勾股定理的几种证法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的几种常见证法

证法1

作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P.

∵D、E、F在一条直线上,且RtΔGEF ≌RtΔEBD,

∴∠EGF = ∠BED,

∵∠EGF + ∠GEF = 90°,

∴∠BED + ∠GEF = 90°,

∴∠BEG =180°―90°= 90°

又∵AB = BE = EG = GA = c,

∴ABEG是一个边长为c的正方形。

∴∠ABC + ∠CBE = 90°

∵RtΔABC ≌RtΔEBD,

∴∠ABC = ∠EBD.

∴∠EBD + ∠CBE = 90°

即∠CBD= 90°

又∵∠BDE = 90°,∠BCP = 90°,

BC = BD = a.

∴BDPC是一个边长为a的正方形。

同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

A2+B2=C2

证法2

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP∥BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵∠BCA = 90°,QP∥BC,

∴∠MPC = 90°,

∵BM⊥PQ,

∴∠BMP = 90°,

∴BCPM是一个矩形,即∠MBC = 90°。

∵∠QBM + ∠MBA = ∠QBA = 90°,

∠ABC + ∠MBA = ∠MBC = 90°,

∴∠QBM = ∠ABC,

又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,

∴RtΔBMQ ≌RtΔBCA.

同理可证RtΔQNF ≌RtΔAEF.即A2+B2=C2

证法3

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再作一个边长为c的正方形。把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90°,

∴RtΔCJB ≌RtΔCFD ,

同理,RtΔABG ≌RtΔADE,

∴RtΔCJB ≌RtΔCF D ≌RtΔABG ≌RtΔADE

∴∠ABG = ∠BCJ,

∵∠BCJ +∠CBJ= 90°,

∴∠ABG +∠CBJ= 90°,

∵∠ABC= 90°,

∴G,B,I,J在同一直线上,

A2+B2=C2。

证法4

作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD. 过C作CL⊥DE,

交AB于点M,交DE于点L.

∵AF = AC,AB = AD,

∠FAB = ∠GAD,

∴ΔFAB ≌ΔGAD,

∵ΔFAB的面积等于,

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴矩形ADLM的面积=.

同理可证,矩形MLEB的面积=.

∵正方形ADEB的面积

= 矩形ADLM的面积+ 矩形MLEB的面积

∴即A2+B2=C2

证法5(欧几里得的证法)

《几何原本》中的证明

在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在正式的证明中,我们需要四个辅助定理如下:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

其证明如下:

设△ABC为一直角三角形,其直角为CAB。其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。分别连接CF、AD,形成两个三角形BCF、BDA。∠CAB和∠BAG都是直角,因此C、A 和G 都是线性对应的,同理可证B、A和H。∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。因为AB 和BD 分别等于FB 和BC,所以△ABD 必须相等于△FBC。因为A 与K 和L是线性对应的,所以四方形BDLK 必须二倍面积于△ABD。因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。因此四边形BDLK 必须有相同的面积BAGF = AB²;。同理可证,四边形CKLE 必须有相同的面积ACIH = AC2;。把这两个结果相加,AB2;+ AC2;; = BD×BK + KL×KC。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB2;+ AC2;= BC2;。此证明是于欧几里得《几何原本》一书第1.47节所提出的

证法6(欧几里德(Euclid)射影定理证法)

如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高

通过证明三角形相似则有射影定理如下:

(1)(BD)2;=AD·DC,

(2)(AB)2;=AD·AC ,

(3)(BC)2;=CD·AC。

由公式(2)+(3)得:(AB)2;+(BC)2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)2;,

图1即(AB)2;+(BC)2;=(AC)2,这就是勾股定理的结论。

图1

证法七(赵爽弦图)

相关文档
最新文档