高考数学导数压轴题解题技巧

合集下载

(word完整版)妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)

(word完整版)妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)

妙用“柯西中值定理”秒杀高考导数压轴题柯西中值定理:若函数()(),f x g x 满足如下条件:(i )()(),f x g x 在闭区间[,]a b 上连续;(ii )()f x 在开区间(,)a b 内可导;(iii )在(),a b 内的每一点处()0g x '≠则在(),a b 内至少存在一点ξ,使得()()()()()()f f b f ag g b g a ξξ'-='-.1、 (2012年天津高考理科数学压轴题)已知函数()()ln f x x x a =-+的最小值为0,其中0a >(Ⅰ)求a 的值(Ⅱ)若对()0,x ∀∈+∞,都有()2f x kx <成立,求实数k 的最小值; (Ⅲ)证明:()12ln 21221nk n k =-+<-∑ (n N *∈).2、(2013广西理科数学压轴题)已知函数()()()1ln 11x x f x x xλ+=+-+ (Ⅰ)当0x ≥时,()0,f x ≤求λ的最小值 (Ⅱ)设1111,23n a n =++++证明:21ln 24n n a a n -+>3、(2015年山东高考数学理科第21题)设函数2()ln(1)()f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由;(Ⅱ)若0,()0x f x ∀>≥成立,求a 的取值范围.4、(2017年德阳市二诊数学压轴题)已知函数()ln x a f x x x-=-在1x =处取得极值. (Ⅰ)求证:()0f x ≥. (Ⅱ)若[)1,x ∀∈+∞,不等式()()21f x m x ≤-恒成立,求实数m 的取值范围.5、已知函数()()21x f x x e ax =-+. (Ⅰ)当12a =-时,求函数()f x 的极值;(Ⅱ)若当0x ≥时,()0f x ≥恒成立,求实数a 的取值范围.6、(2015届重庆市巴蜀中学高三12月月考数学压轴题)已知函数()21f x x ax =++,()xg x e =(其中e 是自然对数的底数). (Ⅰ)若1a =-,求函数()()y f x g x =在[]1,2-上的最大值;(Ⅱ)若1a =-,关于x 的方程()()f x k g x =有且仅有一个根,求实数k 的取值范围; (Ⅲ)若对任意的1x 、2x []0,2∈,12x x ≠,不等式()()()()1212f x f x g x g x -<-恒成立,求实数a 的取值范围.7、(2017年江苏省南通市二模理科数学)已知函数()1x f x e=,()ln g x x =,其中e 为自然对数的底数. (Ⅰ)求函数()()y f x g x =在1x =处的切线方程;(Ⅱ)若存在1x ,2x ()12x x ≠,使得()()()()1221g x g x f x f x λ-=-⎡⎤⎣⎦成立,其中λ为常数,求证:e λ>. (Ⅲ)若对任意的(]0,1x ∈,不等式()()()1f x g x a x ≤-恒成立,求实数a 的取值范围.。

导数问题中虚设零点的三个技巧

导数问题中虚设零点的三个技巧

技巧1 整体代换,将超越式转化为普通式.
如果f′(x)是超越形式(对字母进行了有限次初等超越运算 包 括 无 理 数 乘 方、指 数、对 数、三 角、反三角等运算的解析式,称 为 初 等 超 越 式,简称超越式),并且f′(x)的零点是存在的但 无法求出,这时可采用虚设零点法,逐步分析出“零点”所在的范围 和满足 的 关 系 式,然后分析出相应的函数的单调性,最后通过恰当 运用函数的极值与零点所满足的“关系”推演出所要求的结果.通过 这种形式化的合理 代 换 或 推 理,谋求一种整体的转换和过渡,从 而将超越式转化为普通式,有效破解求解或推理证明中的难点.
Байду номын сангаас
如果f′(x)不是超越形式,而是可转化为二次函数,这时很容易想 当然,用求根公式把零点求出来,代入极 值 中 去.但 接 下 来 要 么 计 算 偏 烦,要 么无法化简,复杂的算式让人无处下手,导致后继工
作无法开展.正所谓“思 路 简 单,过 程 烦 人”.这 时有两个处理 技巧.
如果问 题 要 求 解(或 求 证)的结论与参数有关,利用关系式f′(x)=0 (大部 分 情 况 可 转 化 为二次方程),在保留 参 数 的 情 况 下,不 断 地 把 零 点的次数降到不可再降为止,再结合其他条件,建立含参数的方程(或 不 等 式),就可求出参数的值或参数的范围.
导数问题中虚设零点的三个 技巧
导数是解决函 数 单 调 性、极 值、最 值、不 等 式证 明等问题的“利 器”.与导数有关的数学问题往往成 为高考函数压轴题,求解这些压轴题时,经常会碰到 导函数具有零点但求解相对比较繁杂甚至无法求解的 情形.此时,可以将这个零点只设出来而不必求出来, 然后谋求一种整体的转换和过渡,再结合其他条件, 从而最终获得问题的解决.我们称这种解题方法为 “虚设零点”法.

