最新人教版高中数学选修1-1《双曲线的几何性质》课后导练

合集下载

高二选修双曲线及简单性质课后巩固试题 (1)

高二选修双曲线及简单性质课后巩固试题 (1)

§2.3.2双曲线的简单几何性质(1)学习目标1.理解并掌握双曲线的几何性质.P 56~ P 58,文P 49~ P 51找出疑惑之处) 复习1:写出满足下列条件的双曲线的标准方程: ①3,4a b ==,焦点在x 轴上;②焦点在y 轴上,焦距为8,2a =. 复习2:前面我们学习了椭圆的哪些几何性质?二、新课导学: ※ 学习探究问题1:由椭圆的哪些几何性质出发,类比探究双曲线22221x y ab-=的几何性质?范围:x : y :对称性:双曲线关于 轴、 轴及 都对称. 顶点:( ),( ).实轴,其长为 ;虚轴,其长为 . 离心率:1c e a=>.渐近线: 双曲线22221x y ab-=的渐近线方程为:0x y ab±=.问题2:双曲线22221y x ab-=的几何性质?图形: 范围:x : y :对称性:双曲线关于 轴、 轴及 都对称. 顶点:( ),( )实轴,其长为 ;虚轴,其长为 . 离心率:1c e a=>.渐近线:双曲线22221y x ab-=的渐近线方程为: .新知:实轴与虚轴等长的双曲线叫 双曲线.※ 典型例题例1求双曲线2214925xy-=的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.变式:求双曲线22916144y x -=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程. 例2求双曲线的标准方程:⑴实轴的长是10,虚轴长是8,焦点在x 轴上;⑵离心率e =(5,3)M -;⑶渐近线方程为23y x =±,经过点9(,1)2M -.※ 动手试试练1.求以椭圆22185xy+=的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.练2.对称轴都在坐标轴上的等到轴双曲线的一个焦点是1(6,0)F -,求它的标准方程和渐近线方程.三、总结提升: ※ 学习小结双曲线的图形、范围、顶点、对称性、离心率、渐近线.※ 当堂检测1. 双曲线221168xy-=实轴和虚轴长分别是( ).A .8、B .8、C .4、D .4、2.双曲线224x y -=-的顶点坐标是( ).A .(0,1)±B .(0,2)±C .(1,0)±D .(2,0±)3. 双曲线22148xy-=的离心率为( ).A .1 B . C D .24.双曲线2241x y -=的渐近线方程是 .5.经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的方程是 .1.求焦点在y 轴上,焦距是16,43e =的双曲线的标准方程.2.求与椭圆2214924xy+=有公共焦点,且离心率54e =的双曲线的方程.§2.3.2双曲线的简单几何性质(2)学习目标1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握椭圆的标准方程.P 58~ P 60,文P 51~ P 53找出疑惑之处) 复习1:说出双曲线的几何性质? 复习2:双曲线的方程为221914xy-=,其顶点坐标是( ),( );渐近线方程 . 二、新课导学 ※ 学习探究探究1:椭圆22464x y +=的焦点是?探究2:双曲线的一条渐近线方程是0x +=,则可设双曲线方程为?问题:若双曲线与22464x y +=有相同的焦点,它的一条渐近线方程是0x +=,则双曲线的方程是?※ 典型例题例1双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m ,上口半径为13m ,下口半径为25m ,高为55m ,试选择适当的坐标系,求出此双曲线的方程.例2点(,)M x y 到定点(5,0)F 的距离和它到定直线l :165x =的距离的比是常数54,求点M 的轨迹.例3过双曲线22136xy-=的右焦点,倾斜角为30的直线交双曲线于,A B 两点,求,A B 两点的坐标.变式:求A B ? 思考:1AF B ∆的周长?※ 动手试试练1.若椭圆22214xy a+=与双曲线2212xya-=的焦点相同,则a =____.练2 .若双曲线2214xym-=的渐近线方程为2y =±,求双曲线的焦点坐标.三、总结提升1.双曲线的综合应用:与椭圆知识对比,结合; 2.双曲线的另一定义; 3.直线与双曲线的位置关系.※ 当堂检测1.若椭圆2212516xy+=和双曲线22145xy-=的共同焦点为F 1,F 2,P 是两曲线的一个交点,则12PF PF ∙的值为( ). A .212B .84C .3D .212.以椭圆2212516x y+=的焦点为顶点,离心率为2的双曲线的方程( ). A.2211648xy-= B.221927xy-= C.2211648xy-=或221927xy-= D. 以上都不对3.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于P 、Q ,1F 是另一焦点,若∠12PF Q π=,则双曲线的离心率e 等于( ).A.1B.C. 1D. 24.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________. 5.方程221xy+=表示焦点在x 轴上的双曲线,则k 的取值范围 .1.已知双曲线的焦点在x 轴上,方程为22221x y ab-=,两顶点的距离为8,一渐近线上有点(8,6)A ,试求此双曲线的方程.双曲线的简单几何性质随堂巩固1.双曲线19422=-yx的渐进线方程为( )A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±=2.已知双曲线C 的两条渐进线方程为x y ±=,且过点)1,2(M ,则双曲线的方程为( ) A .122=-y x B .222=-y x C .122-=-yx D .222-=-y x3.双曲线的离心率为2,则双曲线的两条渐近线的夹角是4.已知双曲线1422=-ymx的一条渐近线方程为x y =,则实数m =5.已知P 是双曲线19222=-yax 右支上的一点,双曲线的一条渐近线方程为03=-y x ,设21F F 、分别为双曲线的左、右焦点.若32=PF ,则1PF = 6.已知双曲线与椭圆125922=+yx共焦点,它们离心率之和为514,则双曲线方程是强化训练1.已知双曲线12222=-by ax 和椭圆)0,0(12222>>>=+b m a by mx 的离心率互为倒数,那么以m b a 、、为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 2.已知双曲线13622=-yx的焦点21,F F ,点M 在双曲线上且x MF ⊥1轴,则1F 到直线2MF 的距离为( )A .563 B .665 C .56 D .653.双曲线192522=-yx和)259(192522<<-=+--k k ykx有( )A .相同焦点B .相同的渐进线C .相同顶点D .相等的离心率 4.已知双曲线)0(19222>=-m x m y 的一个顶点到它的一条渐近线的距离为51,则m 等于( ) A .1 B .2 C .3 D .4 5.设1>a ,则1)1(2222=+-a yax 的离心率e 的取值范围是( )A .)2,2(B .)5,2(C .)5,2(D .)5,2(6.已知双曲线)0,0(12222>>=-b a by ax 的一条渐近线为)0(>=k kx y ,离心率为k e 5=,则双曲线方程为( )A .142222=-a yax B .152222=-ayax C .142222=-by bxD .152222=-by bx7.双曲线1251622=-yx的两条渐进线的夹角为8.已知圆0846:22=+--+y x y x C ,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 9.已知双曲线的渐进线方程为x y 34±=,并且焦点都在圆10022=+yx 上,求双曲线的方程10.已知双曲线的离心率21,2F F e 、=是双曲线的两个焦点,P 在双曲线上且SPF F ,6021=∠△21FPF =123,求双曲线的方程11.已知双曲线的中心在原点,焦点21F F 、在坐标轴上,离心率为2,且过)10,4(-M (1)求双曲线的方程(2)若点),3(m N 在双曲线上,求证:021=⋅NF NF (3)求△21NF F 的面积12.双曲线14922=-yx与直线1-=kx y 只有一个公共点,求k 的值第二课时1.双曲线112422=-xy的准线方程为( )A .169±=x B .49±=x C .169±=y D .49±=y2.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A .4 B .332 C .2 D .23.若双曲线)0(116222>=-b by x的一条准线恰好为圆0222=++x y x 的一条切线,则b 的值为( ) A .4 B .8 C .42 D .434.若双曲线的两渐进线是x y 23±=,焦点)0,26()0,26(21F F 、-,那么它两准线间距离为( ) A .26138 B .26134 C .261318 D .261395.双曲线两准线间距离等于半焦距,则离心率为( ) A .2 B .3 C .2 D .36.与曲线1492422=+yx共焦点,且与曲线1643622=-yx共渐进线的双曲线方程为( )A .191622=-yxB .116922=-yxC .191622=-xyD .116922=-xy强化训练1.已知双曲线14:22=-yx C ,过点)1,1(P 作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有( ) A .1 条 B .2条 C .3条 D .4条 2.双曲线191622=-yx的右准线与渐进线在第四象限的交点与右焦点连线的斜率( )A .35- B .53 C .34 D .433.已知双曲线1242522=-yx上一点M 到右准线的距离是10,2F 是右焦点,N 是2MF 的中点,O 坐标原点,则ON 等于( )A .2 B .2或7 C .7或12 D .2或124.设双曲线12222=-by ax 的右准线与渐进线交于B A 、两点,点F 为右焦点,若AB 以为直径的圆经过点F ,则该双曲线离心率为( )A .332 B .2 C .3 D .25.设双曲线12222=-by ax 与)0,0(12222>>=+-b a by ax 的离心率分别为21e e 、,则当b a 、在变化时,2221e e +的最小值是( )A .2B .42 C .22 D .46.若双曲线)0,0(12222>>=-b a by ax 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围为( ) A .(]2,1 B .[)+∞,2 C .(]12,1+ D .[)+∞+,127.双曲线两准线将实轴三等分,则双曲线的离心率为 8.已知:点)0,2(),0,3(F A ,在双曲线1322=-yx 上求一点P ,使PF PA 21+的值最小9.设双曲线C 的渐进线方程为034=±y x ,一条准线为516=y ,求双曲线C 的方程10.设双曲线中心在坐标原点,准线平行于x 轴,离心率为25,已知)5,0(P 到双曲线上的点最近距离为2,求此双曲线的方程 11.在双曲线1121322-=-yx的一支上有不同的三点),()6,(),(33211y x C x B y x A 、、,与焦点)5,0(F 成等差数列(1)求31y y +的值(2)求证:线段AC 的垂直平分线经过某一定点,并求出定点坐标12.已知双曲线的中心在原点,焦点21,F F 在坐标轴上,离心率为2,且过点)10,4(- (1)求此双曲线(2)若直线系03=+--m k y kx (其中k 为参数)所过定点M 恰好在双曲线上, 求证:M F M F 21⊥13.已知直线1+=ax y 与双曲线1322=-y x 交于B A ,两点 (1)若以AB 为直径的圆过坐标原点,求实数a 的值 (2)是否存在这样的实数a ,使B A ,两点关于直线x y 21=对称?若存在,请求出a 的值;若不存在,请说明理由 14.设双曲线)0(1:222>=-a yax C 与直线1:=+y x l 相交于不同的点B A 、(1)求双曲线C 的离心率e 的取值范围 (2)设直线l 与y 轴的交点为P ,且PB PA 125=,求a 的值。

