高考复习数学(北师大版)第6章 不等式、推理与证明
高考数学大一轮复习 第六章 不等式与推理证明 第6课时 直接证明与间接证明课件 理 北师大版.ppt

解:(1)证明:由已知条件,对任意n∈N+,有
an+2=3Sn-Sn+1+3,
①
因而对任意n∈N+,n≥2时,有
an+1=3Sn-1-Sn+3. ②
①-②,得an+2-an+1=3an-an+1,即an+2=3an,n≥2.
又a1=1,a2=2,所以
a3=3S1-S2+3=3a1-(a1+a2)+3=3a1.
证明 ∵x2+y2≥2xy,x2+z2≥2xz,y2+z2≥2yz, ∴2x2+2y2+2z2≥2xy+2xz+2yz, ∴3x2+3y2+3z2≥x2+y2+z2+2xy+2xz+2yz, 即3(x2+y2+z2)≥(x+y+z)2, ∵x+y+z=1,∴(x+y+z)2=1, ∴3(x2+y2+z2)≥1,即x2+y2+z2≥13.
利用综合法证明不等式是不等式证明的常用方法之一,即充 分利用已知条件与已知的基本不等式,经过推理论证推导出正确 结论,是顺推法或由因导果法.其逻辑依据是三段论式的演绎推 理方法,这就需保证前提正确,推理合乎规律,这样才能保证结 论的正确.
1.(2015·高考湖南卷)设数列{an}的前n项和为Sn.已知a1=1, a2=2,且an+2=3Sn-Sn+1+3,n∈N+.
解析:“至少存在”的反面为“不存在”.“不存在c,使 f(c)>0”即“f(x)≤0恒成立”.
答案:函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上 恒有f(x)≤0
5.已知log2a+log2b≥1,则3a+9b的最小值为________.
解析:由log2a+log2b≥1得log2(ab)≥1,得ab≥2,
[基础自测]
1.(教材改编题)p= ab + cd ,q= ma+nc · mb +dn (m、
高考数学一轮复习 第6章 不等式、推理与证明 重点强化

重点强化训练(三) 不等式及其应用A 组 基础达标 (建议用时:30分钟)一、选择题1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) C [取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,排除D.] 2.(2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17B [由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小. 又知点A 的坐标为(3,0), ∴z min =2×3+5×0=6.故选B.]3.(2016·浙江高考)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的射影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6C [由不等式组画出可行域,如图中的阴影部分所示.因为直线x +y -2=0与直线x +y =0平行,所以可行域内的点在直线x +y -2=0上的投影构成的线段的长|AB |即为|CD |.易得C (2,-2),D (-1,1),所以|AB |=|CD |=+2+-2-2=3 2.故选C.]4.不等式4x -2≤x -2的解集是( ) A .[-∞,0)∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)B [①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,解得x ≥4; ②当x -2<0,即x <2时,不等式可化为(x -2)2≤4, 解得0≤x <2.综上,解集为[0,2)∪[4,+∞).]5.(2015·山东高考)若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)C [因为函数y =f (x )为奇函数,所以f (-x )=-f (x ),即2-x+12-x -a =-2x+12x -a .化简可得a =1,则2x+12x -1>3,即2x+12x -1-3>0,即2x+1-x-2x-1>0,故不等式可化为2x-22x -1<0,即1<2x<2,解得0<x <1,故选C.]二、填空题6.(2016·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.]7.设a ,b >0,a +b =5,则a +1+b +3的最大值为__________. 32 [令t =a +1+b +3,则t 2=a +1+b +3+2a +b +=9+2a +b +≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2.]8.设0≤α≤π,不等式8x 2-(8sin α)x +cos2α≥0对x ∈R 恒成立,则α的取值范围为__________.【导学号:66482299】⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π [由题意,要使8x 2-(8sin α)x +cos2α≥0对x ∈R 恒成立,需Δ=64sin 2α-32cos2α≤0,化简得cos2α≥12.又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π, 解得0≤α≤π6或5π6≤α≤π.]三、解答题 9.已知不等式ax -1x +1>0(a ∈R ). (1)解这个关于x 的不等式;(2)若x =-a 时不等式成立,求a 的取值范围.[解] (1)原不等式等价于(ax -1)(x +1)>0. 1分 ①当a =0时,由-(x +1)>0,得x <-1;②当a >0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)>0.解得x <-1或x >1a;3分③当a <0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)<0;若1a <-1,即-1<a <0,则1a<x <-1;若1a =-1,即a =-1,则不等式解集为空集; 若1a>-1,即a <-1,则 -1<x <1a. 5分综上所述,当a <-1时,解集为⎩⎨⎧⎭⎬⎫x | -1<x <1a ; 当a =-1时,原不等式无解;当-1<a <0时,解集为⎩⎨⎧⎭⎬⎫x | 1a<x <-1;当a =0时,解集为{x |x <-1};当a >0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >1a . 6分 (2)∵x =-a 时不等式成立, ∴-a 2-1-a +1>0,即-a +1<0,10分 ∴a >1,即a 的取值范围为(1,+∞). 12分10.