高考数学选填压轴题 第20讲 导数中的构造函数(解析版)

高考数学选填压轴题  第20讲 导数中的构造函数(解析版)

第20讲导数中的构造函数近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;…………………()()0xf x nf x ->',构造()()nf x F x x =.()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,………………()()f x nf x '-,构造()()e nxf x F x =,奇偶性结论:奇乘除奇为偶;奇乘偶为奇。

(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。

给出导函数,构造原函数,本质上离不开积分知识。

【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是()A .1x y <<B .1y x <<C .1x y<<D .1y x<<【来源】广东省佛山市2021届高三下学期二模数学试题【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =,当1x >时,由()1f x >,则()1g y >,可得1y >,当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x-=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减,又()2110ln 2h '=-+>,()1230ln 2h '=-+<,则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<,又因为()()()()010,10,412480h h x h h =>==-+=-<,所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<,当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能.故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性.【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=()A .22B C .322D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题【答案】C【解析】 ()ln 1g x x x =--,1()1g x x'=-,()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈,∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-121a b =-,221ln ln(2)ln a a a b b b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b +-=-,又21ab =(不等式取等条件),解得:2,2a b ==,322a b ∴+=,故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为()A .11[,22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞-D .1[,)2+∞【答案】D【解析】由()()1f m f m --()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为()A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为()A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->,()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又 3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________.【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x x x-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,.类型二巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是()f x ¢,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为()A .(1,1)-B .(),1-∞-C .()1,+¥D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟)【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦,∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<.∴()()10xf x f ->的解集为(1,1)-.故选:A.【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是()A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()x g x e f x =,则()(()())0x g x e f x f x '+'=<,所以(2)(3),g g >即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是()A .(0)02(1)f f <<B .0(0)2(1)f f <<C .02(1)(0)f f <<D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B .4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当成立(是函数的导数),若,则的大小关系是()A .B .C .D .【答案】A【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+ ,,∞∞B .()()2002- ,,C .()()202-+ ,,∞D .()()202-- ,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减,()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+ ,,∞.故选C .点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<- ,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001- ,,B .()()11--+ ,,∞∞C .()()101-+ ,,∞D .()()101-- ,,∞【答案】D.【解析】设()ln ()g x x f x = ,当0x >时,1()()ln ()0g x f x xf x x '=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->;当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<,∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->.综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101-- ,,∞【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则()A .()0f x >B .()0f x <C .()f x 为减函数D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0x g x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]x g x xf x =。

专题05 挖掘“隐零点”,破解导数压轴题-2121年高考数学压轴题之函数零点问题(解析版)

专题05 挖掘“隐零点”,破解导数压轴题-2121年高考数学压轴题之函数零点问题(解析版)

【答案】(Ⅰ)0;(Ⅱ)见解析.
【解析】(Ⅰ)解:因为 f (x) ex+m x3 , 所以 f (x) ex+m 3x2 .……………………………………………………………1 分
因为曲线 y f x 在点 0,f 0 处的切线斜率为1, 所以 f 0 em 1,解得 m 0 .…………………………………………………2 分
(Ⅱ)证法一:因为 f (x) ex+m x3 , g x ln x 1 2 ,
精品公众号:学起而飞
所以 f x g (x) x3 等价于 ex+m ln x 1 2 0 .
当 m 1时, ex+m ln x 1 2 ex1 ln x 1 2 .
要证 ex+m ln x 1 2 0 ,只需证明 ex1 ln(x 1) 2 0 .………………4 分
,解得: ,