最新人教版高中数学选修1-1《双曲线及其标准方程》课后训练2

最新人教版高中数学选修1-1《双曲线及其标准方程》课后训练2

2.2.1 双曲线及其标准方程练习1.已知F1(-5,0),F2(5,0)为定点,动点P满足|PF1|-|PF2|=2a,当a=3和a=5时,P点的轨迹分别为()A.双曲线和一条直线B.双曲线的一支和一条直线C.双曲线和一条射线D.双曲线的一支和一条射线2.双曲线方程为x2-2y2=2,则它的左焦点坐标为()A.(0) B.(,0)C.(,0) D.(0)3.k>3是方程22131x yk k+=--表示双曲线的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件4.已知方程22152x yk k-=--表示的图形是双曲线,那么k的取值范围是()A.k>5 B.k>5,或-2<k<2C.k>2,或k<-2 D.-2<k<25.已知双曲线的两个焦点分别为F1(,0),F2,0),P是双曲线上的一点,且PF1⊥PF2,|PF1|·|PF2|=2,则双曲线的标准方程是()A.22123x y-= B.22132x y-=C.2214yx-= D.2214xy-=6.若点P到点(0,-3)与到点(0,3)的距离之差为2,则点P的轨迹方程为__________.7.已知点F1,F2分别是双曲线22219x ya-=(a>0)的左、右焦点,P是该双曲线上的一点,且|PF1|=2|PF2|=16,则△PF1F2的周长是__________.8.已知F是双曲线221412x y-=的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为__________.9.已知点P为双曲线22112yx-=上的点,F1,F2是该双曲线的两个焦点,且|PF1|·|PF2|=24,求△PF1F2的周长.10.某部队进行军事演习,一方指挥中心接到其正西、正东、正北方向三个观测点A,B,C的报告:正西、正北两个观测点同时听到了炮弹的爆炸声,正东观测点听到爆炸声的时间比其他两个观测点晚4 s,已知各观测点到该中心的距离都是1 020 m,试确定该枚炮弹的袭击位置.(声音的传播速度为340 m/s,相关各点均在同一平面内)解:如图,以指挥中心为原点,正东、正北方向分别为x 轴、y 轴的正方向建立平面直角坐标系,则A (-1 020,0),B (1 020,0),C (0,1 020).设P (x ,y )为袭击位置,则|PB |-|P A |=340×4<|AB |,由双曲线定义,知点P 在以A ,B 为焦点的双曲线的左支上,且a =680,c =1 020, 所以b 2=1 0202-6802=5×3402. 所以双曲线方程为22221(680)6805340x y x -=≤-⨯.① 又|P A |=|PC |,因此P 在直线y =-x 上,把y =-x 代入①式,得x =-.所以(P -,OP =.故该枚炮弹的袭击位置在北偏西45°,距指挥中心处.。

