第五章二元一次方程组3应用二元一次方程组_鸡兔同笼 ppt课件 新版北师大版 2017_2018学年八年级数学上册

合集下载

《应用二元一次方程组—鸡兔同笼》二元一次方程组PPT-北师大版八年级数学上册

《应用二元一次方程组—鸡兔同笼》二元一次方程组PPT-北师大版八年级数学上册

总数
x y 35 2x 4 y 94
头x
y 35
足 2x 4y 94
解:设鸡为x 只,兔为y 只.则
x+y=35,

加减消元
2x+4y=94. ②
①×2 得: 2x+2y=70, ③
②-③ 得: 2y=24, y=12
把 y=12 代入①, 得:.x=23.
原方程组的解是
x=23, y=12.
解此方程组得:
x =48, y=11.
答:绳长48尺,井深11尺.
练一练1:今有牛五、羊二, 直金十两.牛二、羊五, 直 金八两.牛、羊各直金几何?
牛五、羊二
牛二、羊五
5头牛、2只羊共价值10两“金”; 2头牛、5只羊共
价值8两“金”.问每头牛、每只羊各价值多少“金”? 解:设每头牛值“金”x两,每头羊值“金”y两,
2
1
讲授新课
一 应用二元一次方程组解古算题
《孙子算经》中的算法, 主要是利用了兔和鸡的脚数分别 是4和2, 4又是2的倍数.可是当其他问题转化成这类问题时, 脚数就不一定是4和2, 上面的计算方法就行不通.
你能根据“上有三十五头, 下有九十四足”列出方程吗?
等量关系:
{ 鸡头+兔头=35, 鸡脚+兔脚=94.
由题意得:
5x+6=y
6x-5=y 解得: x=11
y=61
当堂练习
1.一只蛐蛐6条腿, 一只蜘蛛8条腿, 现有蛐蛐和蜘蛛共10
只, 共有68条腿, 若设蛐蛐有x只, 蜘蛛有y只, 则列出方
程组为
. x +y=10
6x+8y=68
2.用一根绳子围绕一个大树, 若环绕大树3周, 则绳子还多4

应用二元一次方程组——鸡兔同笼ppt

应用二元一次方程组——鸡兔同笼ppt

03
鸡兔同笼问题简介
鸡兔同笼问题的起源
源自中国古代的数学趣题,鸡兔同笼问题最早出现在《孙子 算经》中,当时是为了解决两个农夫的年龄问题。
随着时间的推移,该问题逐渐传播至世界各地,成为数学教 育中的经典问题之一。
鸡兔同笼问题的应用
鸡兔同笼问题可以应用于现实生活中,例如城市交通管理 、人口管理、物资调配等方面。
3
了解了鸡兔同笼问题的数学模型和求解方法
学习收获及感受
通过学习二元一次方程组,提 高了数学应用能力
学会了如何将实际问题转化为 数学问题,并使用数学方法解

掌握了解决鸡兔同笼问题的方 法,并能够解决类似问题
对未来学习的展望
希望进一步深入学习数学建模和算法相关的知识 加强实际应用能力的培养,提高解决实际问题的能力
求解方程
• 将第一个方程乘以2,得到 • 2x + 2y = 2n • 将第二个方程减去第一个方程,得到 • 2y = m - 2n • 解得 • y = (m - 2n) / 2 • 将解得的y的值代入第一个方程,解得 • x = n - y = n - (m - 2n) / 2 = (3n - m) / 2 • · 将第一个方程乘以2,得到 • · ``` • · 2x + 2y = 2n • · ``` • · 将第二个方程减去第一个方程,得到
交流沟通
团队成员之间需要交流沟通,分 享思路和方法,避免重复劳动, 节省时间。
团队协作
通过团队协作,能够更全面地分 析问题,提出更多解决方案,提 高解决问题的质量。同时培养团 队协作能力,增强团队凝聚力。
06
结论与反思
本课程总结
1
理解了二元一次方程组的基本概念和解题方法

