Study of New FNAL-NICADD Extruded Scintillator as Active Media of Large EMCal of ALICE at L
国科大王焕华X射线晶体学作业参考答案

X 射线晶体学作业参考答案第三章:晶体结构与空间点阵1. 六角晶系的晶面指数一般写成四个(h k -h-k l ),但在衍射的计算和处理软件中,仍然用三个基矢(hkl )。
计算出六角晶系的倒格基矢,并写出六角晶系的两个晶面之间的夹角的表达式。
已知六角晶系的基矢为解:根据倒格子的定义式,计算可得:()k a c j ac b j i ac a 2***323Ω=Ω=+Ω=πππ 任意两个晶面(hkl)和(h ’k ’l ’)的晶面夹角θ是: ()()()()22222222222222222222222222'''''''3''''434'3)''(2)''(4'3''''434'3)'2')(2('3arccos l a k k h h c l a k hk h c ll a k h hk c kk hh c l a k k h h c l a k hk h c ll a k h k h c hh c G G G G l k h hkl l k h hkl +++⨯+++++++=+++⨯+++++++=⎪⎪⎪⎭⎫ ⎝⎛∙= θ2. 分别以晶格常数为单位和以实际大小写出SrTiO 3晶胞中各离子的坐标,并计算SrTiO3的质量密度和电子数密度。
解:Sr 原子量87.62,电子数38;Ti 原子量47.9,电子数22;O 原子量15.999,电子数8 (数据取自国际衍射数据中心)。
质量密度:kc c j i a b ia a =+-==)2321(电子数密度:3.*为什么位错不能终止于晶体内部?请说明原因。
答:作为一维缺陷的位错如果终止在晶体内部,则必然在遭到破坏的方向上产生连带的破坏,因此一根位错线不能终止于晶体内部,而只能露头于晶体表面(包括晶界),同时Burgers vector 的封闭性(守恒)也要求位错不能终止在晶体内部。
Co纳米线阵列的掠入射中子小角散射研究

收 稿 日 期 $*$*>*#>$$修 回 日 期 $*$*>*=>*# 基 金 项 目 中 国 原 子 能 科 学 研 究 院 院 长 基 金 资 助 项 目 #=FG$*#@*B国 家 自 然 科 学 基 金 资 助 项 目 ##@E!<$!##=*!$B$ 作 者 简 介 徐 新 宇 #BB! 女 河 南 淮 滨 人 硕 士 研 究 生 中 子 散 射 专 业 " 通 信 作 者 付 振 东 0>-7.'I8XH"YJH(28H(/1刘 蕴 韬 0>-7.'5,'.HBB"57:&&(/&网 络 出 版 时 间 $*$*>#*>#$网 络 出 版 地 址 :,,Y'J1T(/1J.(12,J/-T82,7.'##($*""(9O($*$*#*#*(#@<<(**$(:,-'
光的衍射 习题集

第五章 光的衍射5.1光源S 以速度V 沿一方向运动,它发出的光波在介质中的传播速度为v ,试用惠更斯原理证明:当V>v 时,光波具有圆锥形波前,其半圆锥角为1sin ()v V α-=5.2点光源向平面镜发出球面波,用惠更斯作图法求出反射波的波前。
2题图5.3试从场论中的散度公式*F d Fdv σ=∇⎰⎰⎰⎰⎰导出格林公式(5-6)。
[提示:令F= ~~G E ∇ 。
并利用恒等式~~~~~2()G E G E G E ∇∇=∇∇+∇±]5.4对题5.2图中所示的平面屏上孔径∑的衍射,证明:若选取格林函数 ~exp()exp(')'ikr ikr G r r =- (r=r ’,p 和p ’对衍射屏成镜像关系),则p 点的场值为~exp()exp()()cos(,)A ikl ikr E p n r d i l r σλ=∑⎰⎰5.5在图中,设 2∑ 上的场是由发散球面波产生的,证明它满足索末菲辐射条件。
5题图5.6波长λ=500nm 的单色光垂直入射到边长为3cm 的方孔,在光轴(它通过方孔中心并垂直方孔平面)附近离孔z 处观察衍射,试求出夫琅和费衍射区的大致范围。
5.7求矩孔夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。
5.8将长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹相对于中央亮纹的强度。
5.9.证明平行光斜入射到单缝上时,单缝夫琅和费衍射强度为0sin[(sin sin )]{}(sin sin )a i I I a i πθλπθλ-=- 式中,I 0央亮纹中心强度,a 是缝宽,θ 是衍射角,i 是入射角(见图)。
(2)中央亮纹的角半宽度为cos a i λθ∆=9题图5.10在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为300mm, 光波波长为632.8nm 。
LD

Zh a n g De p i n g,W u Cha o,Zh a ng Ro n g z h u ,S u n Ni a n c h u n
( S c h o o l o f E l e c t r o n i c I n f o r ma t i o n , S i c h u a n Un i v e r s i t y ,C h e n g d u 6 1 0 0 6 5 , C h i n a )
YA G复合 结 构 的热传 导模 型。采 用有 限元 分析 方 法得到 了介质 内部 的 温度 分布 , 给 出 了介 质折 射 率 随温度 变化 的计 算 方法 并得到 了出射端 面波 前相位 分 布 随温度 变化 的情 况 。 计算 结果表 明 : 保持 泵 浦
光功 率 密度 不 变 , 在 不 同的 泵浦 时长 下 , 介质 温度 以及 通 光方 向截 面折射 率 变化也 不 同。随 着 泵浦 时
第4 4卷 第 8期
Vo1 . 44 No. 8
红 外 与 激 光 工 程
I n f r a r e d a n d La s e r E n  ̄ i n e e r i n
2 0 1 5年 8 月
Aug. 201 5
L D 端 面 泵 浦 分 离 式 放 大 器 结 构 的 热 效 应 研 究
e s t a b l i s h e d.Th e t e mp e r a ur t e d i s t r i b u i t o n i n s i d e he t me d i u m wa s c a l c u l a t e d b y u i t l i z i n g he t f i n i t e e l e me n t me ho t d. Th e c o mp u i t n g m e ho t d o f he t m e d i u m r e ra f c i t v e i n d e x v a r y wi h t t e mp e r a t u r e wa s g i v e n, a n d
透射电镜差分相位分析技术磁畴研究

㊀第40卷㊀第11期2021年11月中国材料进展MATERIALS CHINAVol.40㊀No.11Nov.2021收稿日期:2021-07-14㊀㊀修回日期:2021-09-28基金项目:国家自然科学基金资助项目(11804343)第一作者:汤㊀进,男,1989年生,副研究员通讯作者:杜海峰,男,1979年生,研究员,博士生导师,Email:duhf@DOI :10.7502/j.issn.1674-3962.202107019透射电镜差分相位分析技术磁畴研究汤㊀进1,吴耀东1,2,熊奕敏1,田明亮1,杜海峰1(1.中国科学院合肥物质科学研究院强磁场科学中心极端条件凝聚态物理安徽省重点实验室,安徽合肥230031)(2.合肥师范学院物理与材料工程学院,安徽合肥230061)摘㊀要:透射电子显微镜具有高空间磁分辨率和易集成的多场调控等特点,成为当下纳米尺度下先进磁结构观测的主要手段之一㊂首先介绍和比较了透射电镜磁表征的3种模式:洛伦茨模式㊁电子全息模式和差分相位分析模式,然后详细综述了差分相位分析技术表征一类中心对称晶体Fe 3Sn 2材料中新型磁畴结构的研究进展㊂在该研究中,首先结合差分相位分析技术和三维微磁学模拟,阐释了中心对称材料中复杂 多拓扑态 磁畴起源于磁结构的三维特性,随后基于该材料温度诱导自旋重取向内禀物性,在Fe 3Sn 2受限纳米盘中,利用差分相位分析技术发现了一类全新的涡旋状磁结构 靶磁泡 ,研究了其磁场演化行为,最后提出了斯格明子-磁泡基存储器的概念,并实现了磁场和电流高度可控斯格明子-磁泡拓扑磁转变㊂差分相位分析技术揭示的中心对称磁性材料纳米结构中的新颖磁畴及丰富的电流驱动动力学,有望促进未来基于新型磁畴结构的拓扑相关自旋电子学器件的开发㊂关键词:透射电子显微镜;差分相位分析;磁畴;斯格明子-磁泡;中心对称磁体中图分类号:TH742㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2021)11-0851-10Magnetic Domain Imaging by Differential PhaseContrast Technique of Transmission Electronic MicroscopyTANG Jin 1,WU Yaodong 1,2,XIONG Yimin 1,TIAN Mingliang 1,DU Haifeng 1(1.Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China)(2.School of Physics and Materials Engineering,Hefei Normal University,Hefei 230061,China)Abstract :Transmission electronic microscopy (TEM)has become one of the most advanced techniques to observe nano-metric-sized magnetic domains,owing to its high spatial magnetic resolution and easy accessibility in integrating multiple physic fields.Here,we compared three techniques of TEM observing magnetic domains:Lorentz-TEM,electronic hologra-phy and differential phase contrast scanning TEM (DPC-STEM).Then we reviewed recent advances in magnetic domains imaging of a centrosymmetric magnet Fe 3Sn 2by DPC-STEM.We demonstrated physical clarifications to multiple topological states ,which are attributed to three-dimensional (3D)depth-modulated spin configurations,using DPC-STEM and 3D mi-cromagnetic simulations.We then reported a new class of vortex-like spin configurations named target bubble and their field-driven magnetic evolutions in Fe 3Sn 2nanodisks.Finally,we proposed a new strategy to design memory named Skyrmi-on-bubble-based memory,which utilizes Skyrmions and bubbles as binary bits 1 and 0 ,respectively.Current-field-controlled topological Skyrmion-bubble transformations have been also achieved.The novel magnetic domains and their in-triguing electronic-magnetic properties shed by DPC-STEM are expected to facilitate advances in developing topology-related spintronic devices.Key words :transmission electronic microscopy;differential phase contrast;magnetic domain;Skyrmion-bubble;cen-trosymmetric uniaxial magnet1㊀前㊀言磁性材料已经被广泛应用于现代生活中,具有很大的市场价值,其中一个典型代表是自旋电子学磁功能器件[1]㊂自旋电子学是将电子的两个内禀属性电荷和自旋博看网 . All Rights Reserved.