,解得:

故 在 递减,在
递增;
2 由 1 知要使 存在最小值,
则且

精品公众号:学起而飞





递减,



故存在
使得
故在
递增,在




, 递减, ,






2.【广东省汕头市 2019 届高三上学期期末】已知函数

讨论 的单调性;
若 , 是 的两个极值点,证明:

【答案】(1)答案不唯一,具体见解析(2)见解析 【解析】
解问题决定,因此必要时尽可能缩小其范围;
第二步:以零点为分界点,说明导函数 f′(x)的正负,进而得到 f(x)的最值表达式;这里应注意,进行代

导数压轴题中关于f(x1)-f(x2)取值范围的解决策略

导数压轴题中关于f(x1)-f(x2)取值范围的解决策略
a+2)
x+1=0 有 两
个不等的正根 m ,
其中 m <n。
n,
2
(
a+2)-4>0,
因此,
a+2>0。
因 此,f (m )+ f (
n )= l
n mn +
1
2
2
(
m +n )
-(
a +2)(
m +n)=l
n mn +
2
1
1
2
2
2
(
m +n)-mn- (
a+2)=- (
a+2)2
2
1<-3。
所以 f(
=l
nt-
1
1

t2
t
'(
t)
=g
2
2
(
t-1)
<0,所 以 g(
t)在 [
e,
2
2
t
故f(
的最大值是1n)
-f(
m)
(
。因为极
函数的定义域为(
1)
0,+ ∞ )
值点在定义域内,
所以 m,
n 为 正 数。 根 据 导
数中极值点的含义 将 x =m 和 x =n 代 入 导
函数,
再由根与系数的 关 系 得 到 m ,
的取值 范 围 是(- ∞ ,
m)
+f(
n)
(
解法1:
当a≥ e+
2)
e+
1
+2。e1 Nhomakorabea(
-2时,

