如何分辨金相组织

合集下载

金相显微组织分析(清晰)

金相显微组织分析(清晰)

图 3-13
Al-Si 合金系的伪共晶区
图 3-14
Al亚共晶和过共晶合金 成分位于共晶线上共晶点左侧和右侧的合金分别称为亚共晶和过共晶合金, 这些合金在 冷却时先结晶出初生晶体,当冷到共晶温度时,剩余液相的成分变到共晶点;即发生共晶反 应形成共晶体:故其凝固后的组织为初生晶体加共晶体。合金成分距共晶点愈近时,组织中 的初生晶体数量就愈少。凝固后继续冷却到室温的过程中,若有固溶度变化,则还将析出二 次相。如图 3-15 为 Pb-Sn 系中的亚共晶合金,其组织为初
第三章 金相显微组织分析
第一节 二元合金平衡(非平衡)显微组织分析
金相显微组织是在金相显微镜下能够看到的合金内部组成物的直观形貌, 它描述了各组 成物的本质、形态、大小、数量和分布特征。这些组成物由不同的相所组成。合金的显微组 织可以是一种相组成的单相组织,也可以是几种相组成的复合组织。 相:是具有同一聚集状态、同一结构、同一性质、并与其他部分在界面分开的均匀组成 部分。 相图:是研究不同成分合金相平衡关系的一种图形。 组织:用肉眼或显微镜所观察到的不同组成相的形状,分布及各相之间的组合状态。 平衡组织:合金经缓慢冷却后具有的显微组织。 非平衡组织:合金经快冷后具有的显微组织。 二元合金:由两种组元组成的合金称为二元合金。 固溶体:以合金某一组元为溶剂,其晶体点阵中溶入其它组元原子(溶质)所组成的异 类原子混合的结晶相,结构保持溶剂元素的点阵类型,其实质是固态溶液。 匀晶转变:由液相直接结晶出单相固溶体的过程。 共晶转变:具有 E 点成分的液相,在一定的温度下,同时结晶出一定成分的两个固相, 即 M 点成分的α相与 N 点成分的β相。 包晶转变:由一个固相与液相作用形成另一个固相的过程,称为包晶转变。 晶内偏析(枝晶偏析) :在一个晶粒内部成分不均匀的现象,称晶内偏析。 离异共晶:当不平衡共晶体量很少时,其中与初生晶体相同的相,常与初生晶体连成一 片,不能分辩,而共晶体的另一相则留在枝晶间,这种形式的共晶组织称离异共晶。 伪共晶:亚共晶和过共晶合金在快冷时,初生晶体数量减少,共晶体的实际成分偏离原 共晶点,形成伪共晶,成分靠近共晶点的 合金,快冷时,甚至来不及析出初生晶体 即发生共晶反应,得全部共晶体。这种由 非共晶成分的合金而获得全部共晶体的组 织,称为伪共晶组织。 脱溶:由α固溶体中析出另一种固相 的过程,称脱溶,一般脱溶相称为次生相 或次生固溶体,以βⅡ表示。 观察二元合金显微组织,应根据该合 金系的相图,分析合金在平衡及非平衡冷 却条件下可能出现的相及组织组成物。典

金相组织

金相组织

金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.金相即金相学,就是研究金属或合金内部结构的科学。

不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。

所谓外部条件就是指温度、加工变形、浇注情况等。

所谓内在因素主要指金属或合金的化学成分。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

1.奥氏体-碳与合金元素溶解在γ-f e中的固溶体,仍保持γ-f e的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-f e中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿a c m线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到a r1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

金相组织分析原理

金相组织分析原理

金相组织分析原理采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。

通俗的说就是热处理后会得到不同的组织,每种组织有自己的形貌特征。

每种组织的耐腐蚀性也有差异,因此通过制样,腐蚀,微观组织会出现不同的衬度或者说灰度,也就是说腐蚀后的金相试样微观表面是坑坑洼洼的,很多沟壑。

这样我们就能在金相显微镜下区分和识别各种组织了。

1.原材料检验:对原材料的冶金质量情况如偏析、非金属夹杂物分布类型与级别检查;对铸造材料的铸造疏松、气孔、夹渣组织均匀性检查;对锻造件的表面脱碳、过热、过烧、裂纹、变形等情况检查。

2.生产过程中的质量控制:金相分析可以提供调整工序及修改工艺参数的根据,指导生产,如热处理淬火加热温度、保温时问、冷却速度等是否合适(正确);化学表面热处理工艺参数的控制;锻造的起始和终锻温度是否合适等。

