磁共振基础知识及3.0T磁共振1

合集下载

头颅MRI基础知识1-硬件结构

头颅MRI基础知识1-硬件结构

三、正常磁共振图像的特征



脑组织结构完整 脑组织界面清晰 中线及中线旁结构居中 脑室系统的形态、大小及位臵完好 脑沟、脑池的形态、大小无改变 各扫描序列中脑内未见异常信号 正常血管流空现象存在 颅骨结构无破坏与增生 脑内无异常强化
正常 轴位 T1WI
正常 轴位 T2WI
– 外磁场强度与均匀
氢质子密度 氢质子运动速 度 T1弛豫 T2弛豫

性 – 射频脉冲序列 – 序列定时参数 – 信号叠加次数
影响扫描时间的 参数有TR、矩阵、 激励次数

磁共振图像的基本参数
在一定的TR 时间内层数 与时间无关
TR、TE构成T1WI、T2WI 图像参数 成像参数 TR>1000 TE > 50 T2WI <MRI 500 编号( TE <50 T1WI –TR 1、 MRI 号) 1、重复时间TR >1000 TE <Ex 50) PdWI –TR 2、系统编号( 2、回波时间TE TI 构成反转恢复序列 – 3 、序列号( Se号) 层厚与间隔 3、反转时间TI 构成分辨率 – 4、图像号(Im号) 4、层面厚度 – 5、姓名、性别、年龄 5、层间距 FOV– 构成 6、日期、时间 6、重建野 图像大小 – 7、窗宽、窗位
量纲:每小时磁场的变化,单位是ppm/ h 。通
常短时间( 1-2 小时)漂移不能大于 5 ppm ,长
时间(8小时)不能大于10 ppm。

热稳定性:即B0和它的均匀度还随工作温度变化 而发生漂移。热稳定性不好同样会使图像质量 变差。
4)符合需要的有效孔径

用于检测不同物体或人体的不同部位的MRI设备,主磁 体的孔径也不相同。

飞利浦全新Ahieva3.0TTX多源发射磁共振特点介绍

飞利浦全新Ahieva3.0TTX多源发射磁共振特点介绍

21世纪超高场磁共振成像的重大革命---- 飞利浦Achieva 3.0T TX多源发射磁共振特点介绍在2008年北美放射年会上飞利浦率先推出了磁共振界最激动人心的伟大变革的产品---业界首台多源发射磁共振Achieva 3.0T TX,将3.0T的临床表现提升到了全新的高度,堪称开创3.0T的里程碑。

众所周知,顺应磁场强度的不断提升,核磁共振的未来发展趋势之一是多源发射系统。

随着磁场强度的提高,在带来更高信噪比的同时,也出现了诸如射频场分布不均匀、快速扫描序列受特殊射频吸收率SAR制约的负面影响。

TX系列的首创并行多源射频发射系统可以很好地解决上述的问题,其技术特点包括:●业界首台独有的多源发射3.0T核磁共振临床扫描仪。

●并行多个独立射频源,具有对应的多个独立射频放大器。

●对不同患者和检查部位进行自动优化射频发射。

为什么要在3.0T磁共振中应用多源射频发射技术?多源射频发射技术多源射频发射技术可以根据不同患者和检查部位进行自动优化射频发射(即基于个体差异的射频管理),因此可以从源头上解决介电效应问题。

另外,使用多源发射技术,可以自动优化SAR的分布并减少沉积,使快速序列得以应用,因此加快成像速度。

传统的单射频发射多源发射临床优势●提高图像信号的均匀性(特别是腹部,乳腺)●更好的组织对比●更一致的检查结果●加快扫描速度高达40% 多源发射磁共振有效地解决了介电伪影,甚至是肝硬化和腹水病人(3.0T的难点)。