高中数学(人教A版)选修1-1课时达标训练 2.2.2.1双曲线的简单几何性质 Word版含解析

高中数学(人教A版)选修1-1课时达标训练 2.2.2.1双曲线的简单几何性质 Word版含解析

温馨提示:
此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭文档返回原板块。

课时达标训练
.设双曲线(>)的渐近线方程为±,则的值为( )
【解析】选.由双曲线方程可知渐近线方程为±,故可知.
.双曲线的一个焦点为(),则此双曲线的实轴长为( )
【解析】选.由已知焦点在轴上,所以>.所以.所以双曲线的实轴长为.
.如果椭圆(>>)的离心率为,那么双曲线的离心率为
( )
【解析】选.由已知椭圆的离心率为,得,所以.所以
.所以双曲线的离心率.
.已知双曲线方程为,则其渐近线方程为.
【解析】由已知令,得渐近线方程为±.
答案±
.双曲线与椭圆有相同的焦点,它的一条渐近线为,则双曲线的方程为.
【解析】由椭圆方程得焦点为(,±),
得双曲线焦点在轴上,且.
由渐近线为得,
所以,
方程为.
答案
.根据下列条件,求双曲线的标准方程.
()与双曲线有共同的渐近线,且过点().
()与双曲线有公共焦点,且过点().
【解析】()设所求双曲线方程为λ(λ≠),
将点()代入得λ,
所以双曲线方程为,
即.
()设双曲线方程为(>>).。

(人教版)高中数学选修1-1(检测)2.2 双 曲 线 课后提升作业 十三 2.2.2.1 Word版含解析

(人教版)高中数学选修1-1(检测)2.2 双 曲 线 课后提升作业 十三 2.2.2.1 Word版含解析

温馨提示:
此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭文档返回原板块。

课后提升作业十三
双曲线的简单几何性质
(分钟分)
一、选择题(每小题分,共分)
.若实数满足<<,则曲线与曲线的( )
.实半轴长相等.虚半轴长相等
.离心率相等 .焦距相等
【解析】选.因为<<,所以两方程都表示双曲线,由双曲线中得其焦距相等.
.等轴双曲线的一个焦点是(),则它的标准方程是( )
【解析】选.设等轴双曲线方程为(>),
所以,所以,
故双曲线方程为.
【补偿训练】以椭圆的顶点为顶点,离心率为的双曲线方程为
( )

.以上都不对
【解析】选.当顶点为(±)时,双曲线方程为;当顶点为(,±)时
,双曲线方程为.
.(·全国卷Ⅰ)已知()是双曲线上的一点是的左、右两个焦点.若
·<,则的取值范围是( )
.
.
【解析】选.由双曲线方程可知()(),
因为·<,所以()()()()<.
即<,所以<,<,
所以<<.。

人教版高二数学选修1-1《双曲线及标准方程、几何性质》

人教版高二数学选修1-1《双曲线及标准方程、几何性质》

双曲线及标准方程、几何性质一、双曲线的定义及标准方程【知识要点】1. 双曲线的定义第一定义:平面内与两定点21,F F 的距离之差的绝对值为常数(小于21F F )的点的轨迹叫双曲线.第二定义:平面内与一个定点F 和一条定直线)(l F l ∉的距离之比是常数)),1((+∞∈e e 的点的轨迹叫做双曲线。

2. 双曲线的方程(1)标准方程:12222=-b y a x 或12222=-b x a y ,其中222,0,0b a c b a +=>>。

(2)一般方程:122=+By Ax ,其中0<AB【基础训练】1.已知点)0,5(1-F ,)0,5(2-F ,动点P 满足821=-PF PF ,则动点P 的轨迹是( ) A.椭圆 B.双曲线 C.两条射线 D.线段 2.已知双曲线19422=-y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A.1B.9C.1或9D.4或93.到两定点)5,0(),5,0(B A -的距离之差的绝对值为6的动点的轨迹方程为 。

4.两个焦点的坐标分别为)0,2(),0,2(-,并且经过)2,3(的双曲线的标准方程是 。

5.已知平面内有一长度为4的定线段AB ,动点P 满足3=-PB PA ,O 为AB 的中点,则OP 的最小值为 。

【典例精析】例1.方程13122=-+-my m x 表示焦点在y 轴上的双曲线,则m 的范围是( ) A. 3<m 且1≠m B.1>m 且3≠m C.31<<mD.3>m 或1-<m例2.已知双曲线的中心在原点,焦点在坐标轴上,分别求满足下列条件的双曲线的方程.(1)一个焦点为)0,4(-,且一条渐近线的方程是023=-y x ;(2)离心率为2,且过点)10,4(-P .例3.求与圆4)2(22=++y x 外切,并过定点)0,2(B 的动圆圆心M 的轨迹方程。