5.3 应用二元一次方程组---鸡兔同笼

5.3 应用二元一次方程组---鸡兔同笼

5.3 应用二元一次方程组---鸡兔同笼一.选择题(共15小题)1.(2020秋•新都区期末)一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意的是( )A .{x +y =35y =2xB .{x +y =3520x =2×30yC .{x +y =3520x =30y 2D .{x +y =352x 20=y 302.(2020秋•北碚区校级期末)古代《折绳测井》“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?“译文大致是:“用绳子测水井深度,如果将绳子折成三等分,井外余绳4尺;如果将绳子折成四等分,井外余绳1尺,问绳长、井深各是多少尺?“如果设绳长x 尺,井深y 尺,根据题意列方程组正确的是( )A .{13x =y +414x =y +1 B .{13x =y −414x =y −1C .{13x +4=y 14x −1=yD .{13x −4=y 14x +1=y 3.(2020秋•郑州期末)列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x 个人,物品价值y 钱,可列方程组为( )A .{8x −3=y 7x +4=yB .{8x +3=y 7x −4=yC .{8x −3=y 7x −4=yD .{8x +3=y 7x +4=y4.(2020秋•开福区期末)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为( )A .{3y +5=x 5y −1=xB .{3y −5=x 5y =x −1C .{13x +5=y 5y =x −5D .{x −5=3y x =5(y −1)5.(2020秋•光明区期末)某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )A .{x −y =83x −y =12B .{x +y =183x +y =12C .{x +y =83x −y =12D .{x −y =83x +y =12 6.(2020秋•三水区期末)某商店出售两种规格口罩,2大盒、4小盒共装88个口罩,3大盒、2小盒共装84个口罩,大盒与小盒每盒各装多少个口罩?设大盒装x 个,小盒装y 个,则下列方程组中正确的是( )A .{2x +4y =882x +3y =84B .{4x +2y =883x +2y =84C .{4x +2y =882x +3y =84D .{2x +4y =883x +2y =847.(2020秋•肃州区期末)《孙子算经》中有这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,绳子比木材的长短1尺,问木材的长为多少尺?”若设木材的长为x 尺,绳子长为y 尺,则根据题意列出的方程组是( )A .{x −y =4.5x −12y =1B .{y −x =4.5x −2y =1C .{y −x =4.5x −12y =1D .{y −x =4.512y −x =1 8.(2020秋•历城区期末)新冠疫情得到有效控制后,妈妈去药店为即将开学的李林和已经复工的爸爸购买口罩.若买50只一次性医用口罩和15只KN 95口罩,需付325元;若买60只一次性医用口罩和30只KN 95口罩,需付570元.设一只一次性医用口罩x 元,一只KN 95口罩y 元,下面所列方程组正确的是( )A .{50x +15y =57060x +30y =325B .{50y +15x =32560y +30x =570C .{50x +15y =32560x +30y =570D .{60x +15y =32550x +30y =5709.(2020秋•即墨区期末)《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大小器各容几何?”译文:“今有大容器5个、小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大小容器的容积各是多少斛?”设1个大容器的容积为x 斛,1个小容器的容积y 斛,则根据题意可列方程组( )A .{5x +y =3x +5y =2B .{x +3y =55x +y =2C .{5x +y =3x =2+5yD .{5x +y =2x =3+5y10.(2020秋•薛城区期末)“阅读与人文滋养内心”,某校开展阅读经典活动.小明3天里阅读的总页数比小颖5天里阅读的总页数少6页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页,若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( )A .{3x −6=5y y =2x −10B .{3x +6=5y y =2x +10C .{3x =5y −6y =2x −10D .{3x =5y +6y =2x +10 11.(2020秋•章丘区期末)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”这一章里,二元一次方程组是由算筹(算筹是中国古代用来记数、列式和进行演算的一种工具)来记录的.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示两位数时,个位用立式,十位用卧式.如图(1),从左到右列出的算筹数分别表示x 、y 的系数与相应的常数项,根据图(1)可列出方程组{3x +y =177x +4y =23,则根据图(2)列出的方程组是( )A .{x +5y =32x +2y =14B .{x +5y =112x +4y =9C .{x +5y =212x +2y =9D .{x +5y =12x +2y =9 12.(2020秋•白银期末)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .{y =5x +45y =7x +3B .{y =5x −45y =7x +3C .{y =5x +45y =7x −3D .{y =5x −45y =7x −3 13.(2020秋•广水市期末)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{8x −y =3y −7x =4C .{y −8x =37x −y =4D .{8x −y =37x −y =414.(2020秋•兴庆区校级期末)某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x 名同学,捐款8元的有y 名同学,根据题意,可得方程组( )A .{x +y =298x +6y =226B .{x +y =296x +8y =226C .{x +y =296x +8y =320D .{x +y =298x +6y =32015.(2020秋•玉门市期末)4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .{4x +5y =2710x −3y =20B .{4x −5y =2710x +y =20C .{4x +5y =2710x +3y =20D .{4x −5y =2710x −3y =20二.填空题(共10小题)16.2020年春节前夕“新型冠状病毒”爆发,某乡镇急需值班帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷2000顶,其中甲种帐篷每顶可安置6人,乙种帐篷每顶可安置4人,该企业捐助的帐篷共可安置9000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,可列出的方程组为 .17.(2020•南昌模拟)“今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.设大圈舍的间数是x间,小圈舍的间数是y间,用含x的代数式表示y=.18.(2020•郯城县模拟)某活动小组购买了5个足球和4个篮球,一共花费了482元,其中足球的单价比篮球的单价少8元,求篮球的单价和足球的单价.设足球的单价为x元,篮球的单价为y元,依题意,可列方程组为.19.(2020秋•朝阳区校级期中)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为.20.(2020春•惠城区期中)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来住店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人.可列方程组为:.21.(2020春•绍兴期中)某企业2020年3月初准备开工,需要给员工发放口罩,老板只买到了少量口罩,如果每人发5个,还剩下3个,如果每人发6个,还缺5个,设该企业共有x名员工,买到了y个口罩,根据题意可列方程组为.22.(2020春•广丰区期末)《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.23.(2020春•西岗区期末)《九章算术》是中国传统数学名著,其中记载:“今有牛六、羊三,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有6头牛,3只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为.24.(2020春•陆川县期末)古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x只,树有y棵,由题意可列方程组.25.(2020春•岳阳期末)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则可列方程组.三.解答题(共2小题)26.(2019•泗县一模)我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.27.(2019•芜湖县二模)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文.甲、乙两人原来各有多少钱?。