大图:多源发射磁共振,插图:传统3.0T磁共振。

多源发射磁共振可以确保始终如一的优异图像质量,帮助医生作出有信心的诊断,图中显示不同病人的2D T1W梯度回波高分辨率图像。

左图:传统3.0T磁共振。

右图:多源发射磁共振多源发射磁共振可以显著降低脑脊液流动伪影。

此结果的获得是由于多源发射可以真正采用180度重聚脉冲,而不是单射频源的120度重聚脉冲。

左图:传统3.0T磁共振。

右图:多源发射磁共振此外该设备还拥有如下特点:0液氦消耗:飞利浦Achieva 3.0T 磁共振拥有业界领先的零液氦消耗的磁体技术。

磁共振成像基本原理卫生部北京医院杨正汉PPT课件

磁共振成像基本原理卫生部北京医院杨正汉PPT课件
99.0 1.6 0.35 0.1 0.078 0.045 0.031 0.015 0.0066
•第37页/共143页
相对磁化率
1.0 0.083 0.066 0.016 0.093 0.0005 0.029 0.096 0.83
•人体内有无数个氢质子(每毫升水含氢 质子3×1022) •每个氢质子都自旋产生核磁现象
– 激发人体产生共振(广 播电台的发射天线)
– 采集MR信号(收音机 的天线)
•第22页/共143页
•脉冲线圈的分类
•按作用分两类 –激发并采集MRI信号(体线圈) –仅采集MRI信号,激发采用体线 圈进行(绝大多数表面线圈)
•第23页/共143页
接收线圈与MRI图像SNR密切相关
接收线圈离身体越近,所接收到的信号越强 线圈内体积越小,所接收到的噪声越低
•按磁体的外形可分为
•开放式磁体 •封闭式磁体 •特殊外形磁体
OpenMark 3000
•第8页/共143页
•MR按主磁场的场强分类
–MRI图像信噪比与主磁场场强成正比
–低场: 小于0.5T –中场:0.5T-1.0T –高场: 1.0T-2.0T(1.0T、1.5T、2.0T) –超高场强:大于2.0T(3.0T、4.7T、7T)
• 没有外加磁场的情况下,质子自旋 产生核磁,每个氢质子都是一个
“小磁铁”,但由于排列杂乱无章,
磁场相互抵消,人体并不表现出宏
观的磁场,宏观磁化矢量为0。
•第42页/共143页
指南针与地磁、小磁铁与大磁场
•第43页/共143页
•第44页/共143页
组进 织入 质主 子磁 的场 核前 磁后 状人 态体
•MRI基本原理
•非常重要 •难以理解

MRI原理 讲义

MRI原理 讲义

MRI基础知识——MRI 成像理论基础讲师简介Simon,硕士,副主任医师,医学影像专业。

曾任Philips磁共振临床培训工程师。

丁香园临床执医版版主,执医考试讲师。

MRI名称的由来M R IMagnetic Resonance ImagingN M RNuclear Magnetic Resonance由于1983年美苏冷战升级,老百姓谈核色变,所以后来去除“核”,美国放射学会推荐把核磁共振NMR技术叫做磁共振MRI技术。

核磁共振产生的条件成像理论u ω=γB u ωrf = ω0物质基础u 质子u 磁场 u 射频场有核有磁有射频,射频拉莫两相等核磁共振成像——核核磁共振成像——核磁性原子核u 原子核的质子数和中子数必须有一个为奇数,才能自施旋产生磁场。