高中数学人教A版选修1-1优化练习:2.2 2.2.2 双曲线的简单几何性质 Word版含解析

高中数学人教A版选修1-1优化练习:2.2 2.2.2 双曲线的简单几何性质 Word版含解析

[课时作业] [A 组 基础巩固]1.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =± 2xB .y =±2xC .y =±22x D .y =± 12x解析:由题意得b =1,c = 3.∴a = 2,∴双曲线的渐近线方程为y =± b a x ,即y =±22x .答案:C2.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4 D .4 2 解析:将双曲线2x 2-y 2=8化成标准方程x 24-y 28=1,则a 2=4,所以实轴长2a =4.答案:C3.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14 B .-4 C .4 D.14解析:∵方程mx 2+y 2=1表示双曲线, ∴m <0.将方程化为标准方程为y 2-x 2-1m=1. 则a 2=1,b 2=-1m.∵双曲线的虚轴长是实轴长的2倍, ∴可知b =2a ,∴b 2=4a 2,∴-1m =4,∴m =-14.答案:A4.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( ) A .x 2-y 2=8 B .x 2-y 2=4 C . y 2-x 2=8D .y 2-x 2=4解析:令y =0,则x =-4,即c =4, 又c 2=a 2+b 2,a =b ,∴c 2=2a 2,a 2=8. 答案:A5.(2015·高考全国卷Ⅱ)已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2解析:不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°, ∴M 点的坐标为()2a ,3a .∵M 点在双曲线上,∴4a 2a 2-3a 2b 2=1,a =b ,∴c =2a ,e =ca = 2.故选D.答案:D6.(2015·高考北京卷)已知双曲线x 2a 2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.解析:双曲线x 2a 2-y 2=1的渐近线为y =±xa ,已知一条渐近线为3x +y =0,即y =-3x ,因为a >0,所以1a =3,所以a =33.答案:337.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M ,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________. 解析:由题意知,a +c =b 2a,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,解得e =2或e =-1(舍去). 答案:28.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca =2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3, ∴方程为x 2-y 23=1. 答案:x 2-y 23=1 9.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,求双曲线的渐近线方程及离心率.解析:由双曲线方程判断出公共焦点在x 轴上, 所以椭圆的右焦点坐标为(3m 2-5n 2,0), 双曲线的右焦点坐标为(2m 2+3n 2,0), 所以3m 2-5n 2=2m 2+3n 2,所以m 2=8n 2, 即|m |=22|n |,所以双曲线的渐近线方程为y =±6|n |2|m |x ,y =±34x .离心率e =2m 2+3n 22|m |=194,e =194.10.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3. (1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标. 解析:(1)由题意知a =23, ∴一条渐近线为y =b 23x ,即bx -23y =0,∴|bc |b 2+12=3, ∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0,将直线方程代入双曲线方程得x 2-163x +84=0, 则x 1+x 2=163,y 1+y 2=12, ∴⎩⎨⎧x 0y 0=433,x 2012-y203=1,∴⎩⎨⎧x 0=43,y 0=3,∴t =4,点D 的坐标为(43,3).[B 组 能力提升]1.(2016·高考全国Ⅰ卷)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B . (-1,3)C .(0,3)D .(0,3)解析:根据双曲线的焦距,建立关于n 的不等式组求解.若双曲线的焦点在x 轴上,则⎩⎨⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎨⎧1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎨⎧n -3m 2>0,-m 2-n >0, 即n >3m 2且n <-m 2,此时n 不存在.故选A. 答案:A2.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作垂直于x 轴的直线交双曲线于A 、B 两点,若△ABF 2为锐角三角形,则双曲线的离心率的范围是( ) A .(1,1+2) B .(1+2,+∞) C .(1-2,1+2)D .(2,2+1)解析:由△ABF 2为锐角三角形得, b 2a 2c <tan π4=1,即b 2<2ac ,∴c 2-a 2<2ac , ∴e 2-2e -1<0,解得1-2<e <1+2, 又e >1,∴1<e <1+ 2. 答案:A3.(2015·高考全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A ()0,66,当△APF 周长最小时,该三角形的面积为________. 解析:由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+(66)2=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0, 解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F =12×6×66-12×6×26=12 6. 答案:12 64.(2015·高考天津卷改编)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为________. 解析:由双曲线的渐近线y =±bax 与圆(x -2)2+y 2=3相切可知⎩⎪⎨⎪⎧⎪⎪⎪⎪±b a ×21+⎝⎛⎭⎫b a 2=3,c =2,a 2+b 2=c 2,解得⎩⎨⎧a =1,b = 3.故所求双曲线的方程为x 2-y 23=1. 答案:x 2-y 23=1 5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且a 2c =33.(1)求双曲线C 的方程;(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解析:(1)由题意得⎩⎨⎧a 2c =33,ca =3,解得⎩⎨⎧a =1,c = 3.所以b 2=c 2-a 2=2. 所以双曲线C 的方程为x 2-y 22=1. (2)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0).由⎩⎪⎨⎪⎧x -y +m =0,x 2-y 22=1,得x 2-2mx -m 2-2=0(判别式Δ>0). 所以x 0=x 1+x 22=m ,y 0=x 0+m =2m .因为点M (x 0,y 0)在圆x 2+y 2=5上, 所以m 2+(2m )2=5.故m =±1.6.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点是F 2(2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 相交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程. 解析:(1)由已知得c =2,e =2, ∴a =1,b = 3. ∴所求的双曲线方程为x 2-y 23=1. (2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2)的坐标满足方程组 ⎩⎪⎨⎪⎧y =x +m , ①x 2-y 23=1, ② 将①式代入②式,整理得2x 2-2mx -m 2-3=0.(*) 设MN 的中点为(x 0,y 0), 则x 0=x 1+x 22=m 2,y 0=x 0+m =3m 2,所以线段MN 垂直平分线的方程为y -3m2=-⎝⎛⎭⎫x -m 2 即x +y -2m =0,与坐标轴的交点分别为(0,2m ),(2m,0), 可得12|2m |·|2m |=4,得m 2=2,m =±2 此时(*)的判别式Δ>0, 故直线l 的方程为y =x ±2。

2019-2020学年高二数学人教A版选修1-1训练:2.2.2 双曲线的简单几何性质 Word版含解析

1⊥PF2,|PF1|·|PF2|=4ab,则双曲线的离心率是 .
{|������������1|2 + |������������2|2 = 4������2,
解析:因为 PF1⊥PF2,所以有 |������������1|·|������������2| = 4������������, ||������������1| - |������������2|| = 2������,
2
1
2 ������D.������ =± 2������
解析:由题意得 b=1,c = 3, ∴ ������ = 2.
∴双曲线的渐近线方程为
y=
±
������
������������,即y=
±
2
2 ������.
答案:C
2.若双曲线 mx2+y2=1 的虚轴长是实轴长的 2 倍,则 m 的值为( )
对于双曲线16 - ������ ‒ 5 = 1,实轴长为2
16 - ������,虚轴长为2
5,焦距为2
16 - ������ + 5 = 2
21 - ������,因此两双曲线的焦距相等,故选 D.
答案:D
4.中心在原点,实轴在 x 轴上,一个焦点在直线 3x-4y+12=0 上的等轴双曲线方程是( )
即 4c2-4a2=8ab,所以 b=2a,c2=5a2,即 e = 5. 答案: 5
9.求满足下列条件的双曲线方程:
(1)以 2x±3y=0 为渐近线,且经过点(1,2);
5
(2)离心率为4,虚半轴长为2; (3)与椭圆 x2+5y2=5 共焦点,且一条渐近线方程为 y ‒
3������ = 0.

人教版高中数学选修1-1双曲线练习题

1、平面上存在点(,)P x y 满足0)ln()ln(=++-y x y x ,那么|2|y x -的最小值是2、已知双曲线的两个焦点为12(F F ,M 是此双曲线上的一点,且满足120MF MF ⋅=,12||||2MF MF ⋅=,则该双曲线的方程是:3、已知双曲线22:14x C y -=,P 是C 上的任意点. (1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为(3,0),求||PA 的最小值.4、已知双曲线C的方程为22221(0,0)y xa ba b-=>>,离心率为52e=,顶点到渐近线的距离为255(1)求双曲线的方程;(2)如图,P是双曲线C上一点,,A B在双曲线C的两条渐近线上,且分别位于第一、二象限,若1,[,2]3AP PBλλ=∈,求△AOB面积的取值范围5、已知双曲线2212yx-=,问过点(1,1)A是否存在直线l,使l与双曲线交于,P Q两点,并且A为线段PQ的中点?若存在求出直线l的方程,若不存在请说明理由。

6、过双曲线2213y x -=的左焦点1F ,右焦点2F ,作倾斜角为4π的弦AB 求:(1)|AB|;(2)ΔF 2AB 的周长7、已知Q 点是双曲线12222=-by a x (0a >,0b >)上异于二顶点的一动点.1F 、2F 是双曲线的左、右焦点,从点2F 向21QF F ∠的平分线作垂线2F P ,垂足为P 点,求P 点的轨迹方程.8、设点P 在以1F 、2F 为左、右焦点的双曲线C :)0,0(12222>>=-b a by a x 上,x PF ⊥2轴,32=PF ,点D 为其右顶点,且213DF D F =. (1)求双曲线C 方程;(2)设过点)0,2(M 的直线l 与交于双曲线C 不同的两点A 、B ,且满足222OA OB AB +>, (其中O 为原点),求直线l 的斜率的取值范围。

