必修一课件1.1.3集合的基本运算(2)

合集下载

集合的基本运算课件(共11张PPT)

集合的基本运算课件(共11张PPT)

解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径

[中学联盟]湖南省攸县第一中学人教版高中数学必修一课件:1.1.3《集合的基本运算》 (共16张PPT)

[中学联盟]湖南省攸县第一中学人教版高中数学必修一课件:1.1.3《集合的基本运算》 (共16张PPT)

课堂练习
已知全集U={1,2,3,4,5,6,7}, A={2,4,5},B={1,3,5,7},求 A∩(CUB),(CUA)∩(CUB). 思考:从此题的结果中,你有什么猜想?
CU(A∪B) = (CUA)∩(CUB) CU(A∩B) = (CUA)∪(CUB)
德摩根定律

变式训练1 已知集合U { x | x 10, 且x N * }, A U ,
一、温故知新 1. 什么是集合A与B的并集? 什么是集合A与B的交集?
(1)A∪A = _____, A∪ = _____
(2) A B A∪B = _____ A B A∪B = _____
(3)A∩A = _____, A∩ = ______ (4)_______ A∩B = A
CU A { x | x U , 且x A}
U A
CU A
例8:
设U={x|x是小于9的正整数}, A={1,2,3}, B={3, 4, 5, 6}, 求CUA, CUB
例9:
设U={x|x是三角形}, A={x|x是锐角三 角形}, B={x|x是钝角三角形}, 求A∩B, CU(A∪B).
_______ A∩B = B
二、新知讲授 补集
在研究问题时,我们经常需要确定 研究对象的范围.
在不同范围研究同一个问题,可能有不 同的结果,例如方程(x-2)(x2-3)=0的解集, 在 有理数范围内只有一个解2,即
{ x∈Q | ( x – 2 ) ( x2 – 3 ) = 0 } = 2
在不同范围研究同一个问题,可能有不 同的结果,例如方程(x-2)(x2-3)=0的解集, 在 有理数范围内只有一个解2,即

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
当A与B无公共元素时,A与B
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页

2014年新课标人教A版必修1数学1.1.3集合的基本运算(2)随堂优化训练课件

2014年新课标人教A版必修1数学1.1.3集合的基本运算(2)随堂优化训练课件
故只能在 M∩P 中.
所以 M={3,5,11,13},P={7,11,13,19}.
采用数形结合的方法,往往可将复杂的集合关 系直观化、形象化,使问题快速获解.此题中的 Venn 图将 U 分成了四部分,根据题中已知条件逐步给四个部分填入元素, 即可求出集合 M 和 P.
【变式与拓展】
4 .已知全集 U ={1,2,3,4,5,6,7,8,9}.A ⊆U ,B⊆U,且
题型 2 集合的混合运算 【例 2】设全集 U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}. (1)求 A∪B,A∩B,∁U (A∪B),∁U (A∩B);
(2)求∁U A, ∁U B, (∁U A)∪(∁U B),(∁U A)∩(∁U B);
(3)由(1),(2),你能得出什么结论? 解:(1)A∪B={1,2,3,4,5,7},A∩B={5},∁U(A∪B)= {6} ,
【变式与拓展】 2.(2013 年安徽)已知A={x|x+1>0},B={-2,-1,0,1}, 则(∁RA)∩B=( A ) A.{-2,-1} C.{-2,0,1} B.{-2} D.{0,1}
解析:∵A={x|x+1>0}={x|x>-1},∴∁RA={x|x≤-1}. ∴(∁RA)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.
图 1-1-2
由(∁UM)∩(∁UP)={2,17},可知:M,P 中都没有元素2,17,
由(∁UM)∩P={7,19},可知:P 中有元素 7,19,M 中没有元素 7,19, 由 M∩(∁UP)={3,5},可知:M 中有元素 3,5, 而 P 中没有元素 3,5,
U 中剩下的元素 11,13 不在以上三部分中,
(∁UA)∩B={1,9},A∩B={2},(∁UA)∩(∁UB)={4,6,8},求

高中数学必修一:1.1.3集合的基本运算.pptx

高中数学必修一:1.1.3集合的基本运算.pptx
ΦA(A≠Φ)
(4)AB,FirstcaseA=Φ.
SecondcaseA≠Φ.
(5)A={a1,a2,a3,……,an} Thenumberofsubsets:2n Thenumberofpropersubsets:2n-1 Thenumberofnon-emptysubsets:2n-1 Thenumberofnon-emptypropersubsets:2n-2
U A
CU A
显然有:
性质:(1) CU U ,
(2) CUU ,
(3) CU CU A A ,
(4) A B U CU B CU A U
例3.设集合A={-4,2a-1,a2},B={9,a-5,1-a}, 又A∩B={9},求实数a的值并求出A∪B.
解得a 3且A B {8,4,4,7,9}
记作A∪B 读作A并B 即A∪B={x|x∈A,或x∈B}
A
B
A∪B
例1.设A={x|-1<x<2},B={x|1<x<3}, 求A∪B.
性质1
A∪A=AA∪φ=
A
A∪BB=∪A
观察集合A,B,C并考虑它们的关系:
(1)A={2,4,6,8,10}, B={3,5,8,12},C={8}
(2)A={x|x是等腰三角形}, B={x|x是直角三角形}, C={x|x是等腰直角三角形}
性质4 若A∪B=A,则AB. 反之亦然.
例2.设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2试用集合的运算表示l1,l2的 位置关系。
交集、并集的性质强调: (1) A B=B A B
A 或 A , A 中的元素都在 B 中。 (2)A B=B B A

