集合的基本运算PPT课件
合集下载
集合的基本运算PPT精品课件

作业布置
1.教材P12 A组6,7,8 B组3 2 补.P={a2,a+2,-3}, Q={a-2,2a+1,a2+1},P ∩Q={-3}, 求a.
感受大自然之美
美景欣赏
视频欣赏《江山如画》
思考:1、你认为大自然美在 哪里? 2、美丽的大自然对我们的 身心成长有哪些益处?
春山淡冶而如笑
例5.设集合A={-4,2m-1,m2},B={9,m-5,1-m}, 又A∩B={9},
求实数m的值.
课堂练习
教材P11练习T1~3.
课堂小结
1. 理解两个集合交集与并集的概念 bb和性质. 2. 求两个集合的交集与并集,常用 bbb数轴法和图示法. 3.注意灵活、准确地运用性质解题;
4. 注意对字母要进行讨论 .
什么是自然美?
注意:自然美并不是不经任何 人工改造的
交流亭
鉴赏自然美,要注意距 离、角度、时间。
鉴赏自然美,要发挥 人们的想象力。
说一说:这对我们鉴赏自然风景有什 么启示?
鉴赏自然美,要注意距离。
还要发挥人的想象力。
童子拜观音
课堂小结:大自然的美到处都有,对于我们 不是缺少美,而是缺少发现美的眼睛。让我 们走进大自然,在感受大自然无尽的美中更 加亲近大自然,更加热爱大自然。
请同学们欣赏美景,再次体会大自 然之美,以及如何欣赏大自然之美
A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于
集合B的所有元素组成的集合叫
做A与B的交集.
记作 A∩B 读作 A交 B
A
B
即 A∩B={x |x∈A,且x∈B}
A∩B
集合的基本运算(课件

集合的元素
01
02
03
确定性
集合中的元素是确定的, 不存在模糊不清的情况。
互异性
集合中的元素是互不相同 的,即集合中没有重复的 元素。
无序性
集合中的元素没有顺序, 即集合中元素的排列顺序 不影响集合本身。
空集
定义
不含任何元素的集合称为空集。常用 希腊字母∅表示空集。
性质
空集是任何集合的子集,即对于任意集 合A,都有{}⊆A。
补集
补集是指属于全集但不属于某个特定 集合的元素组成的集合。
补集运算不满足交换律和结合律,即 AB≠BA,且(AB)C≠A (BC)。
补集运算可以用符号“”表示,例如 :AB 表示集合A和集合B的补集。
03 集合运算的性质
交换律
定义
对于任意两个集合A和B,若A∪B=B∪A和A∩B=B∩A,则称交 换律成立。
04 集合运算的应用
在数学中的应用
集合的交、并、差运算
01
这些基本运算在数学中用于描述集合之间的关系,如两个集合
的共有元素、所有元素等。
集合的对称差运算
02
在数学中,对称差运算用于描述两个集合之间的相对差异,即
属于一个集合但不属于另一个集合的元素。
集合的补运算
03
补运算用于描述全集中不属于某个集合的元素组成的集合,即
感谢您的观看
THANKS
分配律
定义
对于任意三个集合A、B和C,若A∪(B∩C)=(A∪B)∩(A∪C)和 A∩(B∪C)=(A∩B)∪(A∩C),则称分配律成立。
举例
设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∪(B∩C)={1,2,3,4}, (A∪B)∩(A∪C)={1,2,3,4},满足分配律。
[中学联盟]湖南省攸县第一中学人教版高中数学必修一课件:1.1.3《集合的基本运算》 (共16张PPT)
![[中学联盟]湖南省攸县第一中学人教版高中数学必修一课件:1.1.3《集合的基本运算》 (共16张PPT)](https://img.taocdn.com/s3/m/15256a82dd88d0d233d46ae1.png)
课堂练习
已知全集U={1,2,3,4,5,6,7}, A={2,4,5},B={1,3,5,7},求 A∩(CUB),(CUA)∩(CUB). 思考:从此题的结果中,你有什么猜想?
CU(A∪B) = (CUA)∩(CUB) CU(A∩B) = (CUA)∪(CUB)
德摩根定律
变式训练1 已知集合U { x | x 10, 且x N * }, A U ,
一、温故知新 1. 什么是集合A与B的并集? 什么是集合A与B的交集?
(1)A∪A = _____, A∪ = _____
(2) A B A∪B = _____ A B A∪B = _____
(3)A∩A = _____, A∩ = ______ (4)_______ A∩B = A
CU A { x | x U , 且x A}
U A
CU A
例8:
设U={x|x是小于9的正整数}, A={1,2,3}, B={3, 4, 5, 6}, 求CUA, CUB
例9:
设U={x|x是三角形}, A={x|x是锐角三 角形}, B={x|x是钝角三角形}, 求A∩B, CU(A∪B).
_______ A∩B = B
二、新知讲授 补集
在研究问题时,我们经常需要确定 研究对象的范围.
在不同范围研究同一个问题,可能有不 同的结果,例如方程(x-2)(x2-3)=0的解集, 在 有理数范围内只有一个解2,即
{ x∈Q | ( x – 2 ) ( x2 – 3 ) = 0 } = 2
在不同范围研究同一个问题,可能有不 同的结果,例如方程(x-2)(x2-3)=0的解集, 在 有理数范围内只有一个解2,即
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