高中数学第二章2.2双曲线2.2.2双曲线的简单几何性质讲义(含解析)新人教A版选修1_1

2.2.2 双曲线的简单几何性质预习课本P49~53,思考并完成以下问题1.双曲线有哪些几何性质?2.双曲线的顶点、实轴、虚轴分别是什么?3.双曲线的渐近线、等轴双曲线的定义分别是什么?[新知初探]1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c性质范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 轴实轴:线段A1A2,长:2a;2.等轴双曲线实轴和虚轴等长的双曲线叫等轴双曲线,它的渐近线是y =±x ,离心率为e = 2. [点睛] 对双曲线的简单几何性质的几点认识 (1)双曲线的焦点决定双曲线的位置;(2)双曲线的离心率和渐近线刻画了双曲线的开口大小,离心率越大,双曲线的开口越大,反之亦然.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)双曲线x 22-y 24=1的焦点在y 轴上( )(2)双曲线的离心率越大,双曲线的开口越开阔( ) (3)以y =±2x 为渐近线的双曲线有2条( ) 答案:(1)× (2)√ (3)×2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)答案:B3.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 答案:B4.(2017·全国卷Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.答案:5双曲线的几何性质[典例] 22虚轴长、离心率和渐近线方程.[解] 双曲线的方程化为标准形式是x 29-y 24=1,∴a 2=9,b 2=4,∴a =3,b =2,c =13. 又双曲线的焦点在x 轴上, ∴顶点坐标为(-3,0),(3,0), 焦点坐标为(-13,0),(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =ca =133,渐近线方程为y =±23x .由双曲线的方程研究几何性质的解题步骤(1)把双曲线方程化为标准形式是解决本题的关键; (2)由标准方程确定焦点位置,确定a ,b 的值;(3)由c 2=a 2+b 2求出c 值,从而写出双曲线的几何性质. [注意] 求性质时一定要注意焦点的位置. 1.已知双曲线x 29-y 216=1与y 216-x 29=1,下列说法正确的是( )A .两个双曲线有公共顶点B .两个双曲线有公共焦点C .两个双曲线有公共渐近线D .两个双曲线的离心率相等解析:选C 双曲线x 29-y 216=1的焦点和顶点都在x 轴上,而双曲线y 216-x 29=1的焦点和顶点都在y 轴上,因此可排除选项A 、B ;双曲线x 29-y 216=1的离心率e 1=9+169=53,而双曲线y 216-x 29=1的离心率e 2=16+916=54,因此可排除选项D ;易得C 正确. 2.(2017·北京高考)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.解析:由双曲线的标准方程可知a 2=1,b 2=m , 所以e =1+b 2a2=1+m =3,解得m =2. 答案:2由双曲线的几何性质求标准方程[典例] (1)(2017·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1(2)过点(2,-2)且与x 22-y 2=1有相同渐近线的双曲线的标准方程为________.[解析] (1)由e =2知,双曲线为等轴双曲线, 则其渐近线方程为y =±x ,故由P (0,4),知左焦点F 的坐标为(-4,0), 所以c =4,则a 2=b 2=c 22=8.故双曲线的方程为x 28-y 28=1.(2)法一:当焦点在x 轴上时,由于b a =22. 故可设方程为x 22b 2-y 2b2=1,代入点(2,-2)得b 2=-2(舍去); 当焦点在y 轴上时,可知a b =22,故可设方程为y 2a 2-x 22a2=1,代入点(2,-2)得a 2=2. 所以所求双曲线方程为y 22-x 24=1.法二:因为所求双曲线与已知双曲线x 22-y 2=1有相同的渐近线,故可设双曲线方程为x 22-y 2=λ(λ≠0),代入点(2,-2)得λ=-2,所以所求双曲线的方程为x 22-y 2=-2,即y 22-x 24=1. [答案] (1)B (2)y 22-x 24=1求双曲线的标准方程的方法与技巧(1)一般情况下,求双曲线的标准方程关键是确定a ,b 的值和焦点所在的坐标轴,若给出双曲线的顶点坐标或焦点坐标,则焦点所在的坐标轴易得.再结合c 2=a 2+b 2及e =c a列关于a ,b 的方程(组),解方程(组)可得标准方程.(2)如果已知双曲线的渐近线方程为y =±b a x ,那么此双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).求适合下列条件的双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦点在x 轴上,离心率为2,且过点(-5,3); (3)顶点间距离为6,渐近线方程为y =±32x .解:(1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知2b =12,c a =54且c 2=a 2+b 2,∴b =6,c =10,a =8,∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵e =ca=2,∴c =2a ,b 2=c 2-a 2=a 2. 又∵焦点在x 轴上,∴设双曲线的标准方程为x 2a 2-y 2a2=1(a >0).把点(-5,3)代入方程,解得a 2=16. ∴双曲线的标准方程为x 216-y 216=1.(3)设以y =±32x 为渐近线的双曲线方程为x 24-y 29=λ(λ≠0), 当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-4y 281=1或y 29-x 24=1.双曲线的离心率[典例] 过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.[解析] 如图所示,不妨设与渐近线平行的直线l 的斜率为b a,又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a2a 2-y 2b2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去),故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =ba(2a -c ),化简可得离心率e =c a=2+ 3.[答案] 2+ 3求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =c a求解,若已知a ,b ,可利用e = 1+⎝ ⎛⎭⎪⎫b a2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =c a,转化为关于e 的n 次方程求解.[活学活用]1.如果双曲线x 2a 2-y 2b2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________.解析:如图,因为AO =AF ,F (c,0),所以x A =c 2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =ca >2.答案:(2,+∞)2.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,|F 1F 2|=2c ,则在△PF 1F 2中,∠PF 1F 2=30°,由余弦定理得(2a )2=(4a )2+(2c )2-2×(4a )×(2c )×cos 30°,整理得(e -3)2=0,所以e = 3.答案: 3层级一 学业水平达标1.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2解析:选C 双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,从而2a =4,故选C.2.已知双曲线的实轴和虚轴等长,且过点(5,3),则双曲线方程为( ) A.x 225-y 225=1 B.x 29-y 29=1C.y 216-x 216=1 D.x 216-y 216=1解析:选D 由题意知,所求双曲线是等轴双曲线,设其方程为x 2-y 2=λ(λ≠0),将点(5,3)代入方程,可得λ=52-32=16,所以双曲线方程为x 2-y 2=16,即x 216-y 216=1.3.(2017·全国卷Ⅱ)若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:选C 由题意得双曲线的离心率e =a 2+1a .即e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a2<1,∴1<1+1a2<2,∴1<e < 2.4.