3.产品质量检验:有些机械零件或产品除要求机械性能、物理性能指标外,有的还要求显微组织参数,作为质量评定的技术指标之一。

4.失效分析:金相组织分析方法在机械失效分析方面广泛应用,对一些常见的弊病鉴定很方便。

如机件表面脱碳、显微裂纹的形貌及分布特征、化学热处理缺陷、热处理后的不正常组织、晶界脆性相析出等,这些金相分析的结果常作为故障分析的根据。

金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。

将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。

金属金相组织分析

金属金相组织分析

金属金相组织分析金属金相组织分析是一种分析技术,旨在研究特定金属中的金相组织。

它能够有效地描绘出金属材料组织的结构特征,从而为金属材料的应用提供依据。

如果能够准确地分析金属的金相组织,就可以准确地知道金属材料的力学性能和它的工艺特性,并可以提出合理的结论,指导金属材料的应用。

金属金相组织分析是金属工艺学研究领域中分析方面的重要技术。

金属金相组织分析的具体技术步骤是:首先,采用微观层面的金属金相组织分析仪对金属材料进行金相成分的分析,分析金属材料中的特定金相成分;其次,根据分析结果,采用数字图像处理技术对金相组织的三维结构进行分析;再次,根据分析结果,提出相应的结论,指导金属材料的应用。

金属金相组织分析有很多变种,根据具体技术手段的不同,可以分为电子显微镜图像金相分析、X射线能量色散法(XEDS)金相分析、X射线衍射(XRD)金相分析和扫描电子显微镜(SEM)等。

电子显微镜图像金相分析是金属金相组织分析中最常用的技术,该方法不需要进行任何改变,可以有效地研究金属的金相组织结构。

该方法可以在元素分布的基础上,采用标准金相分布图,将不同金相组织结构的特征清晰地表示出来。

X射线能量色散法(XEDS)金相分析利用X射线反应来研究金属材料中的金属元素分布,通过检测X射线发射的能量而确定材料中各金属元素的层面分布。

X射线衍射(XRD)金相分析利用X射线照射金属样品,采用衍射原理检测金属材料中特定金相元素的出现,然后根据X射线在不同金相中的反应,确定金相组织的信息。

扫描电子显微镜(SEM)金相分析采用扫描电子显微镜系统,对材料表面形貌进行详细观察,从而确定不同金相元素的分布,从而对金属材料的金相组织进行分析。

金属金相组织分析技术可以为金属材料的金相组织提供依据,从而为金属材料的应用提供可靠的参考。

合理地分析金属金相组织能够准确地知道金属材料的力学性能和它的工艺特性,从而提出合理的结论,指导金属材料的应用。

同时,金属金相组织分析有助于降低金属材料的生产成本和改善材料的性能,是金属工艺学研究领域中不可缺少的分析技术。

金相组织定义和特征

金相组织定义和特征

金相组织定义和特征文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-一、金相组织的定义及特征区别(一)金相:指金属组织中化学成分、晶体结构和物理性能相同的组成,其中包括固溶体、金属化合物及纯物质。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

(二)各种金相组织特征:1、奥氏体碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe 的面心立方晶格晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体针间的空隙处2、铁素体碳与合金元素溶解在a-Fe中的固溶体亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出3、渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状4、珠光体铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体5、上贝氏体过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

钢的热处理组织分析判断方法

钢的热处理组织分析判断方法

钢的热处理组织分析判断方法金属的热处理是否合格,重要的判定是金相组织,下面将简要介绍热处理的分析判定方法,有不对的地点请大伙儿指正。

一、观看方法:1.观看组织组成物和种类钢热处理后,依照热处理种类和材料的不一样,组织组成物可能是一种或多种。

如马氏体,马氏体+残余奥氏体,单一珠光体,单一奥氏体,铁素体+珠光体,铁素体+马氏体+碳化物等等。

金相观看时,第一要判定被观看组织中有几种组织组成物,是单一组成物,依旧两种或多种组成物。

在组织组成物中,某一组成物能够是单一相,如铁素体或奥氏体等单相;也能够是两相或多相混合组成或化合物,如珠光体是铁素体与渗碳体的机械混合物,各种碳化物等。

不同的组成物有不同的形状特点,利用这些特点能够快速的识别:不同的组成物受溶液浸蚀的程度不同,使得其在金相显微镜下具有不同的明暗程度或不同的色彩差;不同组成物形成的先后顺序不一样,其形状也不一样,最先形成的总是从奥氏体晶界开始形核;各组成物形成的原理不一样,形状也有差异。