北师大版八年级上册数学《应用二元一次方程组―鸡兔同笼》二元一次方程组教学说课复习课件

北师大版八年级上册数学《应用二元一次方程组―鸡兔同笼》二元一次方程组教学说课复习课件

新知探究
列二元一次方程组解应
用题的步骤是什么?
(1)审:审清题意;
(2)设:设出两个未;
(4)列:根据题意列出二元一次方程组;
(5)解:正确地求出二元一次方程组的解;
(6)答:根据实际情况检验方程组的解后写出答案.
新知探究
古有一捕快,一天晚上他在野外的一个
x =25,
y=75.
6. 8块相同的小长方形地砖拼成一个大长方形,每块
小长方形地砖的长河宽分别是多少?(单位cm)
解:设有x匹大马, y匹小马,
由题意,得
x+y=60
x=3y
解此方程组得:
x =45,
y=15.
课堂小结
一般步骤:
审、设、列、解、验、答
列方程组解
决问题
关键:找等量关系
深多1尺.问绳长、井深各是多少尺?
问题二:
找出等量关系并完成题目.
新知探究
1
绳长 井深
3

1
4 绳长 井深

等量关系
5
1
解:设绳长x尺,井深y尺,
根据题意,得
x
y 5,

3

x y 1,

4


解得 x =48,y=11.
答:所以绳长48尺,井深11尺.
x +y=10
则列出方程组为
.
6x+8y=68
2.用一根绳子围绕一个大树,若环绕大树3周,则绳子
还多4尺;若环绕大树4周,则绳子又少了3尺。这根
绳子有多长?环绕大树一周需要多少尺?只列方程组.
3x+4=y
4x-3=y