若一双曲线与椭圆4x 2+y 2=64有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程为( )A .y 2-3x 2=36 B .x 2-3y 2=36 C .3y 2-x 2=36D .3x 2-y 2=36解析:选A 椭圆4x 2+y 2=64可变形为x 216+y 264=1,a 2=64,c 2=64-16=48,∴焦点为(0,43),(0,-43),离心率e =32, 则双曲线的焦点在y 轴上,c ′=43,e ′=23, 从而a ′=6,b ′2=12,故所求双曲线的方程为y 2-3x 2=36.5.已知双曲线x 2a2-y 2=1(a >0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的渐近线方程为( )A .y =±35xB .y =±53xC .y =±34xD .y =±43x解析:选D 由双曲线方程为x 2a2-y 2=1,知b 2=1,c 2=a 2+1,∴2b =2,2c =2a 2+1.∵实轴长、虚轴长、焦距长成等差数列,∴2a +2c =4b =4,∴2a +2a 2+1=4,解得a =34.∴双曲线的渐近线方程为y =±43x .6.已知点(2,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:由题意知4a 2-9b2=1,c 2=a 2+b 2=4,解得a =1,所以e =c a=2. 答案:27.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (25,0),且离心率为e =52,则双曲线的标准方程为________.解析:由焦点坐标,知c =25,由e =c a =52,可得a =4,所以b =c 2-a 2=2,则双曲线的标准方程为x 216-y 24=1. 答案:x 216-y 24=18.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析:法一:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3),∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上, 故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1. 答案:x 24-y 2=19.求满足下列条件的双曲线的标准方程.(1)与双曲线y 24-x 23=1具有相同的渐近线,且过点M (3,-2);(2)过点(2,0),与双曲线y 264-x 216=1离心率相等;(3)与椭圆x 225+y 216=1有公共焦点,离心率为32.解:(1)设所求双曲线方程为y 24-x 23=λ(λ≠0).由点M (3,-2)在双曲线上得44-93=λ,得λ=-2.故所求双曲线的标准方程为x 26-y 28=1.(2)当所求双曲线的焦点在x 轴上时, 可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x 24-y 2=1;当所求双曲线的焦点在y 轴上时, 可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去).综上可知,所求双曲线的标准方程为x 24-y 2=1.(3)法一:由椭圆方程可得焦点坐标为(-3,0),(3,0),即c =3且焦点在x 轴上.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).因为e =c a =32,所以a =2,则b 2=c 2-a 2=5,故所求双曲线的标准方程为x 24-y 25=1.法二:因为椭圆焦点在x 轴上,所以可设双曲线的标准方程为x 225-λ-y 2λ-16=1(16<λ<25).因为e =32,所以λ-1625-λ=94-1,解得λ=21.故所求双曲线的标准方程为x 24-y 25=1.10.设双曲线x 2a 2-y 2b2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,已知原点到直线l 的距离为34c ,求双曲线的离心率. 解:直线l 的方程为x a +yb=1,即bx +ay -ab =0. 于是有|b ·0+a ·0-ab |a 2+b 2=34c ,所以ab =34c 2,两边平方,得a 2b 2=316c 4. 又b 2=c 2-a 2,所以16a 2(c 2-a 2)=3c 4, 两边同时除以a 4,得3e 4-16e 2+16=0, 解得e 2=4或e 2=43.又b >a ,所以e 2=a 2+b 2a 2=1+b 2a2>2,则e =2.于是双曲线的离心率为2.层级二 应试能力达标1.若双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线方程为y =-x ,则双曲线的方程为( )A .y 2-x 2=96 B .y 2-x 2=160 C .y 2-x 2=80D .y 2-x 2=24解析:选D 设双曲线方程为x 2-y 2=λ(λ≠0),因为双曲线与椭圆有相同的焦点,且焦点为(0,±43),所以λ<0,且-2λ=(43)2,得λ=-24.故选D.2.若中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.52解析:选D 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).由题意,知过点(4,-2)的渐近线方程为y =-b a x ,所以-2=-b a×4,即a =2b .设b =k (k >0),则a =2k ,c =5k ,所以e =c a =5k 2k =52.故选D. 3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1解析:选B 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b25a2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5, 所以双曲线标准方程是x 24-y 25=1.4.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2解析:选D 不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a ,3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a= 2.故选D.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是________________________________________________________________________.解析:由题意,知b a ≥3,则b 2a 2≥3,所以c 2-a 2≥3a 2,即c 2≥4a 2,所以e 2=c 2a2≥4,所以e ≥2.答案:[2,+∞)6.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝ ⎛⎭⎪⎫175,-3215.所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 答案:32157.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程.解:(1)由已知得c =2,e =2,所以a =1,b = 3.所以所求的双曲线方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1,整理得2x 2-2mx -m 2-3=0.(*)设MN 的中点为(x 0,y 0),则x 0=x 1+x 22=m2,y 0=x 0+m =3m2,所以线段MN 垂直平分线的方程为y -3m 2=-⎝ ⎛⎭⎪⎫x -m 2,即x +y -2m =0,与坐标轴的交点分别为(0,2m ),(2m,0),可得12|2m |·|2m |=4,得m 2=2,m =±2,此时(*)的判别式Δ>0,故直线l 的方程为y =x ± 2.8.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 为坐标原点,且△AOB 的面积是2,求实数k 的值.解:(1)由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1消去y ,得(1-k 2)x 2+2kx -2=0.①由直线l 与双曲线C 有两个不同的交点,得⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.即k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由方程①,得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.因为直线l :y =kx -1恒过定点D (0,-1),则当x 1x 2<0时,S △AOB =S △OAD +S △OBD =12|x 1-x 2|=2;当x 1x 2>0时,S △AOB =|S △OAD -S △OBD |=12|x 1-x 2|= 2.综上可知,|x 1-x 2|=22,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),可知-2<k <2且k ≠±1,故k =0或k =±62都符合题意.。