(2016·全国卷Ⅰ改编)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,试求在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为多少元.[解] 设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.5分目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元). 12分B 组 能力提升 (建议用时:15分钟)1.已知a ,b 为正实数,且ab =1,若不等式(x +y )·⎝ ⎛⎭⎪⎫a x +b y >m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( )【导学号:66482300】A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4)D [因为a ,b ,x ,y 为正实数,所以(x +y )⎝⎛⎭⎪⎫a x +by=a +b +ay x +bx y≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bx y,即a =b ,x =y 时等号成立,故只要m <4即可.]2.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是__________.【导学号:66482301】-52 [法一:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立, 而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52,∴a ≥-52,故a 的最小值为-52.法二:设f (x )=x 2+ax +1,则其对称轴为x =-a2.①若-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上递减,此时应有f ⎝ ⎛⎭⎪⎫12≥0,从而-52≤a ≤②若-a 2<0,即a >0时,f (x )在⎝ ⎛⎦⎥⎤0,12上递增,此时应有f (0)=1>0恒成立,故a >0. ③若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a ≤0.综上可知a ≥-52,故a 的最小值为-52.]3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,f m + f nm +n>0.(1)用定义证明f (x )在[-1,1]上是增函数;(2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.【导学号:66482302】[解] (1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+ f -x 2x 1-x 2·(x 1-x 2). 2分∵-1≤x 1<x 2≤1,∴x 1-x 2<0. 又已知f x 1+ f -x 2x 1-x 2>0,∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数,4分 (2)∵f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧-1≤x +12≤1,-1≤1x -1≤1,x +12<1x -1,解得⎩⎨⎧⎭⎬⎫x | -32≤x <-1. 8分(3)由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f(x )≤1,∴要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1故t2-2at≥0,记g(a)=-2ta+t2. 10分对a∈[-1,1],g(a)≥0恒成立,只需g(a)在[-1,1]上的最小值大于等于0,∴g(-1)≥0,g(1)≥0,解得t≤-2或t=0或t≥2.∴t的取值范围是{t|t≤-2或t=0或t≥2}. 12分。
高考数学大一轮复习-第六章 不等式与推理证明 第1课时 不等关系与不等式课件 北师大版

(2)a2a+bb2≤-2⇔a2a+bb2+2=a+abb2≤0⇔ab<0⇔ab<>00 或ab><00 ,故选A. 答案 (1)C (2)A
在判断一个关于不等式的命题真假时,先把要判断的命题和 不等式性质联系起来考虑,找到与命题相近的性质,并应用性质 判断命题真假,当然判断的同时还要用到其他知识,比如对数函 数,指数函数的性质等.
是( )
A.a2+1>b2+1
B.ba<1
C.lg(a-b)>0
D.13a<13b
(2)已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N 的大小关系是( )
A.M<N
B.M>N
C.M=N
D.不确定
(3)已知a>b>0,比较aabb与abba的大小.
审题视点 (1)运用特殊值验证即可.(2)可用作差法求解.(3)
(1)“作差比较法”的依据是“a-b>0⇔a>b,a-b<0⇔a <b,a-b=0⇔a=b”,其过程可分三步:①作差;②变形;③ 判断差的符号.其中关键一步是变形.
(2)“作商比较法”的依据是“
a b
>1,b>0⇒a>b”,是把两
数的大小比较转化为两数的商与1进行比较,在数式结构含有幂
或根式、绝对值时,可采用此方法.
1.实数x的绝对值不大于2,用不等式表示为( )
A.|x|>2
B.|x|≥2
C.|x|<2
D.|x|≤2
解析:“不大于”指“≤”,所以|x|≤2. 答案:D
2.某汽车公司由于发展的需要需购进一批汽车,计划使用 不超过1 000万元的资金购买单价分别为40万元、90万元的A型汽 车和B型汽车.根据需要,A型汽车至少买5辆,B型汽车至少买6 辆,写出满足上述所有不等关系的不等式.
高考数学大一轮复习-第六章 不等式与推理证明 第4课时 基本不等式课件 理 北师大版

(2) 依 题 意 得 , P→A ·(P→B + P→C ) = 2 P→A ·P→D = - 2| P→A |·| P→D |≥ - 2|P→A|+2 |P→D|2=-|A→2D|2=-12,当且仅当|P→A|=|P→D|=12时取等号, 因此P→A·(P→B+P→C)的最小值是-12,选 D.
0<x≤16, (2)由限制条件知0<16x2≤16, ∴1018≤x≤16. 设 g(x)=x+10x01018≤x≤16, 由函数性质易知 g(x)在1018,16上是增函数, ∴当 x=1018时此时16x2=16,
g(x)有最小值,即 f(x)有最小值 1 296×1018+88010+12 960=38 882(元). ∴当长为 16 米,宽为 1018米时,总造价最低,为 38 882 元.
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第4课时 基本不等式
1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题.