5.3应用二元一次方程组鸡兔同笼课件北师大版数学八年级上册

5.3应用二元一次方程组鸡兔同笼课件北师大版数学八年级上册

12. 为响应“科教兴国”的战略号召,育才中学计划成立创客实验室,购
买了航拍无人机和编程机器人,已知航拍无人机的数量比编程机器人的数
量少3个,若借出去2个航拍无人机,则编程机器人的数量是剩余的航拍无
人机的数量的2倍,则编程机器人的数量为( C )
A. 8个
B. 9个
C. 10个
D. 11个
13. (一题多变) 13.1 改变长方形数量求拼接图形面积 如图,五个完全相同的小长方形拼成一个大长方形,则大长方形的面积 为 750 cm2.
《孙子算经》是我国古代一部较为普 及的算书,许多问题浅显有趣,其中 下卷第 31 题“雉兔同笼”流传尤为 广泛,飘洋过海流传到了日本等国.
“雉兔同笼”题如图:
今有雉 (鸡) 兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
方法一: 趣题多解
35×4 = 140 (只) 140 - 94 = 46 (只) 鸡:46 ÷ 2 = 23 (只) 兔:35 - 23 = 12 (只)
随堂练习
2. 小刚有 5 角硬币和一元硬币共有 8 枚,币值共有 6 元 5 角,设 5 角的 有 x 枚,一元的有 y 枚,列出的方程组为
x+ y= 8 __0_.5_x__+__y_=__6_.5__.
3.古有一捕快,一天晚上他在野外的一个茅屋里,听到外边来了一群
人在吵闹,他隐隐约约地听到几个声音,下面有这一古诗为证:
解此方程组得: x = 45, y = 15.
答:有11个人,61 两银
5.有几个人一起买一件物品,每人出 8 元多 3 元;每人出 7 元,少 4
元.问有多少人?该物品价值多少元?
解:设有 x 人,该物品价值为 y 元,

北师大版八年级数学上册《5.3 应用二元一次方程组——-鸡兔同笼》公开课课件

北师大版八年级数学上册《5.3 应用二元一次方程组——-鸡兔同笼》公开课课件

1.知识目标
(1)能将生活中实际问题转化成纯数学问题,体会运用方 程组解决实际问题的过程. (2)进一步体会方程(组)是刻画现实世界的有效数学模型 .
2.教学重点
审清题意.从实际问题中找出正确的等量关系.
建立相应的方程求解.
3.教学难点
(1)读懂古算题; (2)根据题意找出等量关系,列出方程.
“雉兔同笼”题,今有雉(鸡)兔同笼,上有35头,下 有94足,问雉兔各几何?
解:设每头牛值“金”x两,每头羊值“金” y两,
由题意,得
5x+2y=10,
2x+5y=8.
{ 解得xຫໍສະໝຸດ 34 ,21y=20 .
21
答:羊值“金” 34两,牛值“金”20 两.
21
21
2.学校买铅笔、圆珠笔共100支,共花了80元.已知铅笔每 支0.50元,圆珠笔每支1元,问铅笔、圆珠笔各有多少支?
当堂检测
1:设甲数为x,乙数为y,则甲数的2倍与 乙数的3倍的和为15 ,
列出方程为 2x+3y=15
.
2:一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘蛛共10只, 共有68条腿,若设蛐蛐有x只,蜘蛛有y只,则列出方程组
x +y=10
为 6x+8y=68.
3:小刚有5角硬币和一元硬币有8枚,币值共有6元5角,
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
我们,还在路上……
解:设铅笔x支,圆珠笔y支. x+y=100 , 0.5x+y=80.
x=40, y=60.
拔尖自助餐
已知某电脑公司有A型,B型,C型三种型号的电脑,其价 格分别为A型每台6 000元,B型每台4 000元,C型每台2 500 元,我市东坡中学计划将100 500元钱全部用于从该电脑公司 购进其中两种不同型号的电脑共36台,请你设计出几种不同 的购买方案供该校选择,并说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档