中国材料进展第40卷相结合的研究学科㊂以机械硬盘为代表的自旋电子学器件已经取得了较大的商业成功[2]㊂机械硬盘是利用磁化反平行排列的磁畴来表征双数据比特,通过读头的机械转动来实现读写㊂但是传统机械硬盘受到机械振动和热扰动的影响,其性能已趋于功能极限㊂为了突破功能极限,科学家们期望通过发现新型磁结构来构建新一代自旋电子学器件㊂磁斯格明子是新型磁结构的代表[3-5]㊂磁斯格明子是一类涡旋状新型磁结构,具有拓扑非平庸类粒子行为㊁可调的小尺寸和丰富的电磁相关动力学行为等特点[6]㊂磁斯格明子的关键稳定机制是材料体系中的Dzyaloshinskii-Moriya(DM)相互作用[7]㊂根据DM 相互作用类型,磁斯格明子主要分为3种:①具有体DM 相互作用的材料,如B 20型FeGe 和MnSi 材料中的布洛赫(Bloch)型磁斯格明子[3,4,8,9](图1a);②具有表面DM相互作用的材料,如铁磁/重金属异质结薄膜和C 3v 对称晶体GaV 4S 8中的奈尔(Néel)型磁斯格明子[10,11];③具有二维各向异性DM 相互作用的材料,如D 2d 晶体MnPdPtSn 中的反磁斯格明子[12]㊂此外,在传统中心对称单轴铁磁体中,偶极相互作用与单轴磁晶各向异性等的竞争也会产生出一类局域柱状畴磁结构 磁泡,其中类型I 磁泡的闭合畴壁贡献了与Bloch 型手性斯格明子相同的整数拓扑荷,因此其也被称为磁泡斯格明子(图1b)[13-22]㊂近年来,这些具有丰富磁学㊁电学性质的磁斯格明子可以作为信息载体,用来构建存储器㊁逻辑器件㊁神经网络器件和互联信息器件等[23-25],形成了一类新兴的自旋电子学亚类学科 拓扑自旋电子学[26-28]㊂图1㊀非中心对称螺磁体中布洛赫型磁斯格明子(a)[3,4,8,9];中心对称单轴铁磁体中的磁泡斯格明子(b)[13-22]Fig.1㊀Bloch-type Skyrmion in an noncentrosymmetric screw magnet (a)[3,4,8,9];Skyrmion bubble in a centrosymmetric uniaxialferromagnet (b)[13-22]拓扑自旋电子学研究领域关键的科学问题之一是磁斯格明子的电调控[23]㊂而未来自旋电子学器件高存储密度要求磁信息载体的尺寸为纳米尺度,因此需要探索纳米尺度下的磁斯格明子的相关性能,这要求磁表征技术的高空间分辨率㊂现代磁学的发展也得益于先进磁表征技术的发展㊂依据自旋与电流㊁电子㊁光等的相互作用,科学家们已经开发出了多种先进的磁表征技术[26],如表1所示[11,23,29-31]㊂其中,透射电镜不仅能够观测纳米尺度范围内的磁畴,也易于集成多物理场条件,对样品和外界环境要求相对较低[32]㊂因此,透射电镜成为了近年来高分辨率磁表征的重要技术手段,极大地推动了磁斯格明子相关的研究进展,例如磁斯格明子的首次实空间观测[4]㊁磁浮子的首次实空间观测[33]㊁反斯格明子的首次实空间观测等,都是利用透射电镜技术实现的[12]㊂本文将首先介绍基于透射电镜的3种基本磁表征手段,并随后着重综述透射电镜差分相位分析技术表征一类中心对称晶体中的新型磁畴结构的研究进展㊂表1㊀磁表征技术:洛伦茨透射电子显微镜㊁磁力显微镜㊁自旋极化扫描隧道显微镜㊁X 射线显微学㊁表面磁光克尔效应㊁X-射线磁圆二色仪-光发射电子显微镜[11,23,29-31]Table 1㊀Magnetic imaging techniques :Lorentz-transmission elec-tronic microscopy (Lorentz-TEM ),magnetic force mi-croscopy (MFM ),spin-polarized scanning tunneling mi-croscopy (spin-polarized STM ),X-ray holography (X-ray holography ),surfacemagneto-opticalKerreffect(SMOKE ),X-ray magnetic circular dichroism-photoe-mission electron microscopy (XMCD-PEEM )[11,23,29-31]Techniques ResolutionSpatial /nm Time Field /T Temperature/K Lorentz-TEM ~2ms -2~25~1300MFM~10s -16~162~400Spin-polarized STM~0.5s-9~9<10X-ray holography~20nsSMOKE~300ns -9~92~800XMCD-PEEM~25s02~3002㊀透射电镜磁表征技术透射电镜磁表征技术是基于电子在磁场运动过程中受到的洛伦茨力,因此磁表征的透射电镜也被称作洛伦茨透射电镜[4,32]㊂透射电镜电子束的传输方向为垂直于样品表面,由于电子的轨迹只受到与其运动方向垂直的磁场的影响,因此洛伦茨透射电镜只能表征面内磁矩㊂此外,透射模式也表明透射电镜探测到的是样品厚度方向积分的磁矩㊂依据电子受到洛伦茨力发生偏转的探测方式,透射电镜磁表征技术可以分成3种(图2):欠焦/过焦情况下的菲涅尔磁衬度,即传统洛伦茨技术[4];通过分辨样品和全息丝的干涉条纹宽度的变化来获得磁相位,即电子全息技术[34-37];扫描聚焦电子束通过样品后,4个分立探头探测的电子束强度的差异等价于磁相位衬度差分,即差分相位分析扫描透射电镜技术[13,15,16,38-40]㊂258博看网 . All Rights Reserved.㊀第11期汤㊀进等:透射电镜差分相位分析技术磁畴研究图2㊀透射电镜3种磁表征技术示意图:洛伦茨[4]㊁电子全息[34-37]和差分相位分析[13,15,16,38-40]Fig.2㊀Schematic designs of three magnetic imaging techniques of trans-mission electronic microscopy:Lorentz [4],electronic hologra-phy [34-37]and differential phase contrast scanning [13,15,16,38-40]根据不同透射电镜磁成像技术的特点,3种方式各具特色,但也存在着缺点㊂传统离焦下表征的洛伦茨模式是最早也是现在最流行的透射电镜磁成像表征方式[20],具有易于操作㊁比较直观反射磁结构和成像速度快等优点,但是这种方法也有以下缺点:①由于离焦状态下样品边缘具有菲涅尔强衍射,使得该方法不适用于太小受限结构的磁分辨[41];②作为一种间接获得磁相位的方法,传统输运强度分析(transport of intensity equation,TIE)技术解析磁结构的过程中可能会引入一些人为的磁信息,造成严重的偏差[42]㊂电子全息技术是一种正焦模式下直接表征磁相位的方法,能够非常准确和定量地解析磁结构[34-37],但是这种方法也有以下缺点:①电子全息模式观测到的是干涉条纹[34],不能直观反映磁结构,不适用于一些快速磁结构动力学响应的表征;②由于干涉所需的参考光束需要经过真空,因此电子全息只能表征靠近样品边缘的磁结构,有效观测尺寸大约为1μm [37]㊂差分相位分析扫描透射模式也是一种正焦状态下直接探测磁矩的方式(图3),具有磁成像精度高㊁范围广等优点,特别是能够精确表征样品缺陷处的磁结构信息[13,15,16,38-40],但是该方法也有以下缺点:①扫描聚焦模式成像较慢(数十秒以上),不适用于实时磁结构动力学表征;②扫描聚焦模式下会对样品造成损伤㊂从以上讨论可以得出,相比于传统洛伦茨模式,电子全息和差分相位分析都是更为精确的磁相位表征技术,但是电子全息只适用于一些小样品的表征,而差分相位分析技术并不受到样品尺寸的限制,可以表征任意尺寸磁样品的磁结构㊂本文将着重介绍差分相位分析方法在偶极磁斯格明子材料的新型磁结构表征中的近期科研进展㊂3㊀差分相位分析磁畴表征3.1㊀三维磁斯格明子与磁泡由于单轴磁晶各向异性㊁偶极-偶极相互作用㊁交换图3㊀差分相位分析方法分析磁畴的过程[13,15,16,38-40]:(a ~d)扫描透射模式下,4个分立的差分衬度探头A㊁B㊁C 和D 得到聚焦电子束穿过一个直径为1550nm 的Fe 3Sn 2纳米盘的衬度图像;(e)探头A 和C 的差分衬度,与样品中沿着y 轴的磁场强度成正比;(f)探头B 与D 的差分衬度,与样品中沿着x 轴的磁场强度成正比;(g)通过(A -C)2+(B -D)2计算出的整个面内磁场强度分布图;(h)最终重构的面内场强分布图Fig.3㊀Analysis procedure for determining the magnetic structure in a1550nm Fe 3Sn 2disc by using differential phase contrast scan-ning TEM [13,15,16,38-40]:(a ~d)differential phase contrastcomponent images from the four segments of the detectors A,B,C and D,respectively;(e)differential phase contrast compo-nent obtained by subtracting C from A (A -C),which is propor-tional to the field component along the y axis;(f)differential phase contrast component obtained by subtractingD from B (B -D),which is proportional to the field component along the x axis;(g )totalin-planefieldstrengthobtainedfrom(A -C)2+(B -D)2;(h)in-plane magnetization mapping相互作用和外磁场赛曼能的竞争,中心对称单轴磁性材料能够形成局域的柱状磁畴结构,该结构被称为磁泡(图1b)[20,43,44]㊂虽然磁泡在20世纪70~90年代得到了大量的研究,并构建了磁泡存储器等功能性器件[45],但由于该器件的大尺寸(微米尺度)不适用于紧凑的器件设计而逐渐被淘汰[43]㊂最近,新型涡旋局域磁结构斯格明子的发现也重新引起了研究人员对传统磁泡的广泛兴趣[21,22,31,42,46-54]㊂依据柱状磁畴的畴壁磁化分布,磁泡可分为类型I 拓扑非平庸磁泡和类型II 拓扑平庸磁泡[21]㊂其中具有闭合畴壁的类型I 磁泡具有与磁斯格明子相同的拓扑性,也被称为斯格明子磁泡[31,51-54]㊂特别地,最近的研究发现了直径小于50nm 的斯格明子磁泡和自旋转移力矩驱动磁泡动力学行为[17,31,54]㊂这些研究成果也预示着传统磁泡可以被用来构建新型高性能自旋电子学器件[18]㊂为简便表述,后文将中心对称晶体中的类型I 斯格明子磁泡和类型II 磁泡分别称为磁斯格明子和磁泡㊂358博看网 . All Rights Reserved.中国材料进展第40卷虽然中心对称晶体中的磁斯格明子和磁泡结构已经得到了很好的理论解析[55],但在近期采用透射电镜研究磁泡材料磁畴工作中发现了复杂的 多拓扑态 磁结构[22,47]㊂这些复杂磁结构与传统磁斯格明子和磁泡结构有很大差异,同时一直没有得到很好的物理解释,限制了磁泡材料的未来应用性㊂分析可知,这些复杂 多拓扑态 磁结构均是通过透射电镜洛伦茨模式得到,且解析的磁结构被认为是二维的㊂传统洛伦茨模式表征磁结构是通过TIE 技术解析过焦㊁正焦和欠焦菲涅尔磁衬度得到的㊂而为了得到更清晰的磁结构,TIE 技术通常需要设定滤波参数来过滤噪音和非磁背景,但滤波也可能会得到偏离真实情况的磁结构[42];同时TIE 技术也不适用于解析传统均匀铁磁磁畴[14,16]㊂透射电镜技术得到的是沿着样品厚度方向的积分磁化分布,但以往的研究认为磁结构在厚度方向为磁化均匀的[22,47]㊂作者团队[16]采用透射电镜差分相位分析-扫描透射模式和三维微磁学计算模拟相结合的方式,系统地研究了Kagome 中心对称晶体材料Fe 3Sn 2中的复杂 多拓扑态 多环和Φ形-圆弧形磁涡旋结构,如图4所示㊂Fe 3Sn 2是一类室温单轴铁磁体[56-61],单轴磁化易轴在室温下沿着c 轴㊂同时,Fe 3Sn 2为低品质因子材料,即单轴磁晶各向异性K u 小于12μ0M 2s ,μ0和M s 分别为真空磁导率和饱和磁化率㊂通过三维微磁学计算模拟发现[62],对于低品质因子的Fe 3Sn 2薄片样品,强的偶极-偶极相互作用会导致磁斯格明子和磁泡沿着厚度方向发生连续自旋扭转,形成界面涡旋状磁结构㊂因此,上述模拟结果表明,Fe 3Sn 2纳米薄片样品的磁斯格明子和磁泡沿着厚度方向不是均匀磁化的(图4e 和4f),因此在透射电镜解析的磁结构中必须考虑厚度方向的积分磁化分布㊂同时,利用差分相位分析进一步得到了Fe 3Sn 2纳米薄片样品的多环状和圆弧形涡旋磁结构(图4a 和4b),发现其与传统洛伦茨模式解析磁结构有很大差异,但与三维微磁模拟的磁斯格明子和磁泡的积分磁化分布高度一致(图4c 和4d)㊂这些研究结果表明, 多拓扑态 起源于传统中心对称材料中的三维磁斯格明子和磁泡结构,磁结构的复杂性是由于非均匀三维磁结构投射到二维平面后的积分相加所导致的㊂3.2㊀靶磁泡的发现及其磁场驱动演化过程Fe 3Sn 2的磁晶各向异性具有强温度依赖性,单轴磁各向异性常数K