北师大新版成都市第七中学初2018届九年级(上)第一次月考数学试题

合集下载

最新北师大版九年级数学上册第一次月考考试卷及答案【完整版】

最新北师大版九年级数学上册第一次月考考试卷及答案【完整版】

最新北师大版九年级数学上册第一次月考考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2的倒数是( )A .2B .12C .12-D .-22.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,1 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+26.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .22﹣2C .22+2D .227.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米 二、填空题(本大题共6小题,每小题3分,共18分)1364 的平方根为__________.2.分解因式:2242a a ++=___________.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.在锐角三角形ABC 中.32∠ABC=45°,BD 平分∠ABC .若M ,N 分别是边BD ,BC 上的动点,则CM +MN 的最小值是__________.5.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为 度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、A5、D6、B7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±22、22(1)a +3、k<6且k ≠34、45、136、3三、解答题(本大题共6小题,共72分)1、x =523、(1)略;(24、(1)理由见详解;(2)2BD =1,理由见详解.5、(1)200;(2)补图见解析;(3)12;(4)300人.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

北师大版九年级数学上册第一次月考考试题及答案【汇编】

北师大版九年级数学上册第一次月考考试题及答案【汇编】

北师大版九年级数学上册第一次月考考试题及答案【汇编】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.已知二次函数y=(x ﹣h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或﹣5B .﹣1或5C .1或﹣3D .1或35.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .B .C .D .8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)181____________.2.分解因式:a 2b+4ab+4b=_______.3.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__________.(结果保留)π6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:271326+=++x x x2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,点C为△ABD外接圆上的一动点(点C不在BD上,且不与点B,D重合),∠ACB=∠ABD=45°.(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究222DM AM BM,,,三者之间满足的等量关系,并证明你的结论.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、B5、D6、D7、C8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、b(a+2)23、04、5、π.6、45︒三、解答题(本大题共6小题,共72分)1、16 x=2、(1)k﹥34;(2)k=2.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)详略;(2)详略;(3)DM2=BM2+2MA2,理由详略.5、(1)50;(2)240;(3)1 2 .6、甲、乙两个工厂每天分别能加工40件、60件新产品。

最新北师大版九年级数学上册第一次月考测试卷及答案【精编】

最新北师大版九年级数学上册第一次月考测试卷及答案【精编】

最新北师大版九年级数学上册第一次月考测试卷及答案【精编】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 ( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形7.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°8.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为().A.60°B.50°C.40°D.20°9.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s 的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.分解因式:2x 2﹣8=_______.3.若代数式1x -在实数范围内有意义,则x 的取值范围是__________.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++2.先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12 ,求AC的长.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、C5、D6、D7、B8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2(x+2)(x﹣2)3、1x≥4、(﹣5,4).5、x<1或x>36、2.5×10-6三、解答题(本大题共6小题,共72分)1、32 x=-2、2xyx y-,123、(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)4、(1)略;(2)5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、 (1) 李明应该把铁丝剪成12 cm和28 cm的两段;(2) 李明的说法正确,理由见解析.。