人教a版数学【选修1-1】作业:2.2.2双曲线的简单几何性质(含答案)

2.2.2双曲线的简单几何性质课时目标1.掌握双曲线的简单几何性质.2.了解双曲线的渐近性及渐近线的概念.3.掌握直线与双曲线的位置关系.1.双曲线的几何性质标准方程x 2a 2-y 2b 2=1 (a >0,b >0)y 2a 2-x 2b 2=1 (a >0,b >0)图形性 质 焦点 焦距 范围 对称性 顶点轴长 实轴长=______,虚轴长=______ 离心率 渐近线 2.直线与双曲线一般地,设直线l :y =kx +m (m ≠0) ①双曲线C :x 2a 2-y 2b2=1 (a >0,b >0) ②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±ba时,直线l 与双曲线的渐近线平行,直线与双曲线C 相交于________.(2)当b 2-a 2k 2≠0,即k ≠±ba时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2).Δ>0⇒直线与双曲线有________公共点,此时称直线与双曲线相交; Δ=0⇒直线与双曲线有________公共点,此时称直线与双曲线相切; Δ<0⇒直线与双曲线________公共点,此时称直线与双曲线相离.一、选择题1.下列曲线中离心率为62的是( ) A .x 22-y 24=1 B .x 24-y 22=1C .x 24-y 26=1D .x 24-y 210=12.双曲线x 225-y24=1的渐近线方程是( )A .y =±25xB .y =±52xC .y =±425xD .y =±254x3.双曲线与椭圆4x 2+y 2=1有相同的焦点,它的一条渐近线方程为y =2x ,则双曲线的方程为( )A .2x 2-4y 2=1B .2x 2-4y 2=2C .2y 2-4x 2=1D .2y 2-4x 2=34.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22xD .y =±12x5.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条6.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.53 C .2 D.73 题 号 1 2 3 4 5 6 答 案二、填空题7.两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y 2b2=1的离心率e =______.8.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且a =10,c -b =6,则顶点A 运动的轨迹方程是________________.9.与双曲线x 29-y 216=1有共同的渐近线,并且经过点(-3,23)的双曲线方程为__________.三、解答题10.根据下列条件,求双曲线的标准方程.(1)经过点⎝⎛⎭⎫154,3,且一条渐近线为4x +3y =0;(2)P (0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为π3.11.设双曲线x 2-y 22=1上两点A 、B ,AB 中点M (1,2),求直线AB 的方程.能力提升12.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A . 2B . 3C .3+12D .5+1213.设双曲线C :x 2a2-y 2=1 (a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求双曲线C 的离心率e 的取值范围;(2)若设直线l 与y 轴的交点为P ,且P A →=512PB →,求a 的值.1.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)既关于坐标轴对称,又关于坐标原点对称;其顶点为(±a ,0),实轴长为2a ,虚轴长为2b ;其上任一点P (x ,y )的横坐标均满足|x |≥a .2.双曲线的离心率e =c a 的取值范围是(1,+∞),其中c 2=a 2+b 2,且ba=e 2-1,离心率e 越大,双曲线的开口越大.可以通过a 、b 、c 的关系,列方程或不等式求离心率的值或范围.3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程为y =±b a x ,也可记为x 2a 2-y 2b2=0;与双曲线x 2a 2-y 2b 2=1具有相同渐近线的双曲线的方程可表示为x 2a 2-y 2b2=λ (λ≠0). 2.2.2 双曲线的简单几何性质答案知识梳理 1. 标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性 质焦点 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距 |F 1F 2|=2c范围 x ≥a 或x ≤-a ,y ∈R y ≥a 或y ≤-a ,x ∈R对称性 关于x 轴、y 轴和原点对称顶点 (-a,0),(a,0) (0,-a ),(0,a )轴长 实轴长=2a ,虚轴长=2b离心率 e =ca(e >1) 渐近线y =±b axy =±a bx2.(1)一点 (2)两个 一个 没有 作业设计1.B [∵e =62,∴e 2=c 2a 2=32,∴b 2a 2=12.]2.A3.C [由于椭圆4x 2+y 2=1的焦点坐标为⎝⎛⎭⎫0,±32,则双曲线的焦点坐标为⎝⎛⎭⎫0,±32,又由渐近线方程为y =2x ,得a b =2,即a 2=2b 2,又由⎝⎛⎭⎫322=a 2+b 2,得a 2=12,b 2=14,又由于焦点在y 轴上,因此双曲线的方程为2y 2-4x 2=1.故选C.]4.C [由题意知,2b =2,2c =23,则b =1,c =3,a =2;双曲线的渐近线方程为y =±22x .]5.C [点(2,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且与x 轴垂直的直线也与双曲线只有一个公共点.]6.B [||PF 1|-|PF 2||=2a ,即3|PF 2|=2a ,所以|PF 2|=2a3≥c -a ,即2a ≥3c -3a ,即5a ≥3c ,则c a ≤53.] 7.133 解析 a +b =5,ab =6,解得a ,b 的值为2或3. 又a >b ,∴a =3,b =2.∴c =13,从而e =c a =133.8.x 29-y 216=1(x >3) 解析 以BC 所在直线为x 轴,BC 的中点为原点建立直角坐标系,则B (-5,0),C (5,0),而|AB |-|AC |=6<10.故A 点的轨迹是双曲线的右支,其方程为x 29-y 216=1(x >3).9.x 294-y 24=1 解析 ∵所求双曲线与双曲线x 29-y 216=1有相同的渐近线,∴可设所求双曲线的方程为x 29-y216=λ (λ≠0).∵点(-3,23)在双曲线上, ∴λ=(-3)29-(23)216=14.∴所求双曲线的方程为x 294-y 24=1.10.解 (1)因直线x =154与渐近线4x +3y =0的交点坐标为⎝⎛⎭⎫154,-5,而3<|-5|,故双曲线的焦点在x 轴上,设其方程为x 2a 2-y 2b2=1,由⎩⎪⎨⎪⎧⎝⎛⎭⎫1542a 2-32b 2=1,b 2a 2=⎝⎛⎭⎫432,解得⎩⎪⎨⎪⎧a 2=9,b 2=16.故所求的双曲线方程为x 29-y 216=1.(2)设F 1、F 2为双曲线的两个焦点.依题意,它的焦点在x 轴上. 因为PF 1⊥PF 2,且|OP |=6,所以2c =|F 1F 2|=2|OP |=12,所以c =6.又P 与两顶点连线夹角为π3,所以a =|OP |·tan π6=23,所以b 2=c 2-a 2=24.故所求的双曲线方程为x 212-y 224=1.11.解 方法一 (用韦达定理解决) 显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1),即y =kx +2-k ,由⎩⎪⎨⎪⎧y =kx +2-kx 2-y 22=1得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0, 当Δ>0时,设A (x 1,y 1),B (x 2,y 2), 则1=x 1+x 22=k (2-k )2-k 2,∴k =1,满足Δ>0,∴直线AB 的方程为y =x +1. 方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 212=1x 22-y222=1,两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2,∴k AB =2×1×22×2=1,∴直线AB 的方程为y =x +1,代入x 2-y 22=1满足Δ>0.∴直线AB 的方程为y =x +1. 12. D[设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =b ax , 而k BF =-bc,∴b a ·(-b c )=-1, 整理得b 2=ac .∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0, 解得e =1+52或e =1-52(舍去).]13.解 (1)由双曲线C 与直线l 相交于两个不同的点得⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1有两个不同的解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0,①∴⎩⎪⎨⎪⎧1-a 2≠0,Δ=4a 4+8a 2(1-a 2)>0,解得-2<a <2且a ≠±1. 又∵a >0,∴0<a <2且a ≠1.∵双曲线的离心率e =1+a 2a = 1a 2+1,∴0<a <2,且a ≠1,∴e >62且e ≠ 2.∴双曲线C 的离心率e 的取值范围是⎝⎛⎭⎫62,2∪(2,+∞). (2)设A (x 1,y 1),B (x 2,y 2),P (0,1).∵ P A →=512PB →,∴(x 1,y 1-1)=512(x 2,y 2-1),由此可得x1=512x2.∵x1,x2都是方程①的根,且1-a2≠0,∴x1+x2=1712x2=-2a21-a2,x1x2=512x22=-2a21-a2,消去x2得-2a21-a2=28960,即a2=289169.又∵a>0,∴a=1713.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后导练
基础达标
1.双曲线与椭圆641622yx=1有相同的焦点,它的一条渐近线为y=-x,则双曲线方程为( )
A.x2-y2=96 B.y2-x2=160
C.x2-y2=80 D.y2-x2=24

解析:由椭圆641622yx=1得其焦点坐标为(0,-43)、(0,43).
∴双曲线的焦点在y轴上.
∵双曲线的一条渐近线为y=-x,

∴a=b,而c=43.

∴a2+b2=(43)2,2a2=48.
∴a2=24,b2=24.
∴双曲线的方程为y2-x2=24.
答案:D
2.实轴长为45且过点A(2,-5)的双曲线的标准方程是( )

A.162022yx=1 B.162022xy=1

C.201622yx=1 D.201622xy=1
解析:∵2a=45,∴a=25.
∵双曲线的焦点在x轴上时,双曲线上的点的横坐标x应满足|x|≥25,而A点的横坐标为2,
不满足|x|≥25.
∴双曲线的焦点应在y轴上.

设双曲线的方程为.120222bxy
∵点A(2,-5)在双曲线上,
∴1420252b.
∴b2=16.