1.基本不等式
如果 a、b 都是正数,那么a+2 b≥
ab,当且仅当a=b 时,等 a+b
号成立,称上述不等式为基本不等式.其中 2 称为 a、b 的算
答案:D
2.已知 x>0,y>8.
证明:∵x>0,y>0,z>0,
∴yx+xz≥2 xyz>0,xy+yz≥2 yxz>0,
xz+yz≥2 zxy>0,
∴yx+xzxy+yzxz+yz≥8
yz· xz· xyz
xy=8.
当且仅当 x=y=z 时等号成立.
的条件.
解析 当x=12时,x2+14=x即lgx2+14=lgx,故A不正确. 运用基本不等式时需保证一正、二定,三相等,而当x≠kπ(k ∈Z)时,sin x正负不定,故选项B不正确. 由x2+1=(|x|)2+1≥2|x|可知选项C正确. 当x=0时,x2+1 1=1,故D错. 答案 C
高考数学一轮复习 第6章 不等式、推理与证明 第5讲 综合法与分析法、反证法知能训练轻松闯关 理 北师大版

第5讲综合法与分析法、反证法1.(2014·高考山东卷)用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析:选A.依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.2.若a,b∈R,则下面四个式子中恒成立的是( )A.lg(1+a2)>0 B.a2+b2≥2(a-b-1)C.a2+3ab>2b2 D.ab<a+1 b+1解析:选B.在B中,因为a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b +1)2≥0,所以a2+b2≥2(a-b-1)恒成立.3.(2016·河北省衡水中学一模)某珠宝店丢了一件珍贵珠宝,以下四人中只有一个人说了真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是( )A.甲B.乙C.丙D.丁解析:选A.假如甲说了真话,则乙、丙、丁都说了假话,那么丙不是小偷,丁不是小偷,丁偷了珠宝,显然矛盾,故甲说了假话,即甲是小偷,故选A.4.分析法又称执果索因法,若用分析法证明“设a>b>c,且a+b+c=0,求证:b2-ac<3 a”索的因应是( )A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:选C.b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2<0⇔-2a2+ac+c2<0⇔2a2-ac-c2>0⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.故选C.5.(2016·银川模拟)设a,b,c是不全相等的正数,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b,a<b及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立,其中正确判断的个数为( )A.0 B.1C.2 D.3解析:选C.①②正确;③中,a≠b,b≠c,a≠c可以同时成立,如a=1,b=2,c=3,故正确的判断有2个.6.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)是递减的,若x1+x2>0,则f(x1)+f(x2)的值( )A.恒为负值B.恒等于零C.恒为正值D.无法确定正负解析:选A.由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0. 7.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是________. 解析:“至少有一个”的否定是“一个也没有”,故应假设“a ,b 中没有一个能被5整除”. 答案:a ,b 中没有一个能被5整除8.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________.解析:要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.答案:①③④9.(2014·高考课标全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________. 解析:由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A. 答案:A10.已知点A n (n ,a n )为函数y =x 2+1图像上的点,B n (n ,b n )为函数y =x 图像上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,所以c n 随n 的增大而减小,所以c n +1<c n . 答案:c n +1<c n11.如图,在四棱锥P ABCD 中,PC ⊥底面ABCD ,ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点. (1)求证:EC ∥平面PAD ;(2)求证:平面EAC ⊥平面PBC .证明:(1)作线段AB 的中点F ,连接EF ,CF (图略), 则AF =CD ,AF ∥CD ,所以四边形ADCF 是平行四边形, 则CF ∥AD .又EF ∥AP ,且CF ∩EF =F , 所以平面CFE ∥平面PAD . 又EC 在平面CEF 内, 所以EC ∥平面PAD .(2)因为PC ⊥底面ABCD ,所以PC ⊥AC ,因为ABCD 是直角梯形,且AB =2AD =2CD =2, 所以AC =2,BC = 2.因为AB 2=AC 2+BC 2,所以AC ⊥BC , 因为PC ∩BC =C ,所以AC ⊥平面PBC ,因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .12.已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图像在交点(0,0)处有公共切线. (1)求a ,b 的值;(2)证明:f (x )≤g (x ).解:(1)f ′(x )=11+x,g ′(x )=b -x +x 2,由题意得⎩⎪⎨⎪⎧g (0)=f (0),f ′(0)=g ′(0),解得a =0,b =1.(2)证明:令h (x )=f (x )-g (x )=ln(x +1)-13x 3+12x 2-x (x >-1).h ′(x )=1x +1-x 2+x -1=-x 3x +1.h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数. h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).1.(2016·山西省质量监测)对累乘运算Π有如下定义:Πnk =1a k =a 1·a 2·…·a n ,则下列命题中的真命题是( )A .Π1 007k =12k 不能被10100整除B.Π2 015k =1 (4k -2)Π2 014k =1 (2k -1)=22 015C .Π1 008k =1 (2k -1)不能被5100整除D .Π1 008k =1 (2k -1)Π1 007k =12k =Π2 015k =1k解析:选 D.Π1 008k =1 (2k -1)Π1 007k =12k =(1×3×5×…×2 015)×(2×4×6×…×2 014)=1×2×3×…×2 014×2 015=Π2 015k =1k ,故选D.2.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是________三角形.