当A与B无公共元素时,A与B
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};
•
(2)借助数轴(如图)
•
•
∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.
•
(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.
•
11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},
•
∴A∩B={-2}.
•
(2)结合数轴:
•
•
由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};
人教版 集合的基本运算(共30张PPT)教育课件

1A 2 B 3
一般地,由所有属于A且属于B的元素组成的集合,
称为集合A与B的交集,记作A∩B(读作“A交B”).
即A∩B={ x | x ∈A,且 x∈B}
例5、已知集合A={x|x≤5,且x∈N}, B={x|x>1,且x∈N},
那么A∩B等于( A、{1,2,3,4,5}
). B
B、{2,3,4,5}
D 则实数a满足( )
A、a 4 B、a 4
C、a 4
D、a 4
一、复习回顾
例1、写出集合{a,b}的所有子集,并指出哪些是它的 真子集. 分析:一般写子集时先写不含任何元素的集合,再写 由1个元素构成的集合,再写2个,依此类推……
解:集合{a,b}的所有子集为: ,{a},{b}, {a,b} 真子集为: ,{a}, {b}
二、新课讲解
观察:集合U与集合A,B之间有何关系? (1)A={1,3,5},B={2,4,6},U={1,2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数}, U={x|x是实数}
(3)A={x|x是澄海中学高一(6)班的男同学}, B={x|x是澄海中学高一(6)班的女同学}, U={x|x是澄海中学高一(6)班的学生}.
集合的基本运算
本节课程在本学科中的地位
集合论是现代数学的一个重要的基础,在高中数学中,集合的初步 知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的 基础。
高考中一般有1个选择 5分 与其他部分知识综合在一起考(函数定义域等)
本节课程的意义及作用 通过实例,了解集合间的基本运算
一、复习回顾
用韦恩图表示为
A
二、新课讲解
补集运算性质
(1)
集合的基本运算..ppt

如果一个集合含有所研究问题中涉及的所 有元素,则称这个集合为全集,通常记作U
知识探究(二)
考察下列各组集合: (1)U={1,2,3,4,…,10}, A={1,3,5,7,9},B={2,4,6,8,10}; (2)U={x|x是培英高一某班的同学},
A={x|x是培英高一某班的男同学}, B={x|x是培英高一某班的女同学};
C={1,2,3,4,5};
(2)A {x | 0 x 2},B {x |1 x 4}, C x | 0 x 4} .
思考1:上述两组集合中,集合A,B与集合C的 关系如何? 思考2:我们把上述集合C称为集合A与B的并集, 一般地,如何定义集合A与B的并集?
由所有属于集合A或属于集合B的元素组成 的集合,称为集合A与B的并集
思考6:集合 A A,A 分别等于什么? A A A, A
思考7:若 A B ,则 A B 等于什么?反之成 立吗?
AB A B A
思考8:若 A B ,则说明什么?
集合A与B没有公共元素或 A 或B
知识探究(二)
考察下列两组集合: (1)A={1,3,5},B={1,2,3,4},
ðU (A B) {0,5},求集合A、B.
U
0,5
2,3 A
4,7
1,6 B
例4 设全集U={1,2,3,4,5},集合
A {x | x2 5x a 0}, B {x | x2 bx 12 0},
已知 (ðU A) B {1,3, 4,5},求实数 a, b的值.
由全集U中不属于集合A的所有元素组成的
思考3:怎样定义“补集”?用什么符号表示 集合A相对于全集U的补集?
知识探究(二)
考察下列各组集合: (1)U={1,2,3,4,…,10}, A={1,3,5,7,9},B={2,4,6,8,10}; (2)U={x|x是培英高一某班的同学},
A={x|x是培英高一某班的男同学}, B={x|x是培英高一某班的女同学};
C={1,2,3,4,5};
(2)A {x | 0 x 2},B {x |1 x 4}, C x | 0 x 4} .
思考1:上述两组集合中,集合A,B与集合C的 关系如何? 思考2:我们把上述集合C称为集合A与B的并集, 一般地,如何定义集合A与B的并集?
由所有属于集合A或属于集合B的元素组成 的集合,称为集合A与B的并集
思考6:集合 A A,A 分别等于什么? A A A, A
思考7:若 A B ,则 A B 等于什么?反之成 立吗?
AB A B A
思考8:若 A B ,则说明什么?
集合A与B没有公共元素或 A 或B
知识探究(二)
考察下列两组集合: (1)A={1,3,5},B={1,2,3,4},
ðU (A B) {0,5},求集合A、B.
U
0,5
2,3 A
4,7
1,6 B
例4 设全集U={1,2,3,4,5},集合
A {x | x2 5x a 0}, B {x | x2 bx 12 0},
已知 (ðU A) B {1,3, 4,5},求实数 a, b的值.
由全集U中不属于集合A的所有元素组成的
思考3:怎样定义“补集”?用什么符号表示 集合A相对于全集U的补集?
集合的基本运算(共18张PPT)