高三导数压轴题题型归纳

高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数fx =e x-lnx +m .2013全国新课标Ⅱ卷1设x =0是fx 的极值点,求m,并讨论fx 的单调性; 2当m≤2时,证明fx>0.1解 fx =e x -ln x +mf ′x =e x -错误!f ′0=e 0-错误!=0m =1,定义域为{x |x >-1},f ′x =e x -错误!=错误!,显然fx 在-1,0上单调递减,在0,+∞上单调递增. 2证明 gx =e x -ln x +2,则g ′x =e x -错误!x >-2. hx =g ′x =e x -错误!x >-2h ′x =e x +错误!>0, 所以hx 是增函数,hx =0至多只有一个实数根,又g ′-错误!=错误!-错误!<0,g ′0=1-错误!>0, 所以hx =g ′x =0的唯一实根在区间错误!内,设g ′x =0的根为t ,则有g ′t =e t -错误!=0错误!, 所以,e t =错误!t +2=e -t ,当x ∈-2,t 时,g ′x <g ′t =0,gx 单调递减; 当x ∈t ,+∞时,g ′x >g ′t =0,gx 单调递增; 所以gx min =gt =e t -ln t +2=错误!+t =错误!>0, 当m ≤2时,有ln x +m ≤ln x +2,所以fx =e x -ln x +m ≥e x -ln x +2=gx ≥gx min >0.例2已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-2012全国新课标1求)(x f 的解析式及单调区间;2若b ax x x f ++≥221)(,求b a )1(+的最大值; 11211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞221()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-当x =,max ()2e F x =当1,a b ==,(1)a b +的最大值为2e 例3已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=;2011全国新课标Ⅰ求a 、b 的值;Ⅱ如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围; 解Ⅰ221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-, 且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =;Ⅱ由Ⅰ知ln 1f ()1x x x x =++,所以 22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--; 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=;i 设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,hx 递减;而(1)0h = 故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈1,+∞时,hx<0,可得211x - hx>0从而当x>0,且x ≠1时,fx-1ln -x x +x k >0,即fx>1ln -x x +xkii 设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈1,k -11时,k-1x 2 +1+2x>0,故'hx>0,而h1=0,故当x ∈1,k -11时,hx>0,可得211x -hx<0,与题设矛盾; iii 设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h x>0,而h1=0,故当x ∈1,+∞时,hx>0,可得211x - hx<0,与题设矛盾;综合得,k 的取值范围为-∞,0例4已知函数fx =x 3+3x 2+ax+be -x. 2009宁夏、海南1若a =b =-3,求fx 的单调区间;2若fx 在-∞,α,2,β单调增加,在α,2,β,+∞单调减少,证明β-α>6. 解: 1当a =b =-3时,fx =x 3+3x 2-3x -3e -x ,故f′x=-x 3+3x 2-3x -3e -x +3x 2+6x -3e-x=-e -x x 3-9x =-xx -3x+3e -x.当x <-3或0<x <3时,f′x>0;当-3<x <0或x >3时,f′x<0. 从而fx 在-∞,-3,0,3单调增加,在-3,0,3,+∞单调减少. 2f′x=-x 3+3x 2+ax+be -x +3x 2+6x+ae -x =-e -x x 3+a -6x+b -a. 由条件得f′2=0,即23+2a -6+b -a =0,故b =4-a.从而f′x=-e -x x 3+a -6x+4-2a.因为f′α=f′β=0,所以x 3+a -6x+4-2a =x -2x -αx-β=x -2x 2-α+βx+αβ. 将右边展开,与左边比较系数,得α+β=-2,αβ=a -2. 故a 4124)(2-=-+=-αβαβαβ.又β-2α-2<0,即αβ-2α+β+4<0.由此可得a <-6. 于是β-α>6. 2. 在解题中常用的有关结论※①构造函数,最值定位分类讨论,区间划分极值比较零点存在性定理应用二阶导转换 例1切线设函数a x x f -=2)(.1当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;2当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:ax x >>21.例2最值问题,两边分求已知函数1()ln 1af x x ax x-=-+-()a ∈R . ⑴当12a ≤时,讨论()f x 的单调性; ⑵设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.②例3切线交点已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.例4综合应用已知函数.23)32ln()(2x x x f -+=⑴求fx 在0,1上的极值;⑵若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;⑶若关于x 的方程b x x f +-=2)(在0,1上恰有两个不同的实根,求实数b 的取值范围. ③例5 变形构造法已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a的取值范围.