(填锐角、直角、钝角)解析:由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1, 得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形,所以△A 2B 2C 2是钝角三角形. 答案:钝角3.在△ABC 中,已知AB →·AC →=3BA →·BC →.(1)求证:tan B =3tan A ;(2)若cos C =55,求A 的值.解:(1)证明:因为AB →·AC →=3BA →·BC →,所以AB ·AC ·cos A =3BA ·BC ·cos B , 即AC ·cos A =3BC ·cos B , 由正弦定理知AC sin B =BCsin A,从而sin B cos A =3sin A cos B , 又0<A +B <π,所以cos A >0,cos B >0, 所以tan B =3tan A .(2)因为cos C =55,0<C <π,所以sin C =1-cos 2C =255, 从而tan C =2,于是tan[π-(A +B )]=2, 即tan(A +B )=-2, 即tan A +tan B 1-tan A tan B =-2,由(1)得4tan A 1-3tan 2A=-2, 解得tan A =1或-13.因为cos A >0,所以tan A =1,所以A =π4.4.设f (x )是定义在D 上的函数,若对任何实数α∈(0,1)以及D 中的任意两数x 1,x 2,恒有f (αx 1+(1-α)x 2)≤αf (x 1)+(1-α)f (x 2),则称f (x )为定义在D 上的C 函数.(1)证明函数f 1(x )=x 2是定义域上的C 函数;(2)判断函数f 2(x )=1x(x <0)是否为定义域上的C 函数,请说明理由. 解:(1)证明:对任意实数x 1,x 2及α∈(0,1),有 f (αx 1+(1-α)x 2)-αf (x 1)-(1-α)f (x 2)=[αx 1+(1-α)x 2]2-αx 21-(1-α)x 22=-α(1-α)x 21-α(1-α)x 22+2α(1-α)x 1x 2=-α(1-α)(x 1-x 2)2≤0,即f (αx 1+(1-α)x 2)≤αf (x 1)+(1-α)f (x 2),所以f 1(x )=x 2是定义域上的C 函数.(2)f 2(x )=1x(x <0)不是定义域上的C 函数,证明如下(举反例):取x 1=-3,x 2=-1,α=12,则f (αx 1+(1-α)x 2)-αf (x 1)-(1-α)f (x 2)=f (-2)-12f (-3)-12f (-1)=-12+16+12>0,即f (αx 1+(1-α)x 2)>αf (x 1)+(1-α)f (x 2),所以f 2(x )=1x(x <0)不是定义域上的C 函数.。
高考数学一轮复习 第6章 不等式、推理与证明 第1节 不等式的性质与一元二次不等式学案 文 北师大版

第一节 不等式的性质与一元二次不等式[考纲传真] 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.会从实际问题的情境中抽象出一元二次不等式模型.3.通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(对应学生用书第78页)[基础知识填充]1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a ,b ∈R ,a -b =0⇔a =b a ,b ∈R ,a -b <0⇔a <b a ,b ∈R ;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b a ∈R ,b >,ab =1⇔a =ba ∈R ,b >,a b <1⇔a <ba ∈R ,b>2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;a >b >0,c >d >0⇒ac >bd ;(单向性)(5)乘方法则:a >b >0⇒a n>b n(n ≥2,n ∈N ); (6)开方法则:a >b >0⇒n ≥2,n ∈N ).3.一元二次不等式与相应的二次函数及一元二次方程的关系[1.有关分数的性质 若a >b >0,m >0,则 (1)b a <b +m a +m ;b a >b -ma -m(b -m >0)(2)a b >a +mb +m ;a b <a -mb -m(b -m >0)2.一元二次不等式恒成立问题(1)不等式ax 2+bx +c >0(a ≠0),x ∈R 恒成立⇔a >0且Δ<0; (2)不等式ax 2+bx +c <0(a ≠0),x ∈R 恒成立⇔a <0且Δ<0. 3.简单的分式不等式 (1)f xg x ≥0⇔⎩⎪⎨⎪⎧f xg x,g x;(2)f xg x >0⇔⎩⎪⎨⎪⎧f xg x >0,g x[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)a >b ⇔ac 2>bc 2.( ) (2)a >b >0,c >d >0⇒a d >b c.( )(3)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) [答案] (1)× (2)√ (3)√ (4)× 2.(教材改编)下列四个结论,正确的是( ) ①a >b ,c <d ⇒a -c >b -d ; ②a >b >0,c <d <0⇒ac >bd ; ③a >b >0⇒3a >3b ;④a >b >0⇒1a 2>1b2.A .①②B .②③C .①④D .①③D [利用不等式的同向可加性可知①正确;对于②,根据不等式的性质可知ac <bd ,故②不正确;因为函数y =x 13是单调递增的,所以③正确;对于④,由a >b >0可知a 2>b 2>0,所以1a 2<1b2,所以④不正确.]3.(2018·洛阳模拟)若a ,b ∈R ,且a >b ,则下列不等式恒成立的是( ) A .a 2>b 2B .a b>1 C .2a>2bD .lg(a -b )>0C [取a =-1,b =-2,排除A ,B ,D .故选C .]4.(2015·广东高考)不等式-x 2-3x +4>0的解集为________.(用区间表示)(-4,1) [由-x 2-3x +4>0得x 2+3x -4<0,解得-4<x <1,所以不等式-x 2-3x +4>0的解集为(-4,1).]5.若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是__________. [0,1) [①当m =0时,1>0显然成立;②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1,由①②知0≤m <1.](对应学生用书第79页)A .1x -1y>0B .sin x -sin y >0C .⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y<0D .ln x +ln y >0(2)已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围.