∴双曲线的方程为.11622xy
答案:B
3.中心在坐标原点,离心率为35的双曲线的焦点在y轴上,则它的渐近线方程为( )

A.y=±45x B.y=±54x
C.y=±34x D.y=±43x

解析:∵.34.925,35222ababaac
∵双曲线的焦点在y轴上,
∴双曲线的渐近线方程为y=±bax.

∴所求双曲线的渐近线方程为y=±43x.
答案:D

4.焦点为(0,6)且与双曲线22x-y2=1有相同渐近线的双曲线方程是( )

A.241222yx=1 B.241222xy=1
C.122422xy=1 D.122422yx=1
解析:设所求双曲线的方程为.1222yx
∵双曲线的一个焦点为(0,6)在y轴上,
∴λ<0.∴-λ-2λ=36,λ=-12.

∴所求双曲线方程是.1241222xy
答案:B
5.若双曲线的焦点到渐近线的距离等于实轴长,则该双曲线的离心率e等于( )

A.2 B.3

C.5 D.25
解析:焦点F(c,0)到渐近线bx-ay=0的距离d=22babc,则b=2ac2-a2=4a2e=.5ac
答案:C
6.双曲线5y2-4x2=-20的实轴长为_________,虚轴长为_________,渐近线方程为_________,
离心率为_________.
解析:∵a2=5,b2=4,

∴2a=25,2b=4,c=22baa2+b2=3.

∴e=.553ac
又双曲线的焦点在x轴上,
∴双曲线的渐近线方程为y=±.552x

答案:25 4 y=±x552 553
7.准线方程为x+y=1,相应的焦点为(1,1)的等轴双曲线方程是_________.
解析:等轴双曲线的离心率e=2,由双曲线的第二定义,得方程为

2
|1|·2)1()1(22yx
yx
,化简得xy=21.

答案:xy=21
8.已知双曲线x2-3y2=3上一点P到左、右焦点的距离之比为1∶2,则P点到右准线的距离为
_________.
解析:设F1、F2分别为双曲线的左、右焦点.

则有.32|||||,|21||1221PFPFPFPF

解得.34||,32||21PFPF
又设点P到右准线的距离为d,则
.332||2
acd

PF

∴d=6,即点P到右准线的距离为6.
答案:6

9.双曲线4922yx=1与直线y=kx-1只有一个公共点,求k的值.
解:直线y=kx-1过(0,-1)点,若使直线与双曲线只有一个公共点,必须直线与双曲线的
渐近线平行或直线与双曲线相切.
当直线与渐近线平行时,双曲线的渐近线方程是y=±32x.∴k=±32.
10.双曲线与圆x2+y2=17有公共点A(4,-1),圆在A点的切线与双曲线的渐近线平行,求双
曲线的标准方程.

解:∵点A与圆心O的连线的斜率为-41,
∴过A的切线的斜率为4.
∴双曲线的渐近线方程为y=±4x.

设双曲线方程为x2-
16

2
y

=λ.

∵点A(4,-1)在双曲线上,
∴16-161=λ,λ=16255.

∴双曲线的标准方程为.12551625522yx

综合运用
11.已知双曲线2222byax=1(a>0,b>0),F1、F2为双曲线的两个焦点,点P在双曲线上,求|
PF1|·|PF2|的最小值.
解析:设P点的横坐标为x0,则x
0≥a或x0
≤-a.由焦半径公式得

|PF1|·|PF2|=|a-ex0||a+ex0|=|a2-.||2202222202220222axabaaxacxaca
∵|x0|≥a,∴x20≥a2.
∴|PF1|·|PF2|≥222aba·a2-a2=b2.
当|x0|=a时,上式“=”成立.
∴|PF1|·|PF2|的最小值为b2.

12.在双曲线121322yx=-1的上支上有不同的三点A(x1,y1)、B(x2,6)、C(x3,y3),与焦点F(0,5)
的距离成等差数列.
(1)求y1+y3的值;
(2)求证:线段AC的垂直平分线经过某一定点,并求出定点坐标.

(1)解:∵cayPF2||=e,
∴|PF|=ey-a.又A、B、C到F的距离成等差数列,
∴2(ey2-a)=(ey1-a)+(ey3-a).
∴y1+y3=2y2=12.

(2)证明:由题意,得.11312,1131223232121xyxy

①-②,得121(y1-y3)(y1+y3)-131(x1-x3)·(x1+x3)=0.
∴.13)(13)(123131313121xxyyxxxxyy
若x1+x3=0.
则kAC=0,y1=y3=y2=6,A、B、C三点共线,这是不可能的.

∴x1+x3≠0.则AC的中垂线方程为y-6=).2(133131xxxxx

即y=2251321xxx.因此,AC的中垂线过定点(0,225).
13.双曲线的中心在坐标原点,离心率为4,一条准线方程是x=21,求双曲线的方程.
解:∵双曲线的中心在原点,准线和x轴垂直,
∴双曲线的方程是标准的且焦点在x轴上.

∵,21,42caac
∴a=2,c=8.
∴b2=82-22=60.

∴双曲线的方程是.160422yx

拓展探究
14.已知双曲线5422yx=1,F为其右焦点,A(4,1)为平面上一点,点P为双曲线上一点,求|
PA|+32|PF|的最小值(如右图).
解:由双曲线的第二定义可知dPF||=e,其中d为P到右准线l:x=34的距离,e=23.
∴|PF|=ed=23d.
∴|PA|+23|PF|=|PA|+23×23d.
∴|PA|+23|PF|=|PA|+d,则求|PA|+23|PF|的最小值,就是在双曲线上求一点P,使P到A的距
离与到右准线l:
x=34的距离之和最小(如题图),由平面几何的知识知道,从直线外一点向该直线所引的线

段中,垂线段最短,从而过点A向右准线l:x=34作垂线AB,交双曲线于P点,此时|PA|+d
最小,即|PA|+32|PE|最小,最小值为垂线段AB的长,易求|AB|=38,故|PA|+32|PF|的最小值
为38.
15.(2005北京高考,理19)已知点M(-2,0)、N(2,0),动点P满足条件|PM|-|PN|=22.
记动点P的轨迹为W.
(1)求W的方程;

(2)若A、B是W上的不同两点,O是坐标原点,求OA·OB的最小值.

解:(1)由|PM|-|PN|=22知动点P的轨迹是以M、N为焦点的双曲线的右支,实半轴长
a=2.
又半焦距c=2,故虚半轴长b=.222ac
所以W的方程为2222yx=1,x≥2.
(2)设A、B坐标分别为(x1,y1),(x2,y2).
当AB⊥x轴时,x1=x2,y1=-y2.

从而OA·OB=x1x2+y1y2=x21-y21=2.
当AB与x轴不垂直时,设直线AB的方程为y=kx+m,与W的方程联立,消去y得
(1-k2)x2-2kmx-m2-2=0.

故x1+x2=212kkm,x1x2=1222km.
所以OA·OB=x1x2+y1y2
=x1x2+(kx1+m)(kx2+m)
=(1+k2)x1x2+km(x1+x2)+m2

=2222222121)2)(1(mkmkkmk

.142122222
kk

k

又因为x1x2>0,所以k2-1>0,从而OA·OB>2.
综上,当AB⊥x轴时,OA·OB取得最小值2.

相关文档
最新文档