u 随着温度降低而减小,因此易磁化方向会由高温时的c 轴转变到低温时的ab 易磁化面,即温度诱导自旋重取向[61]㊂本课题组[13]制备了不同尺寸受限Fe 3Sn 2纳米盘,利用差分相位分析研究了其零磁场下的图4㊀Fe 3Sn 2纳米结构中类型I 斯格明子磁泡和类型II 拓扑平庸磁泡的三维磁结构[16]:(a,b)差分相位分析方法得到的面内自旋分布;(c,d)三维微磁模拟得到的平均面内磁化分布;(e,f)三维微磁模拟得到的厚度调制磁结构Fig.4㊀3D spin texture of type-I Skyrmion bubble and type-II topologi-cally trivial bubble in the Fe 3Sn 2nanostructure [16]:(a,b)in-plane magnetization mappings of two types of bubbles obtainedfrom differential phase contrast technique;(c,d)average in-plane magnetization mappings of two types by 3D micromagnetic simulation;(e,f)depth-modulated 3D magnetic bubbles by 3Dmicromagnetic simulation磁畴演化行为,如图5所示㊂由于在传统洛伦茨模式离焦磁表征模式下,受限小尺寸样品边缘强的菲涅尔衍射条纹给磁结构解析带来极大的干扰,因此正焦模式下工作的差分相位分析技术更适用于精确研究受限体系下的磁畴结构㊂不同于在高温300K 的条纹畴磁基态(图5a),在低温100K 的易面磁化Fe 3Sn 2(001)纳米盘中,偶极-偶极相互作用会诱导面内磁矩沿着圆盘边缘排列,形成经典的软磁磁涡旋结构(图5b)㊂以软磁磁涡旋为种子磁结构,当升高温度到室温,易面磁纳米盘转变为垂直磁纳米盘,Fe 3Sn 2(001)纳米盘中会形成多环靶态磁结构,命名其为 靶磁泡 (图5c)㊂通过分析靶磁泡的中间层磁化分布,发现其自旋从中心到最外边缘旋转了π的整数(k )倍(图5d),因此中心对称晶体中的靶磁泡也可以被看作k π-磁斯格明子㊂这种自旋重取向导致的软磁磁涡旋到靶磁泡的转变可被微磁模拟重复出来(图5e ~5h)㊂458博看网 . All Rights Reserved.㊀第11期汤㊀进等:透射电镜差分相位分析技术磁畴研究图5㊀在Fe 3Sn 2纳米盘中通过在零磁场下加热到室温的方式,利用差分相位分析技术观测到的室温下的条纹畴到低温下的软磁磁涡旋到室温下的靶磁泡(k π-磁斯格明子)的转变[13]:(a)300K 室温条纹畴;(b)100K 磁涡旋;(c)300K 室温靶磁泡;(d)沿着图5c 中A 到B 位置连线相关面内磁化强度;(e)模拟的室温条纹畴;(f)模拟的100K 磁涡旋;(g)模拟的室温靶磁泡;(h)模拟的沿着图5g 中C 到D 位置连线相关面内磁化强度Fig.5㊀Transformation from a soft magnetic vortex at 100K to a target bubble (k π-Skyrmion)at 300K through zero-field warming in an Fe 3Sn 2nanodisk obtained by differential phase contrast [13]:(a)experimental stripes at 300K;(b)soft vortex at 100K;(c)target bubble at300K;(d)position dependent in-plane magnetization amplitude along the line A to B in Fig.5c;(e~g)simulated stripes with uniaxi-al magnetic anisotropy K u =53.0kJ /m 3,soft vortex with K u =2.3kJ /m 3and target bubbles with K u =53.0kJ /m 3;(h)simulated posi-tion dependent in-plane magnetization amplitude along the line C to D in Fig.5g㊀㊀k π-磁斯格明子的拓扑荷为0(k 为奇数)或1(k 为偶数)㊂前期研究表明,k π-磁斯格明子具有k 相关可调自旋波激发和多场调控磁性等特点,其中2π-磁斯格明子(也叫做类斯格明子Skyrmionium)被提出可以用来构建无垂直漂移赛道存储器和斯格明子互联器件等[63,64]㊂但k π-磁斯格明子的研究多为理论模拟研究,仅仅在极少数的磁系统中被观察到[65,66],k π-磁斯格明子(k >2)的实验发现尤其充满挑战㊂通过以软磁磁涡旋为种子磁结构以及调节Fe 3Sn 2(001)纳米盘的直径,得到了丰富的零磁场稳定的k π-磁斯格明子(k =2,3,4和5)㊂与手性磁体中零磁场下两种简并的k π-磁斯格明子相比较,理论上中心对称材料中的零磁场k π-磁斯格明子有2k +1种㊂此外,之前的理论研究也预言了磁场诱导的k π-磁斯格明子的新颖磁性[67-70],但相关的实验研究还很少㊂因此,本课题组[15]进一步利用差分相位分析研究了Fe 3Sn 2(001)纳米盘中的磁场演化行为,如图6所示㊂磁场驱动下,Fe 3Sn 2(001)纳米盘k π-磁斯格明子主要呈现出3个特点:①零磁场下的不规则形状转变为高磁场下的轴对称形状(图6a);②磁场诱导k 系数的减小;③k π-磁斯格明子直径随磁场增强而连续减小(图6b)㊂中心对称Fe 3Sn 2纳米盘中的k π-磁斯格明子具有室温和零磁场稳定性㊁丰富多重简并态以及利用外磁场和图6㊀Fe 3Sn 2纳米结构中采用差分相位分析技术观测到的磁场诱导的k π-磁斯格明子(靶磁泡)的磁演化行为[15]:(a)实验观测的高磁场下稳定的圆形k π-磁斯格明子;(b)k π-磁斯格明子的直径随着磁场强度的变化关系,图中正方形点㊁三角形点和圆形点分别代表4π㊁3π和2π磁斯格明子Fig.6㊀Field-driven magnetic evolutions of k π-Skyrmion in Fe 3Sn 2nan-odisks obtained by differential phase contrast [15]:(a)roundk π-Skyrmions stabilized at high fields;(b)field B dependent diameter of k π-Skyrmions,the square,triangle,and circle sym-bols in Fig.6b denote the parameter k with values of 4,3,and2,respectively558博看网 . All Rights Reserved.中国材料进展第40卷纳米盘直径可实现可调k参数等特点,有望进一步被应用于新型磁电子学器件的设计中㊂3.3㊀可逆电流调控磁斯格明子-磁泡拓扑磁转换中心对称Fe3Sn2材料中有两种局域磁结构:磁斯格明子和磁泡㊂传统的磁斯格明子基存储器是将磁斯格明子和铁磁态看作数据比特的 1 和 0 [29]㊂但是由于热扰动和斯格明子间的相互作用[33,71],斯格明子的非定向运动会造成数据链的混乱㊂而为了抑制斯格明子的无序运动,需要在传统斯格明子基存储器中的每个数据比特位构建人工缺陷,这无疑会增加器件构建的成本㊂我们提出采用磁泡替代传统铁磁空隙当作数据比特 0 来构建磁斯格明子-磁泡存储器,如图7a~7d所示[18]㊂当磁场完全垂直于Fe3Sn2(001)纳米结构时,为了使偶极-偶极相互作用能最小化,柱状畴形成具有闭合磁畴的磁斯格明子稳定相㊂当磁场不是完全垂直于Fe3Sn2 (001)纳米结构而具有大的面内磁场时,为了使赛曼能最小化,柱状畴形成具有朝向面内磁场方向磁畴的磁泡稳定相㊂当磁场的倾斜角度适中时,磁斯格明子和磁泡是稳定共存,也是磁斯格明子-磁泡存储器实现的前提㊂在强受限Fe3Sn2(001)纳米条带中,通过施加一个5ʎ倾斜的磁场,成功实现了磁斯格明子-磁泡单链(图7e),这种磁斯格明子-磁泡单链被当作一串数据比特㊂图7㊀一种基于磁斯格明子和磁泡的存储器原型的提出[18]:(a)斯格明子-磁泡存储器概念设计图;(b)代表数据比特 1 的斯格明子磁结构;(c)用磁泡替代铁磁来代表数据比特 0 ;(d)磁泡的菲涅尔磁衬度;(e)Fe3Sn2纳米条带中实现的磁斯格明子-磁泡单链,可以用来代表磁斯格明子-磁泡存储器中的一串 11011000001 数据链Fig.7㊀Propose of a magnetic memory based on Skyrmions and bubbles[18]:(a)schematic design of Skyrmion-bubble-based magnetic memory;(b)a Skyrmion representing the data bit 1 ;(c)a bubble replacing ferromagnet to represent the data bit 0 ;(d)Fresnel contrast of the bubble;(e)experimental realization of a single Skyrmion-bubble chain to represent the data bit11011000001 in a Fe3Sn2nanostripe㊀㊀磁斯格明子和磁泡的拓扑荷分别为1和0,具有截然不同的拓扑相关物性,如斯格明子霍尔效应和拓扑霍尔效应[72-75]㊂可控的磁斯格明子和磁泡的产生及其相互转换能够促进拓扑相关的磁电子学器件的开发㊂依据磁斯格明子和磁泡的产生机制,通过倾转外磁场能够有效调控磁斯格明子和磁泡的产生和转换[21,50]㊂本课题组[19]研究了Fe3Sn2纳米盘中磁斯格明子和磁泡的稳定性以及他们之间磁场诱导的拓扑磁转换,发现磁盘中磁斯格明子和磁泡的数量不仅与纳米盘直径有关,还与磁场角度相关㊂当纳米盘直径减小到~540nm时,该受限结构中最多只能稳定一个磁斯格明子或磁泡㊂通过固定外磁场强度同时调节其相对于磁盘法向的角度,成功实现了单斯格明子-单磁泡间可控的拓扑磁转换,如图8所示㊂两类磁状态间的拓扑磁转变可以用于器件的写入和删除等功能,但磁场方法不兼容于当代和未来的电子学器件设计和应用,而电学调控磁斯格明子-磁泡的拓扑转变的研究仍有待发掘㊂因此,本课题组进一步探索了电流可控磁斯格明子-磁泡相互转变的可能性[17]㊂在Fe3Sn2(001)纳米薄片中,磁场小角度倾斜于薄片法向时,磁斯格明子和磁泡都是稳定的磁状态㊂当设置磁斯格明子晶格为初始磁状态,施加高密度纳秒电流脉冲后,会发生磁斯格明子到磁泡的转变;当设置磁斯格658博看网 . All Rights Reserved.㊀第11期汤㊀进等:透射电镜差分相位分析技术磁畴研究图8㊀Fe 3Sn 2纳米结构中磁场诱导的斯格明子-磁泡转换[19]:(a~e)洛伦茨模式观测的斯格明子-磁泡转换,(f ~j)对应的微磁模拟的斯格明子-磁泡转变,(k)斯格明子-磁泡转变过程中的拓扑数的变化,(l)斯格明子-磁泡转变过程中的总自由能密度随磁场角度的变化Fig.8㊀Field-induced topological Skyrmion-bubble transformations in Fe 3Sn 2nanodisks [19]:(a ~e)Skyrmion-bubble transformationsobtained by Lorentz-TEM,(f ~j)corresponding Skyrmion-bubble transformations obtained by micromagnetic simulation,(k)winding number as a function of tilted field angle,(l)total free energy density as a function of tilted field angle明子晶格为初始磁状态,施加低密度纳秒电流脉冲后,会发生磁泡到磁斯格明子的转变㊂重要的是,通过调控电流幅度,这种磁斯格明子-磁泡相互转变是完全可逆的,如图9所示[17]㊂利用微磁学计算模拟发现,电流可控磁斯格明子-磁泡相互转变可被归因于自旋转移力矩和焦耳热效应的综合作用㊂当施加高密度电流脉冲时,电流的焦耳热会导致样品升温而发生热退磁,而在两个电流脉冲的间隙,样品又会降温而发生磁恢复过程㊂在热退磁的过程中,样品的饱和磁场强度会降低,而外加磁场强度固定不变,因此会发生磁斯格明子到铁磁态的转变㊂由于磁场是倾斜于样品垂直方向的,因此铁磁态是具有一定面内分量的倾斜铁磁态,面内磁化分量平行于面内磁场分量㊂而在降温的磁化恢复过程中,由于磁泡的畴壁磁化是与倾斜磁化背景一致,因此磁泡更优先于磁斯格明子从倾斜磁化背景中产生㊂特别地,即使磁泡的总自由能能量高于磁斯格明子,这种磁斯格明子到倾斜铁磁到磁泡转变的过程也能够发生㊂而低密度脉冲电流诱导的磁泡到磁斯格明子的产生归因于自旋转移力矩效应㊂磁泡的能量要高于磁斯格明子,自旋转移力矩相当于一个外界激发,能够使高能亚稳磁泡产生变形而处于一个非稳定状态,从而能够越过能量势垒转变到低能磁斯格明子稳定态㊂此外,在Fe 3Sn 2(001)纳米薄片中,在较低外磁场下,磁泡会转变为条纹磁畴㊂之前的研究中已经能够实现电流控制条纹磁畴到磁斯格明子的转变,但其逆过程磁斯格明子到条纹磁畴的转变还比较少见[31,76-82]㊂通过高低纳秒脉冲电流切换,同样能够实现磁斯格明子-条纹磁畴的可逆和可重复的拓扑磁转换㊂4㊀结㊀语本文阐述了将差分相位分析技术应用到偶极磁斯格明子/磁泡材料Fe 3Sn 2中的新型磁结构观测和电驱动拓扑磁转变动力学研究中的进展,研究结果表明,差分相位技术推动了三维磁结构㊁靶磁泡/k π-磁斯格明子等新型磁结构的精确表征,澄清了中心对称晶体中复杂磁结构的起源,并为后续的新型磁结构相关自旋电子学的应用奠定了重要基础㊂本课题组也提出了磁斯格明子-磁泡存储器的概念设计,并在实验室实现了单链磁斯格明子-758博看网 . All Rights Reserved.。