例6 高次处理证明不等式、取对数技巧已知函数)0)(ln()(2>=a ax x x f .1若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;2当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<例7绝对值处理已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.I 求实数a 的取值范围;II 若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;III 对于II 中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .例8等价变形已知函数x ax x f ln 1)(--=()a ∈R .Ⅰ讨论函数)(x f 在定义域内的极值点的个数;Ⅱ若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;Ⅲ当20e y x <<<且e x ≠时,试比较xyxy ln 1ln 1--与的大小. 例9前后问联系法证明不等式已知217()ln ,()(0)22f x x g x x mx m ==++<,直线l 与函数(),()f x g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1;I 求直线l 的方程及m 的值;II 若()(1)'()()h x f x g x =+-其中g'(x)是g(x)的导函数,求函数()h x 的最大值; III 当0b a <<时,求证:()(2).2b af a b f a a -+-<例10 整体把握,贯穿全题已知函数ln ()1x f x x=-. 1试判断函数()f x 的单调性;2设0m >,求()f x 在[,2]m m 上的最大值;3试证明:对任意*n ∈N ,不等式11ln()e n n nn++<都成立其中e 是自然对数的底数.Ⅲ证明:2121111n n a a a n ++⋅⋅⋅+>+.例11数学归纳法已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值.1求实数m 的值;2已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;3已知正数12,,,n λλλ,满足121n λλλ+++=,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,n x x x ,都有1122()n n f x x x λλλ+++>1122()()()n n f x f x f x λλλ+++. ④例12分离变量已知函数x a x x f ln )(2+=a 为实常数. 1若2-=a ,求证:函数)(x f 在1,+∞上是增函数;2求函数)(x f 在1,e 上的最小值及相应的x 值;3若存在],1[e x ∈,使得x a x f )2()(+≤成立,求实数a 的取值范围. 例13先猜后证技巧已知函数xx n x f )1(11)(++=Ⅰ求函数f x 的定义域Ⅱ确定函数f x 在定义域上的单调性,并证明你的结论. Ⅲ若x >0时1)(+>x kx f 恒成立,求正整数k 的最大值. 例14创新题型设函数fx=e x +sinx,gx=ax,Fx=fx -gx.Ⅰ若x=0是Fx 的极值点,求a 的值; Ⅱ当 a=1时,设Px 1,fx 1, Qx 2, gx2x 1>0,x 2>0, 且PQ )1,0(12)(2<≠++-=b a b ax ax x g []3,2()()g x f x x =b a ,02)2(≥⋅-xx k f ]1,1[-∈x k0)3|12|2(|)12(|=--+-x x k f k 2()()()xf x x a x b e =-+a b R ∈、x a =()f x 0a =b a123x x x ,,()f x b 4x R ∈1234x x x x ,,,1234,,,i i i i x x x x {}1234i i i i ,,,{}1234,,,b 4x ()ln f x x=21()2g x ax bx =+(0)a ≠1若2a =-, 函数()()()h x f x g x =- 在其定义域是增函数,求b 的取值范围;2在1的结论下,设函数ϕϕ2x x (x)=e +be ,x ∈[0,ln2],求函数(x)的最小值;3设函数)(x f 的图象C 1与函数)(x g 的图象C 2交于点P 、Q,过线段PQ 的中点R 作x 轴的垂线分别交C 1、C 2于点M 、N ,问是否存在点R,使C 1在M 处的切线与C 2在N 处的切线平行若存在,求出R 的横坐标;若不存在,请说明理由. 例18全综合应用已知函数()1ln(02)2xf x x x=+<<-. 1是否存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上若存在,求出点M 的坐标;若不存在,请说明理由;2定义2111221()()()()n n i i n S f f f f nn n n -=-==++⋅⋅⋅+∑,其中*n ∈N ,求2013S ;3在2的条件下,令12n n S a +=,若不等式2()1n a m n a ⋅>对*n ∀∈N 且2n ≥恒成立,求实数m 的取值范围.⑦导数与三角函数综合例19换元替代,消除三角设函数2()()f x x x a =--x ∈R ,其中a ∈R . Ⅰ当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;Ⅱ当0a ≠时,求函数()f x 的极大值和极小值;Ⅲ当3a >, []10k ∈-,时,若不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立,求k 的值;⑧创新问题积累 例20已知函数2()ln44x xf x x -=+-. I 、求()f x 的极值.II 、求证()f x 的图象是中心对称图形.III 、设()f x 的定义域为D ,是否存在[],a b D ⊆.当[],x a b ∈时,()f x 的取值范围是,44a b ⎡⎤⎢⎥⎣⎦若存在,求实数a 、b 的值;若不存在,说明理由导数压轴题题型归纳 参考答案例1解:11=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '2证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <.又∵1122x ax ≠,∴ax a x x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.例2⑴1()ln 1(0)a f x x ax x x -=-+->,222l 11()(0)a ax x a f x a x x x x --++-'=-+=> 令2()1(0)h x ax x a x =-+->①当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.②当0a ≠时,由()0f x '=,即210ax x a -+-=,解得1211,1x x a==-.