最新北师大版九年级数学上册第一次月考考试卷加答案

最新北师大版九年级数学上册第一次月考考试卷加答案

最新北师大版九年级数学上册第一次月考考试卷加答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大 6.抛物线267y x x =++可由抛物线2y x 如何平移得到的( )A .先向左平移3个单位,再向下平移2个单位B .先向左平移6个单位,再向上平移7个单位C .先向上平移2个单位,再向左平移3个单位D .先回右平移3个单位,再向上平移2个单位7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122x x x =++的解是___________. 2.因式分解:a 3-ab 2=____________.3.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x =(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =+.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、A6、A7、D8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、3 22、a(a+b)(a﹣b)3、74、5、12 76、3三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x=-23、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、羊圈的边长AB,BC分别是20米、20米.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中初中初2018届九年级(上)第一次月考试题
数学
(满分150分,时间:120分钟)
A 卷(100分)
一、选择题(每小题3分,共30分, 在下面每一个小题给出的四个选项中,只有一项是正确的.) 1. 方程23x x =的解是( ) (A )x =3
(B )x 1=0,x 2=3
(C )x 1=1,x 2=3
(D )x =0
2. 已知y 与x 成反比例函数,且x =2时,y =3,则该函数表达式是( ) (A )32
y x =
(B )23
y x =
(C )16y x
=
(D )6y x
=
3. 如图,在正方形网格上有两个相似三角形△ABC 和△DEF ,则∠BAC 的度数为( ) (A )105°
(B )115°
(C )125°
(D )135°
(3题)
(4题)
(6题)
4. 如图,已知DE ∥BC ,EF ∥AB ,则下列比例式正确的是( ) (A )
AD AE DB BC =(B )BF EF BC AD =(C )AE BF EC FC =(D )EF DE
AB BC
=
5.关于x 的方程kx 2+2x ﹣1=0有实数根,则k 的取值范围是( ) (A )k ≥﹣1
(B )k ≥﹣1且k≠0
(C )k ≤﹣1
(D )k ≤1且k ≠0
6. 如图所示,在□ABCD 中,BE 交AC ,CD 于G ,F ,交AD 的延长线于E ,则图中的相似三角形有( ) (A )3对
(B )4对
(C )5对
(D )6对
7. 如图,△A ′B ′C ′是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则OB ′:B ′B 为( ) (A )4:9
(B )4:5
(C )3:2
(D )2:1
(7题) (8题)
8. 如图,在△ABC 中,AB =AC ,∠BAC =108°,AD 、AE 将∠BAC 三等分交边BC 于点D ,点E ,则下列结论中错误的是( )
(A )点D 是线段BC 的黄金分割点 (B )点E 是线段BC 的黄金分割点
(C )点E 是线段CD 的黄金分割点
(D )
ED BE 9. 如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和
为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x 米,则可以列出关于x 的方程是( ) (A )x 2+9x ﹣8=0 (B )x 2﹣9x ﹣8=0
(C )x 2﹣9x +8=0
(D )2x 2﹣9x +8=0
10.若M (12-,y 1)、N (14-,y 2)、P (12,y 3)三点都在函数k
y x
=(k >0)的图象上,则y 1、y 2、y 3的大小关系
是( ) (A )y 2>y 3>y 1
(B )y 2>y 1>y 3
(C )y 3>y 1>y 2
(D )y 3>y 2>y 1
二、填空题(每小题4分,共16分)
11.已知x =1是方程x 2﹣3x +a =0的一个解,则a = .
12.如果直线y =mx 与双曲线k
y x
=的一个交点A 的坐标为(3,2),则它们的另一个交点B 的坐标为 . 13.如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为 时,△ADP 和△ABC 相似.
14.如图,把矩形ABCD 对折,折痕为MN ,矩形DMNC 与矩形ABCD 相似.则矩形DMNC 与矩形ABCD 的长与宽之比是 .
三、解答题(本题共54分) 15. (每小题4分,共12分)
(1)解方程:x 2+6x ﹣7=0 (2)配方法解方程:2x 2+4x ﹣3=0.
(3)已知234x y z ==,求
23x y z
x y z
-+++的值.
16.(本小题6分)如图,在△ABC中,点D在BC边上,∠DAC=∠B.点E在AD边上,CD=CE.(1)求证:△ABD∽△CAE;
(2)若AB=6,AC=9
2
,BD=2,求AE的长.
17.(本小题8分)已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.
18.(本小题8分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;
(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.
19.(本小题10分)小明想用镜子测量一棵松树的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A;第二次把镜子放在D点,人在G点正好看到树尖A.已知小明的眼睛距离地面1.70m,量得CD=12m,CF=1.8m,DH=3.8m.请你求出松树的高.
20.(本小题10分)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.
(1)求证:DE=DC;
(2)求证:AF⊥BF;
(3)当AF•GF=28时,求CE的长.
B卷(50分)
一、填空题(每小题4分,共20分)
21.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.22.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.
23.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数
k
y
x
=的图象经过点B,则k
的值为.
(23题)(24题)(25题)
24.如图,Rt△ABC中,∠B=90°,正方形EFDQ、正方形MNPQ公共顶点记为点Q,其余的各个顶点都在Rt△ABC 的边上,若AC=5,BC=3,则EP=.
25.在△ABC中,BC=6,S△ABC=12,B1C1所在四边形是△ABC的内接正方形,则B1C1的长为;若B2C2所在四边形是△AB1C1的内接正方形,B3C3所在四边形是△AB2C2的内接正方形,依此类推,则B n C n的长为.
二、解答题(本题共30分)
26.(本小题8分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
服装店准备购进甲乙两种服装,甲种每件进价80元,乙种每件进价60元,计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)服装店在销售中发现:甲服装平均每天可售出20件,每件盈利40元.经市场调查发现:如果每件甲服装降价4元,那么平均每天就可多售出8件,要想平均每天销售甲服装上盈利1200元,那么每件甲服装应降价多少元?
27.(本小题10分)如图,直角梯形OABC的一顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,
OA∥BC,D是BC上一点,BD=1
4
OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终
保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,求y的值.
28.(本小题12分)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.。

相关文档
最新文档