光通信必读优秀书籍

非线性光学部分介质在强激光场作用下产生的极化强度与入射辐射场强之间不再是线性关系,而是与场强的二次、三次以至于更高次项有关,这种关系称为非线性。
凡是与非线性有关的光学现象称为非线性光学现象,属于非线性光学的研究内容。
非线性光学一方面研究光辐射在非线性介质中传播时由于和介质的非线性相互作用自身所受的影响,另一方面则研究介质本身在光场作用下所表现出的特性。
在光通信中,主要是进入高速通信,10g,尤其是40G,随着入纤光功率的增强,非线性效应逐渐显现,系统设计必须加以考虑这方面的影响,于是在40G里面变出现了形形色色的编码。
以下切入正题1、《Nonlinear Fiber Optics》和《Applications of Nonlinear Fiber Optics》Agrawl ,这2本书从书名大家应该也可以看出是偏重于光纤通信应用的,目前第一个已经到第四版,第二个为第二版了,包括中译本,论坛都有,大家可以搜索下就可以都看到了。
/viewthread. ... =nonlinear%2Boptics/viewthread. ... =nonlinear%2Boptics2、Boyd W.R的《nonlinear optics》3rdW. Boyd教授在2002年被任命为Rochester大学M. Parker Givens Professor of Optics,lz发的应该是第二版,该书1992年第一版,第二版在第一版的基础上增加了很多新内容,并对以前的内容做了不少修订,在2008年的4月,该书又出了第三版。
整体来说,该书内容比较深,学校里的高年级研究生和一般研究人员可参考。
W.Boyd今年5月份曾代表美国光学学会来南京开会下载链接:/viewthread. ... =nonlinear%2Boptics3、华裔学者沈元镶的《非线性光学原理》沈是这方面非常牛b的,他的导师算是非线性光学方面的开创者吧,并因此获得了诺贝尔奖。
美沙拉嗪与β-环糊精的主客体相互作用及其分析应用
第34卷第6期化㊀学㊀研㊀究Vol.34㊀No.62023年11月CHEMICAL㊀RESEARCHNov.2023美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用张晨轩,李晓鹏,戚鹏飞,魏㊀莉∗(河北省药品职业化检查员总队(南片区),河北石家庄050000)收稿日期:2022⁃07⁃09基金项目:山西省重点研发计划项目(201903D321009)作者简介:张晨轩(1988-),男,工程师,研究方向:药物分析㊂∗通信作者,E⁃mail:earth⁃shaker@qq.com摘㊀要:采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法研究了美沙拉嗪(MSZ)与β⁃环糊精(β⁃CD)的主客体相互作用,同时测试了主客体包合物的热力学参数(ΔG㊁ΔH㊁ΔS)㊂光谱数据表明MSZ⁃β⁃CD包合物的形成,包合比为1ʒ1,包合常数K=1.362ˑ102L㊃mol-1㊂基于MSZ⁃β⁃CD包合物荧光强度的显著增大,建立了一个简单㊁准确㊁快速㊁高灵敏度测定水溶液中MSZ的荧光分析新方法㊂MSZ的浓度与MSZ⁃β⁃CD包合物的荧光强度变化值ΔF具有良好的线性关系,相关系数为0.998,线性范围为0.1 0.7mg㊃L-1,检测限为8μg㊃L-1,该方法可应用于药品中美沙拉嗪的含量测定㊂关键词:美沙拉嗪;β⁃环糊精;超分子化学;荧光分光光度法;药物分析中图分类号:R917文献标志码:A文章编号:1008-1011(2023)06-0505-06Host⁃guestinteractionofmesalazinewithβ⁃cyclodextrinanditsanalyticalapplicationZHANGChenxuan LIXiaopeng QIPengfei WEILi∗HebeiProvincePharmaceuticalProfessionalInspectorCorps SouthDivision Shijiazhuang050000 Hebei ChinaAbstract Thehost⁃guestinteractionofmesalazine(MSZ)withβ⁃cyclodextrin(β⁃CD)hasbeeninvestigatedusingabsorption,spectrofluorimetryand1HNMR.Thethermodynamicparameters(ΔG,ΔHandΔS)ofMSZ⁃β⁃CDwerealsostudied.Theinclusioncomplexformationhasbeenconfirmedbasedonthechangesofthespectralproperties,thelineardoublereciprocalplotindicatinga1ʒ1binding,andthebindingconstant(K)wasdeterminedas1.362ˑ102L㊃mol-1;Basedonthesignificantenhancementofthesupramolecularcomplexfluorescenceintensity,Asimple,accurate,rapidandhighlysensitivespectrofluorimetricmethodwasdevelopedtodeterminethecontentofMSZinaqueoussolution.Agoodlinearcorrelationwasobtainedbetweenthefluorescenceenhancement(ΔF)andtheMSZconcentrationsfrom0.1mg㊃L-1to0.7mg㊃L-1,acorrelationcoefficientof0.998andadetectionlimitof8μg㊃L-1werealsodetermined.TheproposedmethodwassuccessfullyappliedtodetermineMSZinitspharmaceuticaldosageforms.Keywords:mesalazine;β⁃cyclodextrin;supramolecularchemistry;spectrofluorimetry;pharmaceuticalanalysis㊀㊀环糊精(CD)是淀粉酶解作用下生成的一系列环状低聚糖㊂β⁃环糊精(β⁃CD,图1)由7个葡萄糖单元组成,具有疏水的内部空腔结构,外部具有良好的亲水性㊂在超分子化学领域,环糊精作为分子主体被广泛关注[1]㊂主客体包合物的形成会显著影响客体分子的物理化学性质,比如溶解性㊁光谱学和电化学性质㊂这一特性被广泛应用于分析化学和制药工业等诸多领域,旨在改善难溶性㊁易降解小分子药物的溶解性㊁稳定性和生物有效性[2]㊂此外,包合物的形成可以增强客体分子的荧光强度,促进毛细管电泳中的手性分离[3]㊂许多基于环糊精包合物的荧光特性建立的分析方法已应用于测定多种药物制剂㊁农药和金属离子[4]㊂506㊀化㊀学㊀研㊀究2023年美沙拉嗪(MSZ,图1)是一种治疗轻中度溃疡性结肠炎的药物㊂MSZ能够有效清除引起肠道炎症的活性氧自由基,抑制血小板环氧合酶和脂氧合酶途径,对中性粒细胞的某些功能也有抑制作用[5]㊂许多测定药物制剂或生物体液中MSZ含量的分析方法已见报道,如毛细管胶束电动色谱法[6]㊁微分脉冲伏安法[7]㊁高效液相色谱法[8]㊁液质联用技术[9]㊁分光光度法[10]㊂然而,荧光分光光度法测定药物制剂中美沙拉嗪含量的文献未见报道㊂鉴于荧光分光光度法具有操作简捷㊁灵敏度高以及较低费用等优势,目前该方法已经成为了最便捷的分析方法之一㊂图1㊀β⁃环糊精和美沙拉嗪的结构Fig.1㊀Structuresofβ⁃CDandMSZ本文采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法验证了美沙拉嗪和β⁃环糊精之间的主客体包合作用,研究了一系列影响主客体包合物形成的因素㊂β⁃环糊精本身无荧光,美沙拉嗪在水溶液中也不产生荧光发射信号,因此不能采用常规的荧光方法进行美沙拉嗪的定量分析,当美沙拉嗪和β⁃环糊精在水溶液中形成包合物时,溶液的荧光强度会显著增大㊂基于主客体包合物荧光强度与美沙拉嗪之间的线性关系,建立了一种新型测定药物制剂中美沙拉嗪含量的荧光分析方法㊂1㊀实验部分1.1㊀仪器与试剂㊀㊀Cary300型紫外分光光度计(美国瓦里安公司),CaryEclipse型荧光分光光度计(澳大利亚安捷伦公司),DRX⁃600MHz型核磁共振仪(瑞士布鲁克公司),pHS⁃3TC型pH计(上海雷磁公司),HH⁃6数显恒温水浴锅(常州国华公司)㊂所用化学试剂均为分析纯或色谱纯,实验用水为纯化水㊂美沙拉嗪和β⁃环糊精对照品购买自中国食品药品检定研究院㊂美沙拉嗪肠溶片购买自葵花药业集团股份有限公司,规格0.25g㊂1.2㊀对照品溶液和供试品储备液1.2.1㊀美沙拉嗪对照品溶液㊀㊀准确称量美沙拉嗪对照品0.01g至100mL容量瓶,加水30mL使溶解,摇匀,用水定容至刻度,振荡均匀,得到100mg㊃L-1的储备液㊂10mg㊃L-1的工作液由储备液加水稀释得到㊂1.2.2㊀β⁃环糊精对照品溶液准确称取β⁃环糊精对照品1.135g置于100mL容量瓶内,加水适量,振摇使溶解,再用水定容至刻度得到0.01mol㊃L-1的溶液㊂溶液临用现配㊂1.2.3㊀美沙拉嗪供试品储备液取10粒MSZ肠溶片,除去肠溶衣后,精密称定,研细,精密称取约相当于250mg的MSZ药品粉末,溶解在100mL容量瓶中,充分振荡㊂将此溶液过滤,弃去部分前滤液,移取10mL后续滤液并稀释为100mL的储备液㊂1.3㊀紫外分光光度法取2mL的MSZ工作溶液(10mg㊃L-1)两份,分别加入到10mL的容量瓶中,再分别加入1.5mL磷酸盐缓冲溶液(pH=7.0)来保持溶液pH呈中性,向其中一个容量瓶中加入β⁃CD对照品溶液(0.01mol㊃L-1)2mL,另一个不加β⁃CD对照品溶液㊂定容后在室温下放置10min测定吸收光谱㊂1.4㊀荧光分光光度法将2mL的β⁃CD溶液(0.01mol㊃L-1)分别加入到100mL容量瓶中,再分别加入不同体积的MSZ溶液和1.5mL的磷酸盐缓冲溶液(pH=7.0),制成MSZ最终浓度分别为0.1 0.7mg㊃L-1的混合溶液,在室温下放置10min后测定溶液的荧光强度㊂1.5㊀反应的化学计量学向100mL容量瓶中加入浓度为10mg㊃L-1的MSZ溶液和1.5mL磷酸盐缓冲溶液(pH=7.0),再将不同体积(0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0mL)0.01mol㊃L-1的β⁃CD溶液分别加入到容量瓶中,定容后在室温下放置10min㊂2㊀结果与讨论2.1㊀紫外吸收光谱㊀㊀MSZ溶液的紫外吸收光谱和MSZ与β⁃CD混合溶液的紫外吸收光谱如图2所示,结果表明在pH=7.0条件下,MSZ溶液的最大吸收波长为330nm,当加入β⁃CD后,混合溶液最大吸收波长没有变化,但第6期张晨轩等:美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用507㊀是吸光度增强㊂图2㊀MSZ紫外吸收光谱(黑色)和MSZ⁃β⁃CD包合物紫外吸收光谱(红色)Fig.2㊀AbsorptionspectraofMSZintheabsence(black)andpresence(red)ofMSZ⁃β⁃CD2.2㊀荧光光谱在pH=7.0条件下,MSZ溶液的最大发射波长为493nm,当MSZ溶液与β⁃CD溶液混合后,混合溶液的最大发射波长没有变化,但是荧光强度增强,如图3所示㊂这是由于MSZ分子进入了β⁃CD的疏水性空腔,通过范德华力和氢键等非共价键相互作用包合在一起,包合作用使MSZ分子的运动自由度降低,激发态分子以非辐射方式释放能量减少,因此MSZ⁃β⁃CD包合物的形成增强了溶液的荧光强度㊂图3㊀β⁃CD溶液中加入不同体积MSZ溶液后的荧光光谱Fig.3㊀VariationofthefluorescencespectraofMSZ⁃β⁃CDcomplexonadditionofdifferentconcentrationsofMSZ2.3㊀反应条件的优化2.3.1㊀pH的影响㊀㊀采用荧光分光光度法研究了不同pH对包合反应的影响,并测定包合物的荧光强度㊂结果表明,随着pH的增大,包合物荧光强度会增强㊂当pH为7时包合物的荧光强度最大㊂当pH大于7时,包合物的荧光强度会逐渐减弱㊂此外,通过非线性曲线拟合法计算出MSZ⁃β⁃CD包合物的包合常数(K)㊂2.3.2㊀温度和时间的影响分别在室温和30 