2019-2020年高中数学必修一1.1.3《集合的基本运算(2)》Word精讲精析

2019-2020年高中数学必修一1.1.3《集合的基本运算(2)》Word精讲精析

2019-2020年高中数学必修一1.1.3《集合的基本运算(2)》Word 精讲精析学习目标展示1. 能熟练地进行集全的并、并、补运算2. 理解补集的性质及其应用3. 能够进行集合的运算与性质的综合应用衔接性知识1. 已知全集,集合,求:(1),,,(2),解:(1),,(2),所以,2.观察上题的结果,你能猜想得到什么结论?解:从上题结果可猜想结论, [()]()[()]A B B A B A B A B =C C典例精讲剖析例1.已知全集,集合,,,求集合解:全集,例2. 设全集,,,求解:,由题且,解之或.例3. 设全集,,求、.解:将1、2、3、4代入中,或,当m = 4时,,即A = {1,4},又当m = 6时,,即A = {2,3}.故满足条件: = {1,4},m = 4; = {2,3},m = 6例4.设,集合,;若,求的值解:,由,得而2{|(1)0}{|(1)()0}B x x m x m x x x m =+++==++=当时,,符合;当时,,而,∴,即∴或精练部分A 类试题(普通班用)1. 已知全集{}{}5,42,13,0,2U R A x x B x x P x x x ⎧⎫==-≤<=-<≤=≤≥⎨⎬⎩⎭或求 解:,,2. 已知,,,试用列举法写出集合解:∵,,∴而},∴3.设全集,方程有实数根,方程有实数根,求解:当时,,即;当时,,解得∴而对于,即,∴从而4. 全集,,如果求实数解:,∴从而实数的值为5. 已知全集{5,4,3,2,1,0,1,2,3,4,5}I =-----,集合,,其中,若,求解:,,,考查集合若,则,此时,,,,与已知矛盾.若,则,此时,,,,与已知相符.,所以B 类试题(尖子班用)1. 设全集,集合,集合,则( )A .B .C .D .解:,,选C2. 设全集,,,那么( )A .B .C .D . 解:3{(,)|1}{(,)|1,2}2y M x y x y y x x x -====+≠-, ,,选B3. 下列命题之中,U 为全集时,不正确的是( B ) A .若,则 B .若,则=或=C .若,则D .若,则解:B 不正确,如,,则,但,4.已知全集{}{}5,42,13,0,2U R A x x B x x P x x x ⎧⎫==-≤<=-<≤=≤≥⎨⎬⎩⎭或那么 解:,,5.已知集合,,那么集合 , ,解:或;;或6. 已知,,,试用列举法写出集合解:∵,,∴而},∴7.设全集,方程有实数根,方程有实数根,求解:当时,,即;当时,,解得∴而对于,即,∴从而8. 全集,,如果则这样的实数是否存在?若存在,求出;若不存在,请说明理由 解:设满足条件的实数存在,则,∴,解得从而存在实数,满足已知条件9. 已知全集{5,4,3,2,1,0,1,2,3,4,5}I =-----,集合,,其中,若,求解:,,,考查集合若,则,此时,,,,与已知矛盾.若,则,此时,,,,与已知相符.,所以10. 设全集,集合,,且,求实数、的值。

高一数学必修一集合的基本运算课件

1.1.3 集合的基本运算
考察下列各个集合你能说出集合C与集合AB之 间的关系吗
1 A={135} B={246} C={123456}
2 A={x|x是有理数}B={x|x是无理数} C={x|x是实数}.
1.并集
一般地由所有属于集合A或属于集合B的元素所 组成的集合称为集合A与B的并集记作A∪B读作A 并B.即
记 C U A 作 { x |x U ,且 x A }
补集可用Venn图表示为:
U A
CUA
例8 设U={x|x是小于9的正整数}A={123} B={3456}求CUACUB.
解:根据题意可知U={12345678} 所以 CUA={45678}
CUB={1278} .
例9 设全集U={x|x是三角形}A={x|x是锐角 三角形}B={x|x是钝角三角形}
(1) AA A (2) A A (3) ABBA (4) AAB,BAB, ABAB (5) AB则ABB
4.补集
一般地如果一个集合含有我们所研究问题中 所涉的所有元素那么就称这个集合为全集通常 记作U.
对于一个集合A由全集U中不属于A的所有元 素组成的集合称为集合A相对于全集U的补集简 称为集合A的补集.
3 .已 A { 知 x|x 2 3 x 2 0 }B , { x|x 2 a x a 1 0 } 若 A B A ,求a 的 实 . 值 数
4 .设A 集 {x| 2 合 x 1 } {x|x 1 }B , {x|axb } 若 A B {x|x 2 }A , B {x|1x3 }求 ,a ,b 的 . 值
A∪B={x|x∈A或x∈B}
例4 设A={4568} B={3578}求A∪B.
解: A∪B={4568} ∪ {3578} ={345678}