医学影像服务中心版权所有,禁止盗版!核磁共振成像——核人体元素摩尔浓度相对磁化率1H 99.0 1.014N 1.60.08331P 0.350.06613C 0.10.01623Na 0.0780.09339K 0.0450.000517O 0.0310.0292H 0.0150.09619F0.00660.83核磁共振成像——核人体磁共振信号来源u 水(H 2O )u 脂肪(-CH 3)ω=γB核磁共振成像——核ω=γB1H核的自旋自由状态的人体1H核核磁共振——磁医学影像服务中心版权所有,禁止盗版!进动ω=γBu 进动频率明显低于自旋频率进动u Z 轴方向:M z =M 0u XY 平面方面:进动相位不一致,M xy =0能级在外磁场作用下,高低能级的质子分布符合玻尔兹曼统计分布,在9.4T的外加磁场情况下,低能级质子(和外加磁场方向一致)数目仅仅比高能级质子(和外加磁场方向相反)数目多0.031%,核磁共振——磁核磁共振——共振激发章动医学影像服务中心版权所有,禁止盗版!小问题“核”是人体提供的,那“磁”和“共振”将要如何实现呢?需要哪些硬件配套呢?欲知后事如何,请听下回分解!医学影像服务中心版权所有,禁止盗版!MRI基础知识MRI 硬件组成MRI成像理论基础核共振磁主磁场的意义ω=γB永磁体优点:u 稳定u 便宜u 开放缺点:u 强度低,<0.7T u 重u 不退磁超导磁体理论基础H = N ×I / Le超导磁体0电阻优点:u 不产生热量u 电流稳定u 无需供能医学影像服务中心版权所有,禁止盗版!超导磁体目前主流磁体的内部使用液氦作为冷却液,液氦的温度约等于-269℃超导磁体超导磁体紧急关闭紧急停止梯度场梯度场ω0=γB 0医学影像服务中心版权所有,禁止盗版!梯度场B1B2B3B4B5B6B7ω0=γB 0相位编码频率编码射频场ω0=γB 0射频场线圈医学影像服务中心版权所有,禁止盗版!线圈线圈线圈线圈正交线圈发射+接收相控阵线圈8个头单元+4个颈单元+6个胸单元医学影像服务中心版权所有,禁止盗版!相控阵线圈小问题有了这些硬件,1H可以被激发,释放的信号也可以被探测到,可怎么才能把信号排成一幅图像呢?欲知后事如何,请听下回分解!医学影像服务中心版权所有,禁止盗版!MRI基础知识K 空间数字图像CT成像X11X12X13X14X15X16X17X18X19X21X22X23X24X25X26X27X28X29X31X32X33X34X35X36X37X38X39X41X42X43X51X52X53X61X62X63X71X72X73X81X82X83Y =f(X ,X ,X ……X )Y =f(X ,X ,X ……X )Y =f(X ,X ,X ……X )Y =f(X ,X ,X ……X )K空间傅里叶转换傅里叶转换傅里叶转换医学影像服务中心版权所有,禁止盗版!傅里叶转换傅里叶转换K空间频率编码相位编码编码相位编码频率编码K空间halfscanK空间K空间的中心决定图像的对比度K空间的周围决定图像的解剖细节医学影像服务中心版权所有,禁止盗版!K空间K空间K空间的填充频率编码相位编码K空间的填充K空间频率编码相位编码u 信号强度u 频率编码u 相位编码小问题如何才能让激发的1H同时具有强度信息、频率编码信息和相位编码信息呢?医学影像服务中心版权所有,禁止盗版!欲知后事如何,请听下回分解!权版心中务服像影学医MRI基础知识自旋回波序列/快速自旋回波序列序列射频脉冲、梯度场、信号采集时间等相关参数的设置及时间排列的组合。