90ħ水浴条件下,研究了MSZ⁃β⁃CD包合物受温度的影响㊂结果表明,在室温条件下包合物的荧光强度最强,故该反应在室温下进行㊂同时研究了室温下反应时间对包合物的影响,结果表明,在室温下的放置时间对包合物的荧光强度基本无影响㊂因此,本实验选择在室温放置10min的条件下进行㊂2.4㊀反应的化学计量学在最优实验条件下研究了主客体包合反应的化学计量学㊂假设主客体发生1ʒ1的包合反应,则化学计量学可以用Benesi⁃Hildebrand非线性曲线表示[11]:1/(F-F0)=1/(F¥-F0)K[β⁃CD]0+1/(F¥-F0)(1)㊀㊀[β⁃CD]0代表β⁃CD的浓度,F代表特定浓度下的主体分子同客体分子形成包合物时的荧光强度,F0表示客体分子单独存在时的荧光强度,Fɕ指主体分子与客体分子充分包合时的荧光强度,K就是主客体发生1ʒ1包合作用时的包合常数㊂通过做1/(F-F0)对1/[β⁃CD]0的双倒数曲线,如图4所示,可以验证包合比为1ʒ1的相互作用的存在㊂只有相互作用的包合比为1ʒ1时,双倒数曲线才具有线性,并且计算得到包合常数K=1.362ˑ102L㊃mol-1㊂图4㊀MSZ⁃β⁃CD包合物的双倒数曲线Fig.4㊀Plotof1/(F⁃F0)vs.1/[β⁃CD]oftheMSZ⁃β⁃CDcomplex2.5㊀包合物的热力学参数从热力学角度(ΔH㊁ΔS㊁ΔG)证明了包合物的形成,包合常数(K)与温度(T)的关系可以通过508㊀化㊀学㊀研㊀究2023年Van tHoff方程(lnK=-ΔH/RT+ΔS/R)描述,包合反应的焓变(ΔH)和熵变(ΔS)与MSZ⁃β⁃CD包合物的形成有关㊂将lnK与1/T进行线性回归,ΔH和ΔS可以分别通过回归方程的斜率和截距得到[12]㊂而吉布斯自由能变(ΔG)可以由公式ΔG=ΔH-TΔS求出,结果如表1所示㊂表1中,负的焓变和自由能变值表明这是一个放热且自发的过程,同时伴随着少量的熵损失,热力学参数表明了MSZ和β⁃CD的包合作用主要是受焓变驱使,这要归因于β⁃CD分子的羟基与MSZ分子间的氢键作用,主客体分子之间的范德华力以及β⁃CD分子空腔的疏水作用[13]㊂此外,构象变化和去溶剂化效应也促进了熵变㊂包合作用使得分子运动自由度降低,也导致了熵的损失[14]㊂表1㊀包合反应的热力学参数Table1㊀Thermodynamicparameterofthereaction热力学参数数值/(J㊃mol-1)ΔH-546.1ΔS-1.7ΔG-125.22.6㊀1HNMR谱图采用核磁共振验证了MSZ和β⁃CD的包合作用㊂图5分别为MSZ和MSZ⁃β⁃CD包合物的1HNMR谱图,与MSZ单独存在时的1HNMR谱图相比,包合物1HNMR谱图中MSZ的H3,H4,H6质子信号向高场移动,这一特征表明MSZ分子包合进入了β⁃CD的空腔[15]㊂图5㊀MSZ(黑色)和MSZ⁃β⁃CD(红色)包合物的1HNMR谱图Fig.5㊀1HNMRspectra(600MHz)ofMSZ(black)andMSZ⁃β⁃CDcomplex(red)inD2O2.7㊀方法学验证2.7.1㊀线性和灵敏度㊀㊀在最适实验条件下,对MSZ的浓度与MSZ⁃β⁃CD包合物荧光强度变化量ΔF的关系曲线进行线性回归,线性方程为:ΔF=719.5C+12.82,相关系数为0.998,线性范围为0.1 0.7mg㊃L-1㊂取空白溶液连续测定11次并计算荧光强度的标准偏差(SD),以3倍SD除以线性方程的斜率计算检出限为8μg㊃L-1㊂2.7.2㊀重复性精密称取同一批样品粉末适量,按 1.2.3 项下供试品储备液制备方法,平行制备6份,再分别按1.4 项下方法制备供试品溶液㊂在最适实验条件下进行测定,记录各供试品溶液的荧光强度,以荧光强度的RSD评价重复性㊂结果显示荧光强度的RSD为1.02%(n=6),表明该方法重复性良好㊂2.7.3㊀中间精密度由另一名分析人员,于不同日期使用不同的仪器,同 重复性 试验操作㊂结果显示各供试品溶液荧光强度的RSD为1.15%(n=6),表明该方法中间精密度良好㊂2.7.4㊀溶液稳定性试验取 1.2.3 项下供试品储备液适量,按 1.4 项下方法制备供试品溶液,分别于室温下放置0㊁6㊁12㊁24㊁48h,在最适实验条件下进行测定,并记录供试品溶液的荧光强度㊂结果,供试品溶液的荧光强第6期张晨轩等:美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用509㊀度的RSD为0.73%,表明供试品溶液在48h内稳定,能够满足测定需要㊂2.7.5㊀分析应用该方法可应用于药品中MSZ的含量测定㊂按1.2.3 项下供试品储备液制备方法,再按 1.4 项下方法制备供试品溶液,在最适实验条件下,测定MSZ的含量,结果满意,如表2所示,并且相对标准偏差小于2.00%,具有良好的准确性㊂表2㊀药品中MSZ的含量测定(n=5)Table2㊀DeterminationofMSZinpharmaceuticalformulation(n=5)药品规格/(mg/tablet)本法测定值/(mg/tablet)回收率/%MSZ250242.6097.0ʃ0.863㊀结论采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法研究了MSZ和β⁃CD之间的超分子相互作用,结果表明MSZ和β⁃CD可以形成1ʒ1的主客体包合物,包合常数K=1.362ˑ102L㊃mol-1㊂基于MSZ⁃β⁃CD包合物的荧光增敏作用,建立了一种简便㊁灵敏㊁准确的测定MSZ含量的荧光分析方法,该方法具有良好的精密度㊁重复性和适用性,可应用于药品中MSZ的定量分析㊂参考文献:[1]王恩举,陈光英,彭明生.NMR研究β⁃环糊精对布洛芬的手性识别[J].波谱学杂志,2009,26(2):216⁃222.WANGEJ,CHENGY,PENGMS.NMRstudiesofchiraldiscriminationofibuprofenenantiomersinβ⁃cyclodextrininclusioncomplexes[J].ChineseJournalofMagneticResonance,2009,26(2):216⁃222.[2]LINARESM,DEBERTORELLOMM,LONGHIM.Preparationandcharacterizationofsolidcomplexesofnaphtoquinoneandhydroxypropyl⁃b⁃cyclodextrin[J].Molecules,2000,5(3):342⁃344.[3]ELBASHIRAA,SULIMANFEO,SAADB,etal.Capillaryelectrophoreticseparationandcomputationalmodelingofinclusioncomplexesofβ⁃cyclodextrinand18⁃crown⁃6etherwithprimaquineandquinocide[J].BiomedicalChromatography,2010,24(4):393⁃398.[4]ELBASHIRAA,DSUGINFA,MOHMEDTOM,etal.Spectrofluorometricanalyticalapplicationsofcyclodextrins[J].Luminescence,2014,29(1):1⁃7.[5]马郑,董煜,彭涛.离子对RP⁃HPLC法测定美沙拉嗪栓的含量及有关物质[J].中国药房,2014,25(44):4209⁃4214.MAZ,DONGY,PENGT.Contentdeterminationof5⁃aminosalicylicsuppositoryanditsrelatedsubstancesbyion⁃pairRP⁃HPLC[J].ChinaPharmacy,2014,25(44):4209⁃4214.[6]GOTTIR,POMPONIOR,BERTUCCIC,etal.Determinationof5⁃aminosalicylicacidrelatedimpuritiesbymicellarelectrokineticchromatographywithanion⁃pairreagent[J].JournalofChromatographyA,2001,916(1/2):175⁃183.[7]NIGOVIC'B,ŠIMUNIC'B.Determinationof5⁃aminosalicylicacidinpharmaceuticalformulationbydifferentialpulsevoltammetry[J].JournalofPharmaceuticalandBiomedicalAnalysis,2003,31(1):169⁃174.[8]RAFAELJA,JABORJR,CASAGRANDER,etal.ValidationofHPLC,DPPHandnitrosationmethodsformesalaminedeterminationinpharmaceuticaldosageforms[J].BrazilianJournalofPharmaceuticalSciences,2007,43(1):97⁃103.[9]PASTORINIE,LOCATELLIM,SIMONIP,etal.DevelopmentandvalidationofaHPLC⁃ESI⁃MS/MSmethodforthedeterminationof5⁃aminosalicylicacidanditsmajormetaboliteN⁃acetyl⁃5⁃aminosalicylicacidinhumanplasma[J].JournalofChromatographyB,2008,872(1/2):99⁃106.[10]MADHAVIV,PANCHAKSHARIV,PRATHYUSHATN,etal.Spectrophotometricdeterminationofmesalazineinbulkandtabletdosageformsbasedondiazocouplingreactionwithresorcinol[J].InternationalJournalofPharmaceuticalSciencesReviewandResearch,2011,11(1):105⁃109.[11]NIGAMS,DUROCHERG.Spectralandphotophysicalstudiesofinclusioncomplexesofsomeneutral3H⁃indolesandtheircationsandanionswithβ⁃cyclodextrin[J].TheJournalofPhysicalChemistry,1996,100(17):7135⁃7142.[12]LIWY,LIH,ZHANGGM,etal.Interactionofwater⁃solublecalix[4]arenewithL⁃tryptophanstudiedbyfluorescencespectroscopy[J].JournalofPhotochemistryandPhotobiologyA:Chemistry,2008,197(2/3):389⁃393.[13]ZHANGQF,JIANGZT,GUOYX,etal.Complexationstudyofbrilliantcresylbluewithβ⁃cyclodextrinandits510㊀化㊀学㊀研㊀究2023年derivativesbyUV⁃visandfluorospectrometry[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy,2008,69(1):65⁃70.[14]LIUY,HANBH,CHENYT.Molecularrecognitionandcomplexationthermodynamicsofdyeguestmoleculesbymodifiedcyclodextrinsandcalixarenesulfonates[J].TheJournalofPhysicalChemistryB,2002,106(18):4678⁃4687.[15]MOCKWL,SHIHNY.Structureandselectivityinhost⁃guestcomplexesofcucurbituril[J].TheJournalofOrganicChemistry,1986,51(23):4440⁃4446.[责任编辑:吴文鹏]。
专访绿色化学领域青年学者——孙振宇教授
在传统化学、化工过程伴随着严重的资源浪费,并且对环境造成污染的大背景下,上世纪 90 年代 初美国学者提出了绿色化学的概念,随后提出绿色化学十二条原则,迄今已被绿色化学界普遍接受。绿 色化学可简单定义为减少或消除危险物质的使用和有害物质、废弃物的产生的过程设计。它的理想是从 源头上消除污染,使整个合成过程和生产过程对环境友好,不再使用有毒、有害的物质,不再产生和处 理废弃物。本期我们有幸采访了国内绿色化学领域的青年科学家,《物理化学学报》青年编委孙振宇教 授,为我们分享他的研究经历及对国内外绿色化学行业的分析。
[Spotlight]
物理化学学报 Acta Phys. -Chim. Sin. 2021, 37 (5), 2010021 (1 of 2)
doi: 10.3866/PKU.WHXB202010021
专访绿色化学领域青年学者——孙振宇教授
《物理化学学报》编辑部
问题6:您认为绿色化学发展和应用对我们的社 会、环境和经济会有哪些影响?能否举几个通俗 的例子?