通过这些就能够判别被观看物的组成种类。

大多数情形下,能够观看到几种不同明暗程度或几种形状不同的部份,就能够判定有几种组成物。

2.观看形状组织组成物的形状是我们判别组成物的极其重要的依据之一。

一些特定组织具有极显著的特点,如典型的珠光体具有层片状(或称指纹状)特点,一看就明白是珠光体;羽毛状物是上贝氏体。

白色的块状物不是铁素体确实是奥氏体或碳化物,黑色针状物不是马氏体确实是下贝氏体,沿晶分布的白色块状或针状确信是铁素体或碳化物(渗碳体)两者之一等等。

要观看组织物是片状、针状、块状、颗粒状、条状、网状或者是其它什么形状。

有时,还要精细观看是单一相依旧复合相。

在观看中要注意试样的浸蚀程度,只有合理的浸蚀,各种组织才会正确的显现出来,同时,制样也专门关键,错误的制样可能导致对组成物的错误判定。

由于制样和浸蚀问题,导致的判定错误在新手中屡见不鲜。

在观看中还要注意,关于观看到的白色或黑色物,不要轻易就认为是一种组成物。

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

金属金相组织测试

金属金相组织测试
金属金相组织测试是一种用于评估金属样品内部组织结构的实验方法。

这种技术通常用于工程中的材料评估、研发以及质量控制。

以下是常用的金相组织测试方法及其描述:
1. 金相显微镜检测:这是一种基于显微镜观测金属材料组织结构的测试方法。

该方法需要在样品表面上抛光并腐蚀处理后,观察材料内部的晶体组织。

2. 压缩试验:此方法用于测试材料的强度和可塑性。

材料样本通常是环形或圆柱形,并在试验过程中受到压缩力的作用。

通过观察材料的应变和应力之间的关系,可以获取材料的力学性能数据。

3. 热处理:这是一种改变材料组织的方法。

该方法可以通过加热或冷却材料来改变其组织,从而影响其力学性能。

4. 扫描电镜:此方法用于观察材料表面和内部的微观结构。

扫描电镜可以提供更高的分辨率,以显示材料的更细微的结构。

5. 裂纹生长试验:该测试用于测试材料对裂纹的抗性。

材料样品受到载荷作用时会发生裂纹,测试员可以跟踪裂纹的扩展情况,以评估材料的裂纹生长性能。

6. X射线衍射:此方法用于确定材料内部晶格的结构和定量化晶体缺
陷。

总之,金属金相组织测试方法有多种,每种测试方法都有其独特的特点和应用,可以根据需要选择适合的测试方法进行实验。

sem与光学看金相组织的区别

sem与光学看金相组织的区别
【1.SEM 与光学金相组织的定义】
SEM(扫描电子显微镜)是一种使用电子束扫描样品表面,并利用样品产生的二次电子或反射电子形成图像的显微镜。

光学金相组织则是一种利用光学原理观察金属内部组织结构的显微镜。

【2.SEM 与光学金相组织的观察方式】
SEM 观察金相组织主要是通过扫描电子束与样品相互作用产生的二次电子或反射电子形成图像。

光学金相组织则是通过光学原理,如折射、反射等,使金属内部组织结构的光线成像在观察者眼中。

【3.SEM 与光学金相组织的优缺点对比】
SEM 的优点在于观察分辨率高,可达到纳米级别,同时可以观察到样品的表面形貌和成分。

缺点是观察范围有限,对样品的要求较高。

光学金相组织的优点在于观察范围广,适用于各种金属材料,但对分辨率的要求较低。

缺点是无法观察到样品的成分信息。

【4.SEM 与光学金相组织在实际应用中的选择】
在实际应用中,根据不同的需求选择合适的金相组织观察方法。

如在材料科学研究中,需要观察材料表面形貌和成分时,可选择SEM;而在金属加工行业中,主要关注金属内部组织结构时,可选择光学金相组织。

球墨铸铁中金相组织介绍

球化处理温度和时间:控制球化 处理温度和时间,确保球化效果
球化处理工艺:选择合适的球化 处理工艺,如冲入法、喂丝法等
球化处理后处理:球化处理后进 行热处理,以改善金相组织
谢谢
工艺优化:优化生产工艺,提 高生产效率和产品性能
金相组织控制方法
合金元素添加
1
2
3
4
5
6
硅:提高球墨 铸铁的强度和
耐磨性
锰:改善球墨 铸铁的韧性和
抗冲击性
磷:提高球墨 铸铁的耐磨性
和耐腐蚀性
硫:改善球墨 铸铁的流动性
和铸造性能
稀土:提高球 墨铸铁的耐磨
性和耐热性
镁:改善球墨 铸铁的强度和
耐腐蚀性
裂纹
04
测量样品的 硬度和耐磨