最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集

第一章 集合与常用逻辑用语
1.3 集合的基本运算
第2课时 补集及综合运算
学习目标 1.理解在给定集合中一个子集的补集的含义,会求给 定子集的补集 2.能运用Venn图表达补集运算
素养要求 数学运算 直观想象
|自学导引|
补集的概念
1.全集
(1)定义:如果一个集合含有我们所研究问题中涉及的_所__有__元__素_,那么就称这个集合为全集.
|素养达成|
1.补集定义的理解(体现了数学运算的核心素养).
(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如,当研 究数的运算性质时,我们常常将实数集R当做全集.
(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,还是一种数学思想. (3)从符号角度来看,若x∈U,A U,则x∈A和x∈∁UA二者必居其一.
U (2)记法:全集通常记作________.
2.补集
对于一个集合 A,由全集 U 中_不__属__于__集__合__A___的所有元素组成 文字语言 的集合称为集合 A 相对于全集 U 的补集,记作___∁_U_A___
符号语言
∁UA=_{_x_|x_∈__U__且__x_∉_A_}__
图形语言
A.{1,4}
B.{1}
C.{4}
D.∅
【答案】A
【解析】∁UA={0,1,4},B∩(∁UA)={1,4}.故选A.
2.(题型2)已知集合A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=
A.{-2,-1}
B.{-2}
()
C.{-1,0,1}
D.{0,1}
【答案】A
5.(题型2)已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁UA,∁UB, (∁UA)∩(∁UB).

推荐-高中数学(人教版A版必修一)配套课件第一章 集合与函数的概念 第一章 1.1.3 第2课时


(2)若B={x|2a<x<a+3},且B⊆∁UA,求a的取值范围. 解 若2a≥a+3,即a≥3,则B=∅⊆∁UA. 若2a<a+3,即a<3,要使B⊆∁UA, 需a2<a≥3,0, 解得 0≤a<3.
综上,a的取与感 悟
答案
规律与方法
1.全集与补集的互相依存关系 (1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而 言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究 整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研 究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子 集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互 相依存、不可分割的两个概念.
A.U
B.{1,3,5}
C.{3,5,6}
D.{2,4,6}
答案
1 23 45
2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于
(D )
A.{1,3,4}
B.{3,4}
C.{3}
D.{4}
答案
1 23 45
3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁RS)∪T等于( C ) A.{x|-2<x≤1} B.{x|x≤-4} C.{x|x≤1} D.{x|x≥1}
解析 A∩B={x|1<x≤2},A∪B={x|x≥0}, 由图可得A*B=∁A∪B(A∩B)={x|0≤x≤1或x>2}.
解析答案
类型三 集合的综合运算 例 3 设全集 U=R,A={x|1x<0}. (1)求∁UA; 解 A={x|1x<0}={x|x<0}, ∴∁UA={x|x≥0}.

集合的基本运算PPT执教课件 北师大版2


集合的基本运算PPT执教课件 北师大版2(精品课件)
集合的基本运算PPT执教课件 北师大版2(精品课件)
例 2 已知集合 S={x|1<x≤7},A={x|2≤x<5},B={x|3≤x<7}. 求:(1)(∁SA)∩(∁SB);(2)∁S(A∪B);(3)(∁SA)∪(∁SB);(4)∁S(A∩B).
探究点一 全集、补集概念 问题 1 方程(x-2)(x2-3)=0 的解集在有理数范围内与在实数范
围内有什么不同?通过这个问题你得到什么启示?
答 方程在有理数范围内的解集为{2},在实数范围内的解集为{2, 3,- 3}.数学学科中很多问题都是在某一范围内进行研究.如本
问题中在有理数范围内求解与在实数范围内求解是不同的.类似这 些给定的集合就是全集.
答 (1)实点变虚点、虚点变实点.如 A={x|-1≤x<5}, 则∁RA={x|x<-1,或 x≥5};
(2)通过改变原不等式的不等号方向取补集时,要防止漏解.
如 A=xx1
<0,∁RA≠xx1
≥0={x|x>0}.
应先求出 A={x|x<0},再求∁RA={x|x≥0}.
集合的基本运算PPT执教课件 北师大版2(精品课件)
1.1.3 集合的基本运算(2)
问题情境:相对于某个集合 U,其子集中的元素是 U 中 的一部分,那么剩余的元素也应构成一个集合,这两个集 合对于 U 构成了相对关系,这就验证了“事物都是对立 和统一的关系”.集合中的部分元素构成的集合与集合之 间的关系就是部分与整体的关系.这就是本节研究的内容 ——全集和补集.
集合的基本运算PPT执教课件 北师大版2(精品课件)
集合的基本运算PPT执教课件 北师大版2(精品课件)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档