当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 单调递减;当102a <<时,1110a ->>,(0,1)x ∈时()0,()0h x f x '><,函数()f x 单调递减;1(1,1)x a ∈-时,()0,()0h x f x '<>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0,()0h x f x '><,函数()f x 单调递减.当0a <时110a-<,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)递减,1(1,1)a -递增,1(1,)a -+∞递减.⑵当14a =时,()f x 在0,1上是减函数,在1,2上是增函数,所以对任意1(0,2)x ∈,有11()(1)2f x f =-≥, 又已知存在[]21,2x ∈,使12()()f xg x ≥,所以21()2g x -≥,[]21,2x ∈,※又22()()4,[1,2]g x x b b x =-+-∈当1b <时,min ()(1)520g x g b ==->与※矛盾;当[]1,2b ∈时,2min ()(1)40g x g b ==-≥也与※矛盾;当2b >时,min 117()(2)84,28g x g b b ==-≤-≥.综上,实数b 的取值范围是17[,)8+∞. 例3解:⑴()2323f x ax bx '=+-.根据题意,得()()12,10,f f =-⎧⎪⎨'=⎪⎩即32,3230,a b a b +-=-⎧⎨+-=⎩解得10a b =⎧⎨=⎩ 所以()33f x x x =-.⑵令()0f x '=,即2330x -=.得1x =±.12f -=12f =-2,2x ∈-max 2f x =min 2f x =-则对于区间[]2,2-上任意两个自变量的值12,x x ,都有()()()()12max min 4f x f x f x f x -≤-=,所以4c ≥.所以c 的最小值为4.⑶因为点()()2,2M m m ≠不在曲线()y f x =上,所以可设切点为()00,x y .则30003y x x =-.因为()20033f x x '=-,所以切线的斜率为2033x -. 则2033x -=300032x x m x ---,即3202660x x m -++=. 因为过点()()2,2M m m ≠可作曲线()y f x =的三条切线,所以方程32002660x x m -++=有三个不同的实数解. 所以函数()32266g x x x m =-++有三个不同的零点.则()2612g x x x '=-.令0g x '=,则0x =或2x =. ()()0022g g >⎧⎪⎨<⎪⎩6020m m +>⎧⎨-+<⎩62m -<<例4解:⑴23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得舍去)(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时递减.]1,0[)(613ln )31(在为函数x f f -=∴上的极大值.⑵由0]3)(ln[|ln |>+'+-x x f x a 得x x a x x a 323ln ln 323lnln ++<+->或设332ln 323ln ln )(2x x x x x h +=+-=,x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g ,03262)62(31323)(22>++=+⋅+='xx xx x x x h , ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或⑶由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f 令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减,而)1()37(),0()37(ϕϕϕϕ>>,]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于例5解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f∵a 29=,令0)(>'x f 得2>x 或210<<x ,∴函数)(x f 的单调增区间为),2(),21,0(+∞.⑵证明:当0=a 时x x f ln )(=∴x x f 1)(=', ∴210021)(x x x x f +==',又121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212ln x x x x -与212x x +的大小, 又∵12x x >,∴ 即比较12ln x x 与1)1(2)(212122112+-=+-x x x xx x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h ,则0)1()1()1(41)(222≥+-=+-='x x x x x x h , ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x ,即)(0x f k '>⑶∵ 1)()(1212-<--xx x g x g ,∴ []0)()(121122<-+-+x x x x g x x g 由题意得x x g x F +=)()(在区间(]2,0上是减函数.︒1 当x x a x x F x +++=≤≤1ln )(,21, ∴ 1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立. 设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a .︒2 当x x a x x F x +++-=<<1ln )(,10,∴ 1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立 设=)(x t 112--+xx x ,)1,0(∈x 为增函数,∴0)1(=≥t a综上:a 的取值范围为227≥a .例6解:1x ax x x f +=)ln(2)(',2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立设x ax x u -+=1ln 2)(,2,012)('==-=x xx u ,2>x 时,单调减,2<x 单调增, 所以2=x 时,)(x u 有最大值.212ln 2,0)2(≤+≤a u ,所以20e a ≤<. 2当1=a 时,x x x x f x g ln )()(==, e x x x g 1,0ln 1)(==+=,所以在),1(+∞e 上)(x g 是增函数,)1,0(e上是减函数.因为11211<+<<x x x e,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+即)ln(ln 211211x x x x x x ++<,同理)ln(ln 212212x x x x x x ++<.