05
观察样品的 表面粗糙度
和光泽度
06
观察样品的 表面纹理和
结构
07
测量样品的 密度和弹性
模量
08
观察样品的 表面应力和
应变
09
测量样品的 疲劳强度和
断裂韧性
10
观察样品的 表面腐蚀和
磨损情况
微观金相分析
光学显微镜:观 察表面形貌和组
织结构
电子显微镜:观 察微观结构,如
结构件等
铁路行业:铁路 车辆、轨道部件

船舶行业:船舶 结构件、螺旋桨

能源行业:风力 发电机、核电设
备等
航空航天:航空 发动机、火箭发
动机等
其他行业:农业 机械、矿山机械、
医疗器械等
金相组织介绍
球墨铸铁的金相组织
球状石墨:球墨铸铁 的主要特征,具有高 强度、高韧性和耐磨 性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎么做金相组织分析 时间:2009-09-27 09:20:17点击: 743 金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。1.奥氏体 -碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。 1.奥氏体 -碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处

2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。

6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。

7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为m-a组织。

8.无碳化物贝氏体-板条状铁素体单相组成的组织,也称为铁素体贝氏体。形成温度在贝氏体转变温度区的最上部。板条铁素体之间为富碳奥氏体,富碳奥氏体在随后的冷却过程中也有类似上面的转变。无碳化物贝氏体一般出现在低碳钢中,在硅、铝含量高的钢中也容易形成。 9.马氏体-碳在a-fe中的过饱和固溶体。

板条马氏体:在低、中碳钢及不锈钢中形成,由许多相互平行的板条组成一个板条束,一个奥氏体晶粒可转变成几个板条束(通常3到5个)。

片状马氏体(针状马氏体):常见于高、中碳钢及高ni的fe-ni合金中,针叶中有一条缝线将马氏体分为两半,由于方位不同可呈针状或块状,针与针呈120o角排列,高碳马氏体的针叶晶界清楚,细针状马氏体呈布纹状,称为隐晶马氏体。

10.回火马氏体-马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织 它由马氏体在150~250℃时回火形成。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。 11.回火屈氏体-碳化物和a-相的混合物。 它由马氏体在350~500℃时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。

12.回火索氏体- 以铁素体为基体,基体上分布着均匀碳化物颗粒。 它由马氏体在500~650℃时高温回火形成。其组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织,马氏体片的痕迹已消失,渗碳体的外形已较清晰,但在光镜下也难分辨,在电镜下可看到的渗碳体颗粒较大。

13.莱氏体- 奥氏体与渗碳体的共晶混合物。呈树枝状的奥氏体分布在渗碳体的基体上。

14.粒状珠光体-由铁素体和粒状碳化物组成。 它是经球化退火或马氏体在650℃~a1温度范围内回火形成。其特征是碳化物成颗粒状分布在铁素体上。

15.魏氏组织- 如果奥氏体晶粒比较粗大,冷却速度又比较适宜,先共析相有可能呈针状(片状)形态与片状珠光体混合存在,称为魏氏组织 。亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形,粗大铁素体呈平行或三角形分布。它出现在奥氏体晶界,同时向晶内生长。过共析钢中魏氏组织渗碳体的形态有针状或杆状,它出现在奥氏体晶粒的内部。

GB/T7232标准中对马氏体、索氏体、回火马氏体、回火索氏体的定义及组织特征 2007年10月16日 星期二 21:25 GB/T7232标准中对马氏体、索氏体、回火马氏体、回火索氏体的定义及组织特征