回答:绿色化学的主要特点是“原子经济性”,即 在获得物质的转化过程中充分利用每个原料原 子,实现“零排放”,既可充分利用资源,又不产 生污染。绿色化学可以变废为宝,合理利用资源和 能源,降低生产成本,大幅度提高经济效益。绿色 化学也可改善人们的生活环境,实现生态平衡,满 足可持续发展的基本需求。例如,利用生物降解塑 料,防止白色污染;新能源汽车正在逐步代替燃油
回答:中国绿色化学的研究与国际绿色化学的研 究处于同一水平,在煤炭地下气化工艺、煤炭废弃 物的综合利用技术等应用方面还处于领先水平。
优势:我国在绿色化学研究方面起步较早,在 绿色化学概念提出后不久就开始了相关研究。中 国学术界、企业界和政府均对绿色化学领域高度 重视,国家自然科学基金委、科技部、中科院等部 门资助了很多相关项目,中国科学家在基础研究、 技术开发等方面取得了众多重要成果,例如,新型 生物型农药与化学农药的研制、乙醇汽油和零排 放污水技术的发展。
第一讲 台面型电子加速器——激光尾波场加速器
-理
’J
论和实验都表明, 当等离子体的密度达到 %% I ’% K 29" 时, 尾波场的强度可以达到 & &’%%78 K 9- 电子 在尾波场中的加速过程类似于冲浪运动员的冲浪加 速过程: 当运动员处于迎浪面且满足一定的速度条 件时, 会被波浪加速; 同样, 在尾波场中运动的电子, 当其处于电子密度梯度为正值区域 ( 此时静电分离 场为负值) 且满足一定的速度条件时, 电子也会被 尾波场加速- 早在 ’HLH 年, D1B091 等人就详细分析 了利用这种纵向的激光尾波场作为电子加速场的可 能性, 并依照当时的激光技术, 提出了利用激光拍频 波激发大幅度激光尾波场的方案
[ $]
- 此后的二十多
年, 伴随着每一次激光技术的进步, 激光尾波场加速 都取得了巨大的进展- 目前, 在实验室里, 人们已经 用这种 新 型 的 加 速 器 得 到 了 能 量 为 几 十 至 几 百
[ " —L ] M58 的超短单能电子束 , 能量达到 758 的单能
$! 尾波场的产生
早在激光发明之前, ’H#& 年 N103O56> 就提出了 利用电子束激发等离子体中的尾波场的方案, 相应
! "#$%&"’( #))&%&*#"’*— — — "+& %#,&* -#.&/0&%1 #))&%&*#"’*
OPLQ 8),- - HPLQ: R!@,DS8),D K - - 8T U*,SU’,- - RPTQ: 7)@
( !"#$%$&$’ () *+,#%-#,.+%"’#’ /-01’2, () 3-%’"-’#,4’%5%"6 70$%("08 90:(;0$(;, )(; .("1’"#’1 <0$$’; *+,#%-#,4’%5%"6 .999B9 ,.+%"0)
稳定的高功率激光系统在高级引力波探测器中的应用
Stabilized high-power laser system forthe gravitational wave detector advancedLIGOP.Kwee,1,∗C.Bogan,2K.Danzmann,1,2M.Frede,4H.Kim,1P.King,5J.P¨o ld,1O.Puncken,3R.L.Savage,5F.Seifert,5P.Wessels,3L.Winkelmann,3and B.Willke21Max-Planck-Institut f¨u r Gravitationsphysik(Albert-Einstein-Institut),Hannover,Germany2Leibniz Universit¨a t Hannover,Hannover,Germany3Laser Zentrum Hannover e.V.,Hannover,Germany4neoLASE GmbH,Hannover,Germany5LIGO Laboratory,California Institute of Technology,Pasadena,California,USA*patrick.kwee@aei.mpg.deAbstract:An ultra-stable,high-power cw Nd:Y AG laser system,devel-oped for the ground-based gravitational wave detector Advanced LIGO(Laser Interferometer Gravitational-Wave Observatory),was comprehen-sively ser power,frequency,beam pointing and beamquality were simultaneously stabilized using different active and passiveschemes.The output beam,the performance of the stabilization,and thecross-coupling between different stabilization feedback control loops werecharacterized and found to fulfill most design requirements.The employedstabilization schemes and the achieved performance are of relevance tomany high-precision optical experiments.©2012Optical Society of AmericaOCIS codes:(140.3425)Laser stabilization;(120.3180)Interferometry.References and links1.S.Rowan and J.Hough,“Gravitational wave detection by interferometry(ground and space),”Living Rev.Rel-ativity3,1–3(2000).2.P.R.Saulson,Fundamentals of Interferometric Gravitational Wave Detectors(World Scientific,1994).3.G.M.Harry,“Advanced LIGO:the next generation of gravitational wave detectors,”Class.Quantum Grav.27,084006(2010).4. B.Willke,“Stabilized lasers for advanced gravitational wave detectors,”Laser Photon.Rev.4,780–794(2010).5.P.Kwee,“Laser characterization and stabilization for precision interferometry,”Ph.D.thesis,Universit¨a t Han-nover(2010).6.K.Somiya,Y.Chen,S.Kawamura,and N.Mio,“Frequency noise and intensity noise of next-generationgravitational-wave detectors with RF/DC readout schemes,”Phys.Rev.D73,122005(2006).7. B.Willke,P.King,R.Savage,and P.Fritschel,“Pre-stabilized laser design requirements,”internal technicalreport T050036-v4,LIGO Scientific Collaboration(2009).8.L.Winkelmann,O.Puncken,R.Kluzik,C.Veltkamp,P.Kwee,J.Poeld,C.Bogan,B.Willke,M.Frede,J.Neu-mann,P.Wessels,and D.Kracht,“Injection-locked single-frequency laser with an output power of220W,”Appl.Phys.B102,529–538(2011).9.T.J.Kane and R.L.Byer,“Monolithic,unidirectional single-mode Nd:Y AG ring laser,”Opt.Lett.10,65–67(1985).10.I.Freitag,A.T¨u nnermann,and H.Welling,“Power scaling of diode-pumped monolithic Nd:Y AG lasers to outputpowers of several watts,”mun.115,511–515(1995).11.M.Frede,B.Schulz,R.Wilhelm,P.Kwee,F.Seifert,B.Willke,and D.Kracht,“Fundamental mode,single-frequency laser amplifier for gravitational wave detectors,”Opt.Express15,459–465(2007).#161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 1061712. A.D.Farinas,E.K.Gustafson,and R.L.Byer,“Frequency and intensity noise in an injection-locked,solid-statelaser,”J.Opt.Soc.Am.B12,328–334(1995).13.R.Bork,M.Aronsson,D.Barker,J.Batch,J.Heefner,A.Ivanov,R.McCarthy,V.Sandberg,and K.Thorne,“New control and data acquisition system in the Advanced LIGO project,”Proc.of Industrial Control And Large Experimental Physics Control System(ICALEPSC)conference(2011).14.“Experimental physics and industrial control system,”/epics/.15.P.Kwee and B.Willke,“Automatic laser beam characterization of monolithic Nd:Y AG nonplanar ring lasers,”Appl.Opt.47,6022–6032(2008).16.P.Kwee,F.Seifert,B.Willke,and K.Danzmann,“Laser beam quality and pointing measurement with an opticalresonator,”Rev.Sci.Instrum.78,073103(2007).17. A.R¨u diger,R.Schilling,L.Schnupp,W.Winkler,H.Billing,and K.Maischberger,“A mode selector to suppressfluctuations in laser beam geometry,”Opt.Acta28,641–658(1981).18. B.Willke,N.Uehara,E.K.Gustafson,R.L.Byer,P.J.King,S.U.Seel,and R.L.Savage,“Spatial and temporalfiltering of a10-W Nd:Y AG laser with a Fabry-Perot ring-cavity premode cleaner,”Opt.Lett.23,1704–1706 (1998).19.J.H.P¨o ld,“Stabilization of the Advanced LIGO200W laser,”Diploma thesis,Leibniz Universit¨a t Hannover(2009).20. E.D.Black,“An introduction to Pound-Drever-Hall laser frequency stabilization,”Am.J.Phys.69,79–87(2001).21.R.W.P.Drever,J.L.Hall,F.V.Kowalski,J.Hough,G.M.Ford,A.J.Munley,and H.Ward,“Laser phase andfrequency stabilization using an optical resonator,”Appl.Phys.B31,97–105(1983).22. A.Bullington,ntz,M.Fejer,and R.Byer,“Modal frequency degeneracy in thermally loaded optical res-onators,”Appl.Opt.47,2840–2851(2008).23.G.Mueller,“Beam jitter coupling in Advanced LIGO,”Opt.Express13,7118–7132(2005).24.V.Delaubert,N.Treps,ssen,C.C.Harb,C.Fabre,m,and H.-A.Bachor,“TEM10homodynedetection as an optimal small-displacement and tilt-measurement scheme,”Phys.Rev.A74,053823(2006). 25.P.Kwee,B.Willke,and K.Danzmann,“Laser power noise detection at the quantum-noise limit of32A pho-tocurrent,”Opt.Lett.36,3563–3565(2011).26. A.Araya,N.Mio,K.Tsubono,K.Suehiro,S.Telada,M.Ohashi,and M.Fujimoto,“Optical mode cleaner withsuspended mirrors,”Appl.Opt.36,1446–1453(1997).27.P.Kwee,B.Willke,and K.Danzmann,“Shot-noise-limited laser power stabilization with a high-power photodi-ode array,”Opt.Lett.34,2912–2914(2009).28. ntz,P.Fritschel,H.Rong,E.Daw,and G.Gonz´a lez,“Quantum-limited optical phase detection at the10−10rad level,”J.Opt.Soc.Am.A19,91–100(2002).1.IntroductionInterferometric gravitational wave detectors[1,2]perform one of the most precise differential length measurements ever.Their goal is to directly detect the faint signals of gravitational waves emitted by astrophysical sources.The Advanced LIGO(Laser Interferometer Gravitational-Wave Observatory)[3]project is currently installing three second-generation,ground-based detectors at two observatory sites in the USA.The4kilometer-long baseline Michelson inter-ferometers have an anticipated tenfold better sensitivity than theirfirst-generation counterparts (Inital LIGO)and will presumably reach a strain sensitivity between10−24and10−23Hz−1/2.One key technology necessary to reach this extreme sensitivity are ultra-stable high-power laser systems[4,5].A high laser output power is required to reach a high signal-to-quantum-noise ratio,since the effect of quantum noise at high frequencies in the gravitational wave readout is reduced with increasing circulating laser power in the interferometer.In addition to quantum noise,technical laser noise coupling to the gravitational wave channel is a major noise source[6].Thus it is important to reduce the coupling of laser noise,e.g.by optical design or by exploiting symmetries,and to reduce laser noise itself by various active and passive stabilization schemes.In this article,we report on the pre-stabilized laser(PSL)of the Advanced LIGO detector. The PSL is based on a high-power solid-state laser that is comprehensively stabilized.One laser system was set up at the Albert-Einstein-Institute(AEI)in Hannover,Germany,the so called PSL reference system.Another identical PSL has already been installed at one Advanced LIGO site,the one near Livingston,LA,USA,and two more PSLs will be installed at the second #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10618site at Hanford,WA,USA.We have characterized the reference PSL and thefirst observatory PSL.For this we measured various beam parameters and noise levels of the output beam in the gravitational wave detection frequency band from about10Hz to10kHz,measured the performance of the active and passive stabilization schemes,and determined upper bounds for the cross coupling between different control loops.At the time of writing the PSL reference system has been operated continuously for more than18months,and continues to operate reliably.The reference system delivered a continuous-wave,single-frequency laser beam at1064nm wavelength with a maximum power of150W with99.5%in the TEM00mode.The active and passive stabilization schemes efficiently re-duced the technical laser noise by several orders of magnitude such that most design require-ments[5,7]were fulfilled.In the gravitational wave detection frequency band the relative power noise was as low as2×10−8Hz−1/2,relative beam pointingfluctuations were as low as1×10−7Hz−1/2,and an in-loop measurement of the frequency noise was consistent with the maximum acceptable frequency noise of about0.1HzHz−1/2.The cross couplings between the control loops were,in general,rather small or at the expected levels.Thus we were able to optimize each loop individually and observed no instabilities due to cross couplings.This stabilized laser system is an indispensable part of Advanced LIGO and fulfilled nearly all design goals concerning the maximum acceptable noise levels of the different beam pa-rameters right after installation.Furthermore all or a subset of the implemented stabilization schemes might be of interest for many other high-precision optical experiments that are limited by laser noise.Besides gravitational wave detectors,stabilized laser systems are used e.g.in the field of optical frequency standards,macroscopic quantum objects,precision spectroscopy and optical traps.In the following section the laser system,the stabilization scheme and the characterization methods are described(Section2).Then,the results of the characterization(Section3)and the conclusions(Section4)are presented.ser system and stabilizationThe PSL consists of the laser,developed and fabricated by Laser Zentrum Hannover e.V.