(1)C [函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上为减函数,∴当x >y >0时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y<0,故C 正确;函数y =1x 在(0,+∞)上为减函数,由x >y >0⇒1x <1y ⇒1x -1y<0,故A 错误;函数y =sin x 在(0,+∞)上不单调,当x >y >0时,不能比较sin x 与sin y 的大小,故B 错误;x >y >0⇒xy >0⇒/ ln(xy )>0⇒/ ln x +ln y >0,故D 错误. (2)由题意知f (-1)=a -b ,f (1)=a +b ,f (-2)=4a -2B .设m (a +b )+n (a -b )=4a -2b ,则⎩⎪⎨⎪⎧m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3,∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤f (-2)≤10,即f (-2)的取值范围为[5,10].][规律方法] 1.对于不等式的常用性质,要弄清其条件和结论,不等式性质包括“单向性”和“双向性”两个方面,单向性主要用于证明不等式,双向性是解不等式的依据,因为解不等式要求的是同解变形.2.判断多个不等式是否成立,需要逐一给出推理判断或反例说明.3.由a <f (x ,y )<b ,c <g (x ,y )<d 求F (x ,y )的取值范围,要利用待定系数法解决,即设F (x ,y )=mf (x ,y )+ng (x ,y ),用恒等变形求得m ,n ,再利用不等式的性质求得F (x ,y )的取值范围.[变式训练1] (1)(2018·衡阳模拟)若1a <1b<0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |(2)若角α,β满足-π2<α<β<π,则α-β的取值范围是( ) 【导学号:00090185】A .⎝ ⎛⎭⎪⎫-3π2,3π2B .⎝ ⎛⎭⎪⎫-3π2,0C .⎝⎛⎭⎪⎫0,3π2 D .⎝ ⎛⎭⎪⎫-π2,0 (1)D (2)B [由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D错误,选D .(2)∵-π2<β<π,∴-π<-β<π2,∴-3π2<α-β<3π2.又∵α<β,∴α-β<0, 从而-3π2<α-β<0.](1)3+2x -x 2≥0; (2)x 2-(a +1)x +a <0.[解] (1)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0,故所求不等式的解集为{x |-1≤x ≤3}. 6分(2)原不等式可化为(x -a )(x -1)<0, 当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为∅; 当a <1时,原不等式的解集为(a,1).12分[母题探究] 将(2)中不等式改为ax 2-(a +1)x +1<0(a >0),求不等式的解集.[解] 原不等式变为(ax -1)(x -1)<0,因为a >0,所以a ⎝⎛⎭⎪⎫x -1a (x -1)<0.3分所以当a >1时,解集为1a<x <1;当a =1时,解集为∅; 当0<a <1时,解集为1<x <1a.10分综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1. 12分 [规律方法] 1.解一元二次不等式的步骤: (1)使一端为0且把二次项系数化为正数.(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法. (3)写出不等式的解集.2.解含参数的一元二次不等式的步骤:(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[变式训练2] (1)(2018·沈阳模拟)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x | -12<x <-13,则不等式x 2-bx -a ≥0的解集是() 【导学号:00090186】A .{x |2<x <3}B .{x |x ≤2或x ≥3}C .⎩⎨⎧⎭⎬⎫x |13<x <12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12(2)解不等式12x 2-ax >a 2(a ∈R )B [(1)∵不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x |-12<x <-13,∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0,∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. (2)原不等式可化为12x 2-ax -a 2>0 即(4x +a )(3x -a )>0 即⎝ ⎛⎭⎪⎫x +a 4⎝ ⎛⎭⎪⎫x -a 3>0当a >0时,-a 4<a3,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-a 4或x >a3; 当a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};当a <0时,-a 4>a3,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 3或x >-a4. 综上所述,当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-a 4或x >a3; 当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 3或x >-a4.]角度1 (2018·张掖模拟)不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是__________________.(-2,2] [当a -2=0,即a =2时,不等式即为-4<0,对一切x ∈R 恒成立,当a ≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=a -2+a -,即⎩⎪⎨⎪⎧a <2,-2<a <2,∴-2<a <2.综上,可得实数a 的取值范围是(-2,2].] 角度2 形如f (x )≥0()x ∈[a ,b ]求参数的范围设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.[解] 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.3分有以下两种方法:法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;7分当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 12分法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.7分因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 12分角度3 形如f (x )≥0(参数m ∈[a ,b ])求x 的范围对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是__________.{x |x <1或x >3} [对任意的k ∈[-1,1],x 2+(k -4)x +4-2k >0恒成立,即g (k )=(x -2)k +(x 2-4x +4)>0, 在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解得x <1或x >3.][规律方法] 1.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.2.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方,另外常转化为求二次函数的最值或用分离参数法求最值.。