磁共振参数

磁共振参数

磁共振参数磁共振成像(MRI)是一种利用核磁共振原理产生的高分辨率医学影像技术,常用于诊断各种疾病和损伤。

磁共振成像的参数是影响成像质量和临床诊断效果的关键因素,包括磁场强度、脉冲序列、扫描时间等。

本文将就磁共振成像的参数进行详细介绍,并探讨其在临床医学中的应用。

磁共振成像的磁场强度是影响图像分辨率和对比度的重要参数之一。

一般来说,磁场强度越高,图像的分辨率和对比度越好。

目前临床使用的磁共振成像系统主要有1.5T和3.0T两种磁场强度。

3.0T的磁场强度比1.5T更高,能够提供更高的信噪比和更好的空间分辨率,适用于对解剖结构和病变进行更精细的观察和诊断。

脉冲序列是指在磁共振成像中采用的RF脉冲、梯度脉冲和时间序列的组合方式。

常用的脉冲序列包括T1加权成像、T2加权成像、质子密度加权成像和T2*加权成像等。

不同的脉冲序列能够突出不同的组织特征和病变信息,因此在临床诊断中需要根据具体情况选择合适的脉冲序列。

扫描时间也是影响磁共振成像的重要参数之一。

随着磁共振成像技术的不断改进,扫描时间已经大大缩短,使得患者的舒适度和成像效果得到了提升。

快速成像技术如EPI、SENSE和GRAPPA等的应用也使得磁共振成像的扫描时间更短,从而在临床实践中得到了广泛的应用。

对于磁共振成像的参数而言,信噪比也是一个非常重要的指标。

信噪比是成像质量的关键因素之一,它能够反映出图像的清晰度和对比度。

在提高信噪比方面,增大磁场强度和改善硬件设备是非常重要的手段。

针对信噪比较低的情况,也可以通过信号平均、并行成像和计算机重建等技术手段来提高图像质量。

在临床医学中,磁共振成像的参数是根据疾病类型、扫描目的和患者情况来进行选择的。

对于颅脑部的疾病诊断,通常会选择较高的磁场强度和T1加权成像序列;对于脊柱和关节的成像,可以通过选择不同的脉冲序列来突出软组织或骨组织;对于儿童、孕妇或老年患者,也需要根据具体情况来选择合适的参数和扫描方式。

MRI基本原理精品PPT课件精选全文完整版

MRI基本原理精品PPT课件精选全文完整版
进动是核磁(小磁场)与主磁 场相互作用的结果 进动的频率明显低于质子的自 旋频率,但比后者更为重要。
54
= .B
:进动频率
Larmor 频率
:磁旋比
42.5兆赫 / T
B:主磁场场强
55
高能与低能状态质子的进动
由于在主磁场中质子进动,每个氢质子均 产生纵向和横向磁化分矢量,那么人体进 入主磁场后到底处于何种核磁状态?
91
5、磁共振“加权成像”
T1WI
PD
T2WI
92
何为加权???
• 所谓的加权就是“重点突出”
的意思
– T1加权成像(T1WI)----突出组织T1弛豫 (纵向弛豫)差别
– T2加权成像(T2WI)----突出组织T2弛豫 (横向弛豫)差别
– 质子密度加权成像(PD)-突出组织氢质 子含量差别
93
低能量
宏观效应
中等能量
高能量
69
90度脉冲继发后产生的宏观和微观效应
低能的超出部分的氢质子有一半获得能量进入高能状态, 高能和低能质子数相等,纵向磁化矢量相互抵消而等于零
使质子处于同相位,质子的微观横向磁化矢量相加,产生 宏观横向磁化矢量
70
氢质子多 氢质子少
90度脉冲激发使质子发生共振,产生最大的旋转 横向磁化矢量,这种旋转的横向磁化矢量切割接 收线圈,MR仪可以检测到。
N
S
MR不能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
62
如何才能产生横向宏观磁化矢量?
63
3、什么叫共振,怎样产生磁共振?
• 共振:能量从一个震动着的物体传递到另一
个物体,而后者以前者相同的频率震动。
64
共振

MRI基础知识题库单选题100道及答案解析

MRI基础知识题库单选题100道及答案解析

MRI基础知识题库单选题100道及答案解析1. MRI 利用的是以下哪种物理现象?()A. 电离辐射B. 电磁感应C. 光电效应D. 康普顿效应答案:B解析:MRI 是利用人体内氢质子在磁场中受到射频脉冲激励而发生磁共振现象,产生信号,通过计算机处理成像,其利用的是电磁感应原理。

