-23)=-2,所以xy是定值.
所以y 是x的反比例函数. 设反比例函数的解析式为y=kx(k≠0),把x=-1,y=2
课堂小结
反比例函数
定义 表达形式
反比例 函数
反比例关系与 反比例函数
求反比例函数 的解析式
综合应用创新
题型 1 利用表格信息求反比例函数解析式
例 5 已知y是x的函数,下表给出了x与y的一些对应值:
x -3
-1
3
y
1 2 4 -4 -2 -1 -23
猜想y是x的正比例函数还是反比例函数,求出这个
∵ y2与x成反比例,∴设y2=kx2(k2≠0).∴ y=y1+y2=k1x+kx2.
把x=2,y=-4 和x=-1,y=5分别代入y=k1x+kx2中,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.1.1《反比例函数》说课稿
尊敬的各位老师,大家好:
今天说课的内容是《反比例函数》第一课时。

下面我将从教材、教学目标、教学重点难点、教法、教学过程等几个方面向各位专家阐述我对本节课的教学设想。

一、说教材
1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。

因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

二、说教学目标
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:
1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

三、说教法
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。

于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

四、说学法
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的
重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。

因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

五、说教学过程
(一)创设情境,发现新知
首先提出问题
问题:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?
【设计意图及教法说明】
在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

问题2:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
【设计意图及教法说明】
问题2是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

(二)合作探究,获得新知
1.出示问题
想一想,你还能举出类似的例子吗?
【设计意图及教法说明】
这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

2.启发学生建构新知
反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

反比例函数自变量不能为0!
反比例函数的一般形式:y= k/x(k为常数,k≠0)
反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)
【设计意图及教法说明】
这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

(三)反馈练习,应用新知
根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

1.基础过关
(1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【设计意图及教法说明】
此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

(2)做一做
①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
③y是x的反比例函数,下表给出了x和y的一些值:
a.写出这个反比例函数的表达式;
b.根据函数表达式完成下表。

表略。

【设计意图及教法说明】
通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。

2.能力拓展
(1)你能举个反比例函数的实例吗?与同学进行交流。

(2)y=5xm是反比例函数,求m的值。

【设计意图及教法说明】
问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。

问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k ≠0),并且加强了新旧知识的联系。

(四)归纳总结,反思提高
通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

(如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)
【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。

(五)推荐作业,分层落实
必做题:课本第134页习题1、2题。

选做题:已知y与2x成反比例,且当x=2时,y=-1,求:
(1)y与x的函数关系式。

(2)当x=4时,y的值。

(3)当y=4时,x的值。

【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。

结束语:我的说课完了,非常感谢各位老师的聆听。

相关文档
最新文档