高考数学一轮复习 第6章 不等式、推理与证明 重点强化课3 不等式及其应用学案 文 北师大版
重点强化课(三) 不等式及其应用(对应学生用书第86页)[复习导读] 本章的主要内容是不等式的性质,一元二次不等式及其解法,简单的线性规划问题,基本不等式及其应用,针对不等式具有很强的工具性,应用广泛,解法灵活的特点,应加强不等式基础知识的复习,要弄清不等式性质的条件与结论;一元二次不等式是解决问题的重要工具,如利用导数研究函数的单调性,往往归结为解一元二次不等式问题;函数、方程、不等式三者密不可分,相互转化,因此应加强函数与方程思想在不等式中应用的训练.重点1 一元二次不等式的综合应用(1)(2018·烟台模拟)函数y =1-x22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D .⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是__________.(1)D (2)(-1,2-1) [(1)由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为-1,-12∪-12,1,故选D .(2)由题意得⎩⎪⎨⎪⎧1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0,解得-1<x <0或0≤x <2-1. 所以x 的取值范围为(-1,2-1).][规律方法]一元二次不等式综合应用问题的常见类型及求解方法(1)与函数的定义域、集合的综合,此类问题的本质就是求一元二次不等式的解集. (2)与分段函数问题的综合.解决此类问题的关键是根据分段函数解析式,将问题转化为不同区间上的不等式,然后根据一元二次不等式或其他不等式的解法求解.(3)与函数的奇偶性等的综合.解决此类问题可先根据函数的奇偶性确定函数的解析式,然后求解,也可直接根据函数的性质求解.[对点训练1] 已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________. 【导学号:00090202】 (-5,0)∪(5,+∞) [由于f (x )为R 上的奇函数, 所以当x =0时,f (0)=0;当x <0时,-x >0, 所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞).] 重点2 线性规划问题(1)(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( ) A .[-3,0] B .[-3,2] C .[0,2]D .[0,3](2)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是__________.(1)B (2)⎣⎢⎡⎦⎥⎤1,32 [(1)画出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =x -z 过点A (2,0)时,z 取得最大值,即z max =2-0=2;当直线y =x -z 过点B (0,3)时,z 取得最小值,即z min =0-3=-3.所以z =x -y 的取值范围是[-3,2]. 故选B .](2)作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝ ⎛⎭⎪⎫1,32处取得. 故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.][规律方法] 本题(2)是线性规划的逆问题,这类问题的特点是在目标函数或约束条件中含有参数,当在约束条件中含有参数时,那么随着参数的变化,可行域的形状可能就要发生变化,因此在求解时也要根据参数的取值对可行域的各种情况进行分类讨论,以免出现漏解.[对点训练2] 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -若z =2x +y 的最小值为1,则a =( ) A .14B .12C .1D .2B [作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a x -,得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.]重点3 基本不等式的综合应用(2016·江苏高考节选)已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1).设a =2,b =12. (1)求方程f (x )=2的根;(2)若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值.【导学号:00090203】[解] 因为a =2,b =12,所以f (x )=2x +2-x.2分(1)方程f (x )=2,即2x+2-x=2,亦即(2x )2-2×2x+1=0,所以(2x-1)2=0,即2x=1,解得x =0.5分(2)由条件知f (2x )=22x+2-2x=(2x+2-x )2-2=(f (x ))2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤f x2+4f x 对于x ∈R 恒成立.8分而f x 2+4f x=f (x )+4f x≥2f x4f x=4,且f 2+4f=4,所以m ≤4,故实数m 的最大值为4.12分[规律方法] 基本不等式综合应用中的常见类型及求解方法:(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.[对点训练3] (1)(2018·南昌模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.(2)已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为__________. (1)6 (2)9 [(1)法一:(消元法) 因为x >0,y >0,所以0<y <3,所以x +3y =9-3y1+y +3y=121+y +3(y +1)-6≥2121+yy +-6=6,当且仅当121+y =3(y +1),即y =1,x =3时,(x +3y )min =6. 法二:(不等式法) ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0, 解得t ≥6或t ≤-18(舍去)故当x =3,y =1时,x +3y 的最小值为6. (2)由已知得x +2y2=1.则x +8y xy =1y +8x =⎝ ⎛⎭⎪⎫1y +8x ⎝ ⎛⎭⎪⎫x +2y 2 =12⎝⎛⎭⎪⎫10+x y +16y x ≥12(10+2 16)=9,当且仅当x =43,y =13时取等号.]。
届高考数学大一轮复习 第六章 不等式与推理证明 第5课时 合情推理与演绎推理课件 文 北师大版.ppt
解析:由等比数列的性质可知 b1b30=b2b29=…=b11b20, ∴10 b11b12…b20=30 b1b2…b30. 答案:10 b11b12…b20=30 b1b2…b30
考点三 演绎推理
[例3] 若数列{an}的前n项和为Sn,且满足an+2SnSn-1= 0(n≥2),a1=12.