1. 马氏体的定义及组织特征。马氏体,是钢铁或非铁金属中通过无扩散共格切变型转变(马氏体)形成的产物统称(GB/T7232标准)。在钢铁中,马氏体是低温转变产物,是饱和的α固溶体,为单相组织,是一种亚稳定组织。随碳含量的不同,其主要形态有板条状和片状两种。低碳马氏体是板条状,其亚结构主要是位错。 2. 索氏体的定义及组织特征。索氏体,是在光学金相显微镜下放大600倍以上才能分辨片层的细珠光体(GB/T7232标准)。其实质是一种珠光体,是钢的高温转变产物,是片层的铁素体与渗碳体的双相混合组织,其层片间距较小(30~80nm),碳在铁素体中已无过饱和度,是一种平衡组织。 3. 回火马氏体的定义及组织特征。回火马氏体(β-martensite)是淬火马氏体回火时,碳已经部分的从固溶体中析出并形成了过渡碳化物此时的基体组织。它是马氏体的一种回火组织,其α固溶体仍有一定的碳的过饱和度,仍是一种亚稳组织。 4. 回火索氏体的定义及组织特征。回火索氏体(tempered martensite)是马氏体于回火时形成的,在在光学金相显微镜下放大500~600倍以上才能分辨出来,其为铁素体基体内分布着碳化物(包括渗碳体)球粒的复合组织。它也是马氏体的一种回火组织,是铁素体与粒状碳化物的混合物。此时的铁素体已基本无碳的过饱和度,碳化物也为稳定型碳化物。常温下是一种平衡组织。 5. 低碳钢回火过程中的组织变化。由于回火马氏体和回火索氏体都是马氏体的回火组织又由于耐热钢一般都是低碳钢,故有必要介绍低碳钢回火过程中的组织变化过程。 5.1低碳碳素钢回火过程中的组织变化。由于马氏体的组织状态是不稳定的,它具有向稳定的铁素体和渗碳体的两相混合组织转变的倾向。回火时,随着温度的升高,原子活动能力增加,是组织的转变过程能较快地进行。低碳碳素钢回火过程中的组织变化大致有三个主要过程;①马氏体分解②碳化物的形成与转变③渗碳体的聚集和球化,α相的恢复,再结晶等。详见下表 回火温度℃ 组织转变类型 组 织 结 构 的 变 化 回火产物 80~250 马氏体分解 马氏体中的碳原子偏聚在位错线附近的间隙位置 回火马氏体

250~400 碳化物的形成与转变 ① 马氏体中的碳原子全部析出,在马氏体内和晶界上形成渗碳体, ② α相保持板条状态。 回火托氏体

400~700 渗碳体的聚集和球化,α相的恢复,再结晶 ① 片状渗碳体球化, ② α相的恢复,位错密度降低 ③ 在600℃以下α相基本保持板条状 ④ 在600℃以上丘状渗碳体聚集粗化,α相再结晶为等轴状。

回火马氏体 5.2低碳合金钢回火过程中的组织变化。低碳合金钢回火过程中的组织变化情况与低碳碳素钢相比,主要也是上述三个变化过程。由于合金元素的加入,合金元素将与碳、α相等发生交互作用,对回火过程的组织变化产生影响,在300℃以下,合金元素对低碳合金的回火过程组织变化影响不大,但由于合金元素的固溶强化作用,在相同的回火温度下合金钢比碳素钢具有较高的硬度和强度。在300℃以上,几乎所有的合金元素,特别是碳化物形成元素,由于强烈阻碍碳化物聚集、长大、以及延缓α相的回复和再结晶,因而提高钢的回火稳定性、使合金钢回火过程中组织的变化及碳化物的聚集、长大都较碳素钢滞后或已向更高的温度区间发生。 6. 91级马氏体钢的高温回火组织 按法国瓦鲁瑞克公司原文意思: 6.1连续冷却图(CCT)中,因化学成分特别是Cr、Mo的含量,P91在一个较大的冷却范围内始终保持一种马氏体的结构,但是它的硬度较低HV420左右,这与C、N的化合物有关; 6.2温度-时间转变图(TTT)中,在过冷奥氏体向(F+C)转变的平衡转变时,只有当温度在600~350℃之间才会出现,但此时的保温时间相当长,(图上看要24h以上); 6.3最终热处理。在1040~1090℃正火+780℃回火,组织为:软化的板条马氏体伴有大量的M23C6型碳化物沉淀微粒(V、Nb碳化物)及大量的位错密度。 6.4国内学者和专家认为P91在经正火+高温回火热处理后其显微组织具有以下特征: 6.4.1马氏体晶粒边界存在M23C6型化合物; 6.4.2具有极细小的亚晶粒结构,亚晶粒内位错密度较高; 6.4.3马氏体晶粒内部弥散分布着细小针状的Nb/V碳氮化合物。 6.5可以看出P91在正常的处理后其回火组织为软化的回火马氏体无其他(B)组织之说,出现了(F+C)类组织说明在平衡状态下保温时间过长。

相关文档
最新文档