(LZH) and neoLASE,and the stabilization,developed and integrated by AEI.The optical components of the PSL are on a commercial optical table,occupying a space of about1.5×3.5m2,in a clean,dust-free environment.At the observatory sites the optical table is located in an acoustically isolated cleanroom.Most of the required electronics,the laser diodes for pumping the laser,and water chillers for cooling components on the optical table are placed outside of this cleanroom.The laser itself consists of three stages(Fig.1).An almostfinal version of the laser,the so-called engineering prototype,is described in detail in[8].The primary focus of this article is the stabilization and characterization of the PSL.Thus only a rough overview of the laser and the minor modifications implemented between engineering prototype and reference system are given in the following.Thefirst stage,the master laser,is a commercial non-planar ring-oscillator[9,10](NPRO) manufactured by InnoLight GmbH in Hannover,Germany.This solid-state laser uses a Nd:Y AG crystal as the laser medium and resonator at the same time.The NPRO is pumped by laser diodes at808nm and delivers an output power of2W.An internal power stabilization,called the noise eater,suppresses the relaxation oscillation at around1MHz.Due to its monolithic res-onator,the laser has exceptional intrinsic frequency stability.The two subsequent laser stages, used for power scaling,inherit the frequency stability of the master laser.The second stage(medium-power amplifier)is a single-pass amplifier[11]with an output power of35W.The seed laser beam from the NPRO stage passes through four Nd:YVO4crys-#161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10619power stabilizationFig.1.Pre-stabilized laser system of Advanced LIGO.The three-staged laser(NPRO,medium power amplifier,high power oscillator)and the stabilization scheme(pre-mode-cleaner,power and frequency stabilization)are shown.The input-mode-cleaner is not partof the PSL but closely related.NPRO,non-planar ring oscillator;EOM,electro-optic mod-ulator;FI,Faraday isolator;AOM,acousto-optic modulator.tals which are longitudinally pumped byfiber-coupled laser diodes at808nm.The third stage is an injection-locked ring oscillator[8]with an output power of about220W, called the high-power oscillator(HPO).Four Nd:Y AG crystals are used as the active media. Each is longitudinally pumped by sevenfiber-coupled laser diodes at808nm.The oscillator is injection-locked[12]to the previous laser stage using a feedback control loop.A broadband EOM(electro-optic modulator)placed between the NPRO and the medium-power amplifier is used to generate the required phase modulation sidebands at35.5MHz.Thus the high output power and good beam quality of this last stage is combined with the good frequency stability of the previous stages.The reference system features some minor modifications compared to the engineering proto-type[8]concerning the optics:The external halo aperture was integrated into the laser system permanently improving the beam quality.Additionally,a few minor designflaws related to the mechanical structure and the optical layout were engineered out.This did not degrade the output performance,nor the characteristics of the locked laser.In general the PSL is designed to be operated in two different power modes.In high-power mode all three laser stages are engaged with a power of about160W at the PSL output.In low-power mode the high-power oscillator is turned off and a shutter inside the laser resonator is closed.The beam of the medium-power stage is reflected at the output coupler of the high power stage leaving a residual power of about13W at the PSL output.This low-power mode will be used in the early commissioning phase and in the low-frequency-optimized operation mode of Advanced LIGO and is not discussed further in this article.The stabilization has three sections(Fig.1:PMC,PD2,reference cavity):A passive resonator, the so called pre-mode-cleaner(PMC),is used tofilter the laser beam spatially and temporally (see subsection2.1).Two pick-off beams at the PMC are used for the active power stabilization (see subsection2.2)and the active frequency pre-stabilization,respectively(see subsection2.3).In general most stabilization feedback control loops of the PSL are implemented using analog electronics.A real-time computer system(Control and Data Acquisition Systems,CDS,[13]) which is common to many other subsystems of Advanced LIGO,is utilized to control and mon-itor important parameters of the analog electronics.The lock acquisition of various loops,a few #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10620slow digital control loops,and the data acquisition are implemented using this computer sys-tem.Many signals are recorded at different sampling rates ranging from16Hz to33kHz for diagnostics,monitoring and vetoing of gravitational wave signals.In total four real-time pro-cesses are used to control different aspects of the laser system.The Experimental Physics and Industrial Control System(EPICS)[14]and its associated user tools are used to communicate with the real-time software modules.The PSL contains a permanent,dedicated diagnostic instrument,the so called diagnostic breadboard(DBB,not shown in Fig.1)[15].This instrument is used to analyze two different beams,pick-off beams of the medium power stage and of the HPO.Two shutters are used to multiplex these to the DBB.We are able to measurefluctuations in power,frequency and beam pointing in an automated way with this instrument.In addition the beam quality quantified by the higher order mode content of the beam was measured using a modescan technique[16].The DBB is controlled by one real-time process of the CDS.In contrast to most of the other control loops in the PSL,all DBB control loops were implemented digitally.We used this instrument during the characterization of the laser system to measure the mentioned laser beam parameters of the HPO.In addition we temporarily placed an identical copy of the DBB downstream of the PMC to characterize the output beam of the PSL reference system.2.1.Pre-mode-cleanerA key component of the stabilization scheme is the passive ring resonator,called the pre-mode-cleaner(PMC)[17,18].It functions to suppress higher-order transverse modes,to improve the beam quality and the pointing stability of the laser beam,and tofilter powerfluctuations at radio frequencies.The beam transmitted through this resonator is the output beam of the PSL, and it is delivered to the subsequent subsystems of the gravitational wave detector.We developed and used a computer program[19]to model thefilter effects of the PMC as a function of various resonator parameters in order to aid its design.This led to a resonator with a bow-tie configuration consisting of four low-loss mirrors glued to an aluminum spacer. The optical round-trip length is2m with a free spectral range(FSR)of150MHz.The inci-dence angle of the horizontally polarized laser beam is6◦.Theflat input and output coupling mirrors have a power transmission of2.4%and the two concave high reflectivity mirrors(3m radius of curvature)have a transmission of68ppm.The measured bandwidth was,as expected, 560kHz which corresponds to afinesse of133and a power build-up factor of42.The Gaussian input/output beam had a waist radius of about568µm and the measured acquired round-trip Gouy phase was about1.7rad which is equivalent to0.27FSR.One TEM00resonance frequency of the PMC is stabilized to the laser frequency.The Pound-Drever-Hall(PDH)[20,21]sensing scheme is used to generate error signals,reusing the phase modulation sidebands at35.5MHz created between NPRO and medium power amplifier for the injection locking.The signal of the photodetector PD1,placed in reflection of the PMC, is demodulated at35.5MHz.This photodetector consists of a1mm InGaAs photodiode and a transimpedance amplifier.A piezo-electric element(PZT)between one of the curved mirrors and the spacer is used as a fast actuator to control the round-trip length and thereby the reso-nance frequencies of the PMC.With a maximum voltage of382V we were able to change the round-trip length by about2.4µm.An analog feedback control loop with a bandwidth of about 7kHz is used to stabilize the PMC resonance frequency to the laser frequency.In addition,the electronics is able to automatically bring the PMC into resonance with the laser(lock acquisition).For this process a125ms period ramp signal with an amplitude cor-responding to about one FSR is applied to the PZT of the PMC.The average power on pho-todetector PD1is monitored and as soon as the power drops below a given threshold the logic considers the PMC as resonant and closes the analog control loop.This lock acquisition proce-#161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10621dure took an average of about65ms and is automatically repeated as soon as the PMC goes off resonance.One real-time process of CDS is dedicated to control the PMC electronics.This includes parameters such as the proportional gain of the loop or lock acquisition parameters.In addition to the PZT actuator,two heating foils,delivering a maximum total heating power of14W,are attached to the aluminum spacer to control its temperature and thereby the roundtrip length on timescales longer than3s.We measured a heating and cooling1/e time constant of about2h with a range of4.5K which corresponds to about197FSR.During maintenance periods we heat the spacer with7W to reach a spacer temperature of about2.3K above room temperature in order to optimize the dynamic range of this actuator.A digital control loop uses this heater as an actuator to off-load the PZT actuator allowing compensation for slow room temperature and laser frequency drifts.The PMC is placed inside a pressure-tight tank at atmospheric pressure for acoustic shield-ing,to avoid contamination of the resonator mirrors and to minimize optical path length changes induced by atmospheric pressure variations.We used only low-outgassing materials and fabri-cated the PMC in a cleanroom in order to keep the initial mirror contamination to a minimum and to sustain a high long-term throughput.The PMCfilters the laser beam and improves the beam quality of the laser by suppress-ing higher order transverse modes[17].The acquired round-trip Gouy phase of the PMC was chosen in such a way that the resonance frequencies of higher order TEM modes are clearly separated from the TEM00resonance frequency.Thus these modes are not resonant and are mainly reflected by the PMC,whereas the TEM00mode is transmitted.However,during the design phase we underestimated the thermal effects in the PMC such that at nominal circu-lating power the round-trip Gouy-phase is close to0.25FSR and the resonance of the TEM40 mode is close to that of the TEM00mode.To characterize the mode-cleaning performance we measured the beam quality upstream and downstream of the PMC with the two independent DBBs.At150W in the transmitted beam,the circulating power in the PMC is about6.4kW and the intensity at the mirror surface can be as high as1.8×1010W m−2.At these power levels even small absorptions in the mirror coatings cause thermal effects which slightly change the mirror curvature[22].To estimate these thermal effects we analyzed the transmitted beam as a function of the circulating power using the DBB.In particular we measured the mode content of the LG10and TEM40mode.Changes of the PMC eigenmode waist size showed up as variations of the LG10mode content.A power dependence of the round-trip Gouy phase caused a variation of the power within the TEM40mode since its resonance frequency is close to a TEM00mode resonance and thus the suppression of this mode depends strongly on the Gouy phase.We adjusted the input power to the PMC such that the transmitted power ranged from100W to 150W corresponding to a circulating power between4.2kW and6.4kW.We used our PMC computer simulation to deduce the power dependence of the eigenmode waist size and the round-trip Gouy phase.The results are given in section3.1.At all circulating power levels,however,the TEM10and TEM01modes are strongly sup-pressed by the PMC and thus beam pointingfluctuations are reduced.Pointingfluctuations can be expressed tofirst order as powerfluctuations of the TEM10and TEM01modes[23,24].The PMC reduces thefield amplitude of these modes and thus the pointingfluctuations by a factor of about61according to the measuredfinesse and round-trip Gouy phase.To keep beam point-ingfluctuations small is important since they couple to the gravitational wave channel by small differential misalignments of the interferometer optics.Thus stringent design requirements,at the10−6Hz−1/2level for relative pointing,were set.To verify the pointing suppression effect of the PMC we used DBBs to measure the beam pointingfluctuations upstream and downstream #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10622Fig.2.Detailed schematic of the power noise sensor setup for thefirst power stabilizationloop.This setup corresponds to PD2in the overview in Fig.1.