1 3
x3-
1 2
x2+3x-
5 12
的对称中心为
12,1.
(2)由(1)知,计算f 12+x +f 12-x =2⇒f(x)+f(1-x)=2⇒
f 2
1 017
+f
2 2
016 017
=2,f 2
2 017
+f
2 2
015 017
=2,…,所以f
(2)点的横坐标是命题“n”的值,纵坐标为n2,直线的斜率为
n,曲线的系数为n3,总结为点(n,n2)是直线y=nx与双曲线y=
n3 x
的一个交点.
答案
(1)
63 2
(2)点(n,n2)是直线y=nx与双曲线y=
n3 x
的一个
交点
所谓归纳,就是由特殊到一般,因此在归纳时就要分析所给 条件之间的变化规律,从而得到一般结论.
(2)由(1)可得S1n=2n,∴Sn=21n, 当n≥2时,an=Sn-Sn-1=21n-2n1-1=2n-1 2n2,
1 2 对n=1不成立,所以an=2n-1 2n2
n=1, n≥2.
(1)演绎推理的结构 演绎推理是由一般到特殊的推理,其最常见的形式是三段 论,它是由大前提、小前提、结论三部分组成的.三段论推理中 包含三个判断:第一个判断称为大前提,它提供了一个一般的原 理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断 联合起来,提示了一般原理和特殊情况的内在联系,从而产生了 第三个判断:结论.
高考数学一轮复习 第6章 不等式、推理与证明 第1讲 不
第1讲 不等关系与不等式1.(2016·安徽省淮北一模)设a =30.5,b =log 32,c =cos 2,则( )A .c <b <aB .c <a <bC .a <b <cD .b <c <a解析:选A.由题意知a =30.5>30=1,b =log 32,因为1<2<3,所以0<b <1.又因为π2<2<π,所以c =cos 2<0,所以c <b <a . 2.(2016·石家庄质检)如果a <b <0,那么下列不等式成立的是( )A .-1a <-1bB .ab <b 2C .-ab <-a 2D .|a |<|b |解析:选A.利用作差法逐一判断.因为1b -1a =a -b ab <0,所以-1a <-1b ,A 正确;因为ab -b2=b (a -b )>0,所以ab >b 2,B 错误;因为ab -a 2=a (b -a )<0,所以-ab >-a 2,C 错误;a <b <0⇒|a |>|b |,D 错误,故选A.3.(2016·江西省重点中学盟校联考)已知a >0且a ≠1,则“a b >1”是“(a -1)b >0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C.由a b >1⇒⎩⎪⎨⎪⎧a >1,b >0或⎩⎪⎨⎪⎧0<a <1,b <0; 由(a -1)b >0⇒⎩⎪⎨⎪⎧a -1>0,b >0或⎩⎪⎨⎪⎧a -1<0,b <0,又a >0且a ≠1,所以“a b >1”是“(a -1)b >0”的充要条件.4.(2016·西安质检)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎣⎢⎡⎦⎥⎤0,π2,那么2α-β3的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,5π6 B.⎝ ⎛⎭⎪⎫-π6,5π6 C .(0,π) D.⎝ ⎛⎭⎪⎫-π6,π 解析:选D.由题设得0<2α<π,0≤β3≤π6, 所以-π6≤-β3≤0, 所以-π6<2α-β3<π. 5.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( )A .2枝玫瑰的价格高B .3枝康乃馨的价格高C .价格相同D .不确定解析:选A.设1枝玫瑰与1枝康乃馨的价格分别为x 元、y 元,则6x +3y >24,4x +4y <20⇒2x +y >8,x +y <5,因此2x -3y =5(2x +y )-8(x +y )>5×8-8×5=0,所以2x >3y ,因此2枝玫瑰的价格高,故选A.6.已知a <b <c 且a +b +c =0,则下列不等式恒成立的是( )A .a 2<b 2<c 2B .a |b |<c |b |C .ba <caD .ca <cb解析:选D.因为a <b <c 且a +b +c =0,所以a <0,c >0,b 的符号不定,对于b >a ,两边同时乘以正数c ,不等号方向不变,故选D.7.已知a ,b ,c ∈R ,有以下命题:①若ac 2>bc 2,则a >b ;②若a >b ,则a ·2c >b ·2c .其中正确的是________(把正确命题的序号都填上).解析:①正确.②中由2c >0可知式子成立.答案:①②8. (2016·郑州联考)已知a ,b ,c ∈R ,给出下列命题:①若a >b ,则ac 2>bc 2;②若ab ≠0,则a b +b a ≥2;③若a >|b |,则a 2>b 2.其中真命题的个数为________.解析:当c =0时,ac 2=bc 2=0,故①为假命题;当a 与b 异号时,a b <0,b a <0,a b +b a ≤-2,故②为假命题;因为a >|b |≥0,所以a 2>b 2,故③为真命题.答案:19.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 cm ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m ,其中的不等关系可用不等式(组)表示为________.