(2)设A={4,5,6,8},B={3,5,7,8},C={1,3}, 求
A∪(B∩C) A∪(B∩C)={3,4,5,6,8}
(3)设集合A={x|-1<x<2},集合B={x|1<x<3},求
A∩B
A∩B={x|1<x<2}
(4)设集合A={x|-1<x≤2},集合B={x|x<0或x≥2},
Venn图
A
B
AB
A
B
B A
AB AB
学习新知
A
交集的性质
Venn图
B
A
B
B A
AB
AB
A∩A = A A∩φ = φ
AB
A∩B =B∩A
A∩B A A∩B B 若A∩B=A,则A B.反之,亦然.
应用新知
典例分析
例2.(1)设A={4,5,6,8},B={3,5,7,8},求A∩B
A∩B={5,8}
B={x| x是鄂州二中2021年9月在校的高一同学} C={x| x是鄂州二中2021年9月在校的高一女 同学}
集合C是由那些既属于集合A且属于集合B的所有 元素组成
学习新知
交集
交集:由AB 所有属于集合A且属于集合B的元素组成的集合,称
为集合A与B的交集记做 A B (读做A交B)
A B x x A,且x B
典例分析
例4 设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2,试用集合的运算表示l1,l2的 位置关系
答:平面内直线l1与l2可能有三种位置关系,即相 交于一点,平行或重合。
(1)l1与l2交于一点P
L1∩L2={点P}
(2)l1与l2平行 (3)l1与l2重合
A∪(B∩C) A∪(B∩C)={3,4,5,6,8}
(3)设集合A={x|-1<x<2},集合B={x|1<x<3},求
A∩B
A∩B={x|1<x<2}
(4)设集合A={x|-1<x≤2},集合B={x|x<0或x≥2},
Venn图
A
B
AB
A
B
B A
AB AB
学习新知
A
交集的性质
Venn图
B
A
B
B A
AB
AB
A∩A = A A∩φ = φ
AB
A∩B =B∩A
A∩B A A∩B B 若A∩B=A,则A B.反之,亦然.
应用新知
典例分析
例2.(1)设A={4,5,6,8},B={3,5,7,8},求A∩B
A∩B={5,8}
B={x| x是鄂州二中2021年9月在校的高一同学} C={x| x是鄂州二中2021年9月在校的高一女 同学}
集合C是由那些既属于集合A且属于集合B的所有 元素组成
学习新知
交集
交集:由AB 所有属于集合A且属于集合B的元素组成的集合,称
为集合A与B的交集记做 A B (读做A交B)
A B x x A,且x B
典例分析
例4 设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2,试用集合的运算表示l1,l2的 位置关系
答:平面内直线l1与l2可能有三种位置关系,即相 交于一点,平行或重合。
(1)l1与l2交于一点P
L1∩L2={点P}
(2)l1与l2平行 (3)l1与l2重合