λ/2,waveplate;PBS,polar-izing beam splitter;BD,glassfilters used as beam dump;PD,single element photodetector;QPD,quadrant photodetector.of the PMC.The resonator design has an even number of nearly normal-incidence reflections.Thus the resonance frequencies of horizontal and vertical polarized light are almost identical and the PMC does not act as polarizer.Therefore we use a thin-film polarizer upstream of the PMC to reach the required purity of larger than100:1in horizontal polarization.Finally the PMC reduces technical powerfluctuations at radio frequencies(RF).A good power stability between9MHz and100MHz is necessary as the phase modulated light in-jected into the interferometer is used to sense several degrees of freedom of the interferometer that need to be controlled.Power noise around these phase modulation sidebands would be a noise source for the respective stabilization loop.The PMC has a bandwidth(HWHM)of about 560kHz and acts tofirst order as a low-passfilter for powerfluctuations with a-3dB corner frequency at this frequency.To verify that the suppression of RF powerfluctuations is suffi-cient to fulfill the design requirements,we measured the relative power noise up to100MHz downstream of the PMC with a dedicated experiment involving the optical ac coupling tech-nique[25].In addition the PMC serves the very important purpose of defining the spatial laser mode for the downstream subsystem,namely the input optics(IO)subsystem.The IO subsystem is responsible,among other things,to further stabilize the laser beam with the suspended input mode cleaner[26]before the beam will be injected into the interferometer.Modifications of beam alignment or beam size of the laser system,which were and might be unavoidable,e.g., due to maintenance,do not propagate downstream of the PMC tofirst order due to its mode-cleaning effect.Furthermore we benefit from a similar isolating effect for the active power and frequency stabilization by using the beams transmitted through the curved high-reflectivity mirrors of the PMC.2.2.Power stabilizationThe passivefiltering effect of the PMC reduces powerfluctuations significantly only above the PMC bandwidth.In the detection band from about10Hz to10kHz good power stability is required sincefluctuations couple via the radiation pressure imbalance and the dark-fringe offset to the gravitational wave channel.Thus two cascaded active control loops,thefirst and second power stabilization loop,are used to reduce powerfluctuations which are mainly caused by the HPO stage.Thefirst loop uses a low-noise photodetector(PD2,see Figs.1and2)at one pick-off port #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10623of the PMC to measure the powerfluctuations downstream of the PMC.An analog electronics feedback control loop and an AOM(acousto-optic modulator)as actuator,located upstream of the PMC,are used to stabilize the power.Scattered light turned out to be a critical noise source for thisfirst loop.Thus we placed all required optical and opto-electronic components into a box to shield from scattered light(see Fig.2).The beam transmitted by the curved PMC mirror has a power of about360mW.This beam isfirst attenuated in the box using aλ/2waveplate and a thin-film polarizer,such that we are able to adjust the power on the photodetectors to the optimal operation point.Afterwards the beam is split by a50:50beam splitter.The beams are directed to two identical photode-tectors,one for the control loop(PD2a,in-loop detector)and one for independent out-of-loop measurements to verify the achieved power stability(PD2b,out-of-loop detector).These pho-todetectors consist of a2mm InGaAs photodiode(PerkinElmer C30642GH),a transimpedance amplifier and an integrated signal-conditioningfilter.At the chosen operation point a power of about4mW illuminates each photodetector generating a photocurrent of about3mA.Thus the shot noise is at a relative power noise of10−8Hz−1/2.The signal conditioningfilter has a gain of0.2at very low frequencies(<70mHz)and amplifies the photodetector signal in the im-portant frequency range between3.3Hz and120Hz by about52dB.This signal conditioning filter reduces the electronics noise requirements on all subsequent stages,but has the drawback that the range between3.3Hz and120Hz is limited to maximum peak-to-peak relative power fluctuations of5×10−3.Thus the signal-conditioned channel is in its designed operation range only when the power stabilization loop is closed and therefore it is not possible to measure the free running power noise using this channel due to saturation.The uncoated glass windows of the photodiodes were removed and the laser beam hits the photodiodes at an incidence angle of45◦.The residual reflection from the photodiode surface is dumped into a glassfilter(Schott BG39)at the Brewster angle.Beam positionfluctuations in combination with spatial inhomogeneities in the photodiode responsivity is another noise source for the power stabilization.We placed a silicon quadrant photodetector(QPD)in the box to measure the beam positionfluctuations of a low-power beam picked off the main beam in the box.The beam parameters,in particular the Gouy phase,at the QPD are the same as on the power sensing detectors.Thus the beam positionfluctuations measured with the QPD are the same as the ones on the power sensing photodetectors,assuming that the positionfluctuations are caused upstream of the QPD pick-off point.We used the QPD to measure beam positionfluctuations only for diagnostic and noise projection purposes.In a slightly modified experiment,we replaced one turning mirror in the path to the power sta-bilization box by a mirror attached to a tip/tilt PZT element.We measured the typical coupling between beam positionfluctuations generated by the PZT and the residual relative photocurrent fluctuations measured with the out-of-the-loop photodetector.This coupling was between1m−1 and10m−1which is a typical value observed in different power stabilization experiments as well.We measured this coupling factor to be able to calculate the noise contribution in the out-of-the-loop photodetector signal due to beam positionfluctuations(see Subsection3.3).Since this tip/tilt actuator was only temporarily in the setup,we are not able to measure the coupling on a regular basis.Both power sensing photodetectors are connected to analog feedback control electronics.A low-pass(100mHz corner frequency)filtered reference value is subtracted from one signal which is subsequently passed through several control loopfilter stages.With power stabilization activated,we are able to control the power on the photodetectors and thereby the PSL output power via the reference level on time scales longer than10s.The reference level and other important parameters of these electronics are controlled by one dedicated real-time process of the CDS.The actuation or control signal of the electronics is passed to an AOM driver #161737 - $15.00 USD Received 18 Jan 2012; revised 27 Feb 2012; accepted 4 Mar 2012; published 24 Apr 2012 (C) 2012 OSA7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 10624。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STUDY OF NEW FNAL-NICADD EXTRUDED SCINTILLATOR AS ACTIVE MEDIA OF LARGE EMCAL OF ALICE AT LHC
O. A. GRACHOV†Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
T.M.CORMIER Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
A. PLA-DALMAU, A.BROSS Fermi National Accelerator Laboratory, Batavia, Il 60510, USA
V.RYKALIN Northern Illinois Center for Accelerator and Detector Development (NICADD), Northern Illinois University, DeKalb, Il 60115, USA
The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.
Introduction The ALICE-USA collaboration proposes to build a large area electromagnetic calorimeter (Large EMCal). The main goal in the design of Large EMCal is to significantly extend the limit coverage of the PHOS calorimeter [1]. The Large EMCal will be central to ALICE’s program for the study of hard processes. The calorimeter will cover the major part of the ALICE central acceptance, see Figure 1. The full detector spans ∆η= ± 0.7 with azimuthal acceptance of ∆φ = 120° and segmented into ~20.000 towers projective in φ and η to the
†e-mail address: grachov@physics.wayne.edu (Oleg A.Grachov)
1 2 interaction vertex. Minimum size of each tower is approximately 50 mm by 50 mm. The chosen technology is a tile/fiber sampling technique with scintillator and absorber plates perpendicular to the incident particles. The calorimeter structure consists of 25 active 5-mm scintillator layers interspersed with 5-mm lead absorption plates. The constant size in ∆φ and ∆η and projective nature of the towers means that there are several thousands different sizes geometries. The technology chosen for the construction of the Large EMCal is that of megatile production as used in the CDF Endplug upgrade project and in both endcap and barrel calorimeters of the STAR. [2, 3, 4].
Figure 1. ALICE end view with proposed Large EMCal.
The Large EMCal required more than 15 tons of scintillating material. The thousands of different tile geometries make production technique such as injection molding far less attractive and become impractical because of the cost of the molds. Cast plastic scintillator sheets (at BICRON, Kuraray) may cost about $40-$70 per kg. The estimated price for extruded scintillator strips, which are become available at Fermilab, ranges between $5 and $8 per kg. [5]. These issues first lead us to the choice of extruded scintillator and drove the R&D into extruded material at FNAL-NICADD (Northern Illinois Center for Accelerator and Detector Development, Northern Illinois University) facility. One of the 3 most important problems of optical system related to the scintillator is to achieve a specified minimum light yield and maintain high spatially uniformity, so that the resolution of calorimeter is not compromised by a lack of photostatistics or position dependence. Physics requirements lead us to require a light yield more than 2 photoelectrons per minimum ionizing particle (for full optical chain including photo detector) and uniformity of response over the surface of tile better than 3% RMS. Because the Kuraray scintillator has been used many times in large scale, long use-time applications and meet our requirements, we concentrated on comparison of Kuraray and the FNAL-NICADD scintillator. We have compared the light yield and light yield variation of individual tiles produced from Kuraray SCSN-81 [6] and FNAL-NICADD extruded scintillator.
Measurements Kuraray SCSN-81 and new FNAL-NICADD scintillator of 5 mm thickness were used for production of tiles. A first prototype production batch of scintillating strips was completed at FNAL in September 2003. This is blue – emitting scintillator with an absorption cut-off at ~ 400 nm (for a 1-cm path length) and an emission maximum at 420 nm. The optical characteristics of bulk material are the same as that of the MINOS extrusions [7]. For measurements we used tiles with dimensions 65 mm x 71 mm (maximum size, which required current design). A set of three identical tiles from each material has been produced. A peripheral sigma-groove was machined in each tile, where a Kuraray Y11 (200 ppm) MS WLS fiber diameter 0.83 mm was inserted. In order to exclude dependence of results from quality of fibers, we used one fiber. Length of fiber was 60 cm. The both end of WLS fiber were polished and than mirrored on one end. The other end of fiber was coupled to PMT (Hamamatsu R6094) with optical grease. The non-polished tile edges are painted white and tile was wrapped with light reflective material. All design parameters of WLS fiber read-out groove such as shape, depth, width, and distance from edges of tile were optimized for SCSN-81 scintillator during R&D phase for Barrel calorimeter of STAR at RHIC. In order to measure the light yield and monitor light yield variation a specialized test setup has been design and build at Wayne State University, see Figure 2. The apparatus consist of DaVinci XYZ positioning system with bridge mounted Y-Z slide. Tile under test is mounted on the trigger counter. Trigger counter and PMT are mounted on the X slide. Cosmic ray counter is mounted below movable X slide. Radioactive source with collimator is mounted on the