解析:矩形靠墙的一边长为x m ,则另一边长为30-x 2 m ,即⎝⎛⎭⎪⎫15-x 2 m , 根据题意知⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥216. 答案:⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥216 10.(2016·盐城一模)若-1<a +b <3,2<a -b <4,则2a +3b 的取值范围为________. 解析:设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧x +y =2,x -y =3,解得⎩⎪⎨⎪⎧x =52,y =-12. 又因为-52<52(a +b )<152, -2<-12(a -b )<-1, 所以-92<52(a +b )-12(a -b )<132. 即-92<2a +3b <132. 答案:⎝ ⎛⎭⎪⎫-92,132 11.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:因为c <d <0,所以-c >-d >0,又因为a >b >0,所以a -c >b -d >0.所以(a -c )2>(b -d )2>0.所以0<1(a -c )2<1(b -d )2.又因为e <0,所以e (a -c )2>e(b -d )2.12.已知12<a <60,15<b <36,求a -b ,a b 的取值范围.解:因为15<b <36,所以-36<-b <-15.又12<a <60,所以12-36<a -b <60-15, 所以-24<a -b <45,即a -b 的取值范围是 (-24,45). 因为136<1b <115,所以1236<a b <6015,所以13<a b <4,即a b 的取值范围是⎝ ⎛⎭⎪⎫13,4.。
高考数学一轮复习 第6章 不等式、推理与证明 第1讲 不等关系与不等式课件 文 北师大版
(1)(2014·高考天津 卷)设 a, b∈ R,则 “a>b”是
“a|a|>b|b|”的( C )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
(2)设 a,b,c∈R,且 a>b,则( D )
A.ac>bc
B.1a<1b
C. a2 >b2
D. a3 >b3
[解析] (1)当 b<0 时,显然有 a>b⇔a|a|>b|b|; 当 b=0 时,显然有 a>b⇔a|a|>b|b|; 当 b>0 时,由 a>b 有|a|>|b|,所以 a>b⇔a|a|>b|b|. 综上可知 a>b⇔a|a|>b|b|,故选 C. (2)A 项,c≤0 时,由 a>b 不能得到 ac>bc,故不正确; B 项,当 a>0,b<0(如 a=1,b=-2)时,由 a>b 不能得到1a <1b,故不正确;
[解]设甲、乙两种产品的产量分别为 x,y,则由题意可知 x+2y≤400,
2x+y≤500, x≥0,x∈N, y≥0,y∈N.
用不等式(组)表示不等关系 (1)分析题中有哪些未知量. (2)选择其中起关键作用的未知量,设为 x 或 x,y 再用 x 或 x,y 来表示其他未知量. (3)根据题目中的不等关系列出不等式(组). [注意] 在列不等式(组)时要注意变量自身的范围.
Sa33<Sa55. (2)因为 2x+3y>2-y+3-x,所以 2x-3-x>2-y-3y, 令 f(x)=2x-3-x,则易知 f(x)在(-∞,+∞)上为增函数, 因为 f(x)>f(-y),所以 x>-y,即 x+y>0,选 D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 不等式、推理与证明
上一页
返回首页
下一页
[五年考情]
高三一轮总复习
上一页
返回首页
下一页
[重点关注]
高三一轮总复习
1.从近五年全国卷高考试题来看,涉及本章知识的既有客观题,又有解答
题.客观题主要考查不等关系与不等式,一元二次不等式的解法,简单线性规
划,合情推理与演绎推理,解答题主要考查不等式的证明、基本不等式与直接证
明.
2.不等式具有很强的工具性,应用十分广泛,推理与证明贯穿于每一个章
节,因此,不等式往往与集合、函数、导数的应用、数列交汇考查,对于证明,
主要体现在不等式证明和不等式恒成立证明以及几何证明.
3.从能力上,突出对函数与方程、转化与化归、分类讨论等数学思想的考
查.
上一页
返回首页
下一页高三一轮总复习Fra bibliotek[导学心语] 1.加强不等式基础知识的复习.不等式的基础知识是进行推理和解不等式 的理论依据,要弄清不等式性质的条件与结论;一元二次不等式、基本不等式是 解决问题的基本工具;如利用导数研究函数单调性,常常归结为解一元二次不等 式问题. 2.强化推理证明和不等式的应用意识.从近年命题看,试题多与数列、函 数、解析几何交汇渗透,对不等式知识、方法技能要求较高.抓好推理论证,强 化不等式的应用训练是提高解综合问题的关键.
上一页
返回首页
下一页
高三一轮总复习
3.重视数学思想方法的复习.明确不等式的求解和推理证明就是一个把条 件向结论转化的过程;加强函数与方程思想在不等式中的应用训练,不等式、函 数与方程三者密不可分,相互转化.
上一页
返回首页
下一页