2. 磁共振成像中,T1 加权像重点突出的是组织的()A. 横向弛豫差别B. 纵向弛豫差别C. 质子密度差别D. 进动频率差别答案:B解析:T1 加权像主要反映的是组织纵向弛豫的差别。

3. 下列哪种元素不能用于MRI 成像?()A. 氢B. 碳C. 氮D. 氧答案:D解析:氢质子是MRI 成像的主要物质基础,碳和氮在特定情况下也可用于成像,而氧不用于MRI 成像。

4. 在MRI 中,图像的对比度主要取决于()A. 组织的T1 值B. 组织的T2 值C. 组织的质子密度D. 以上都是答案:D解析:组织的T1 值、T2 值和质子密度都会影响MRI 图像的对比度。

5. 以下哪种序列对出血最敏感?()A. T1WIB. T2WIC. 质子密度加权像D. 磁敏感加权成像(SWI)答案:D解析:SWI 对出血尤其是微出血非常敏感。

6. 下列哪种情况会导致T1 值缩短?()A. 组织含水量增加B. 磁场强度增加C. 大分子蛋白含量增加D. 顺磁性物质存在答案:C解析:大分子蛋白含量增加会使T1 值缩短。

7. 关于T2 加权像的描述,错误的是()A. 长TR、长TEB. 突出组织的T2 差别C. 对水肿敏感D. 对脂肪信号高答案:D解析:T2 加权像对脂肪信号不高。

8. 磁共振成像中,空间定位依靠的是()A. 梯度磁场B. 主磁场C. 射频脉冲D. 接收线圈答案:A解析:梯度磁场用于空间定位。

9. 下列哪种组织在T1 加权像上信号最高?()A. 脑脊液B. 脑灰质C. 脂肪D. 肌肉答案:C解析:脂肪在T1 加权像上信号最高。

10. 以下哪种技术可以减少运动伪影?()A. 快速自旋回波B. 梯度回波C. 呼吸门控D. 脂肪抑制答案:C解析:呼吸门控技术可以减少因呼吸运动导致的伪影。

磁共振1.5T和3.0T的差异

磁共振1.5T和3.0T的差异
2. 对FIESTA,由于磁敏感效应 容易引起的带状伪影
3. 垂体扫描会受影响
磁敏感效应 (Susceptibility)
3T
Stanford fMRI Comparison
1.5T
GE Company Confidential
磁敏感效应的增强是一把双刃剑
磁敏感效应 (Susceptibility)
高信噪比
在实际研究中,研究者发现对于不同的组织其SNR的增 加也是不同的:
1. 脑脊液的SNR增加约为2倍
2. 其它组织如脑白质、灰质、苍白球、壳核的SNR增加仅为
30%-60%。
(1)
3. 不同的成像方法也会使SNR的增加幅度不同。 (2) (3)
正确认识 3.0T 二倍于1.5T的信噪比
高信噪比
不同的化合物的频率存在差异
由于不同的化合物周围 的电子云浓密不一样, 真正到达在不同化合物 中的氢质子的磁场强度 是不一样的,所以不同 的化合物中氢质子的进 动频率是不一样的。
化学位移效应(Chemical Shift)的增强
f B0
化学位移随着静磁场强度的增加而增加。
化学位移效应的增强同样是双刃剑
横向驰豫时间
1
1
(7)
• 横向驰豫时间随着磁场强度的增加而轻微的
减短。T2W 基本没有影响!
• 但在梯度回波中由于磁敏感效应,会导致 T2*驰豫时间的缩短
正确认识3.0T磁共振的特点,充分发挥其高 SNR的优势,尽力避免其不利因素,满足临床 和科研的需求!
That’s all Thank you
驰豫时间的改变
纵向驰豫时间
纵向驰豫时间随着磁场强度的增加而增加:从1.5T到 3.0T,人体软1 组织T1 增加25%-40%,而体液——如血液 1 和脑脊液的T1则几乎没有改变。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档