所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+ 又因为,421221≥++x x x x 当且仅当“21x x =”时,取等号. 又1),1,1(,2121<+∈x x ex x ,0)ln(21<+x x ,所以)ln(4)ln()2(21211221x x x x x x x x +≤+++,所以)ln(4ln ln 2121x x x x +<+,所以:42121)(x x x x +<.例7I ,23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=III 对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间-2,2有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .例8解:Ⅰxax xa x f 11)(-=-=',当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞ 单调递减,∴)(x f 在),0(+∞上没有极值点;当0>a 时,()0f x '<得10x a <<,()0f x '>得1x a>, ∴)(x f 在(10,)a上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值. ∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点.Ⅱ∵函数)(x f 在1=x 处取得极值,∴1=a ,∴b xx xbx x f ≥-+⇔-≥ln 112)(,令xx xx g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增,∴22min 11)()(e e g x g -==,即211b e ≤-. Ⅲ证明:)1ln()1ln()1ln()1ln(+>+⇔++>-y e x e y x ey x yx , 令)1ln()(+=x e x g x,则只要证明)(x g 在),1(+∞-e 上单调递增,又∵)1(ln 11)1ln()(2+⎥⎦⎤⎢⎣⎡+-+='x x x e x g x ,显然函数11)1ln()(+-+=x x x h 在),1(+∞-e 上单调递增. ∴011)(>->ex h ,即0)(>'x g ,∴)(x g 在),1(+∞-e 上单调递增,即)1ln()1ln(+>+y e x e yx ,∴当1->>e y x 时,有)1ln()1ln(++>-y x e y x .例9 解:I 1'(),'(1)1;Qf x f x=∴=l ∴直线的斜率为1,且与函数()f x 的图像的切点坐标为1,0,l ∴直线的方程为 1.y x =-又l 直线与函数()y g x =的图象相切,211722y x y x mx =-⎧⎪∴⎨=++⎪⎩方程组有一解;由上述方程消去y,并整理得22(1)90x m x +-+=①依题意,方程②有两个相等的实数根,2[2(1)]490m ∴∆=--⨯=解之, 得m=4或m=-2,0, 2.Qm m <∴=- II 由I 可知217()2,22g x x x =-+ '()2,()ln(1)2(1)g x x h x x x x ∴=-∴=+-+>-,1'()1.11xh x x x -∴=-=++ ∴∈当x (-1,0)时,h'(x)>0,h(x)单调,当(0,)x ∈+∞时,'()0,()h x h x <单减; ∴当x=0时,()h x 取最大值,其最大值为2;III()(2)ln()ln 2ln ln(1).22a b b af a b f a a b a a a +-+-=+-==+ 证明,当(1,0)x ∈-时,ln(1),ln(1).22b a b ax x a a--+<∴+< 例10解:1函数()f x 的定义域是(0,)+∞.由已知21ln ()xf x x -'=.令()0f x '=,得x e =.因为当0x e <<时,()0f x '>;当x e >时,()0f x '<.所以函数()f x 在(0,]e 上单调递增,在[,)e +∞上单调递减. 2由1可知当2m e≤,即2e m ≤时,()f x 在[,2]m m 上单调递增,所以max ln 2()(2)12mf x f m m==-. 当m e ≥时,()f x 在[,2]m m 上单调递减,所以max ln ()1mf x m=-.当2m e m <<,即2e m e <<时,max 1()()1f x f e e==-.综上所述,max ln 21,0221()1,2ln 1,me m m ef x m eemm e m⎧-<≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩3由1知当(0,)x ∈+∞时max 1()()1f x f e e ==-.所以在(0,)x ∈+∞时恒有ln 1()11x f x x e=-≤-,即ln 1x x e ≤,当且仅当x e =时等号成立.因此对任意(0,)x ∈+∞恒有1ln x e ≤.因为10n n +>,1n e n+≠,所以111lnn nn e n ++<⋅,即11ln()e n n n n ++<.因此对任意*n ∈N ,不等式11ln()e n n n n++<.例11解:1当(1,0)x ∈-时,()0f x '>,函数()f x 在区间(1,0)-上单调递增;当(0,)x ∈+∞时,()0f x '<,函数()f x 在区间(0,)+∞上单调递减.∴函数()f x 在0x =处取得极大值,故1m =-. 2令121112()()()()()()()()f x f x h x f x g x f x x x f x x x -=-=----,则1212()()()()f x f x h x f x x x -''=--.函数()f x 在12(,)x x x ∈上可导,∴存在012(,)x x x ∈,使得12012()()()f x f x f x x x -'=-.1()11f x x '=-+,000011()()()11(1)(1)x x h x f x f x x x x x -'''∴=-=-=++++ 当10(,)x x x ∈时,()0h x '>,()h x 单调递增,1()()0h x h x ∴>=;当02(,)x x x ∈时,()0h x '<,()h x 单调递减,2()()0h x h x ∴>=; 故对任意12(,)x x x ∈,都有()()f x g x >. 3用数学归纳法证明.①当2n =时,121λλ+=,且10λ>,20λ>, 112212(,)x x x x λλ∴+∈,∴由Ⅱ得()()f x g x >,即121122112211112212()()()()()()()f x f x f x x x x x f x f x f x x x λλλλλλ-+>+-+=+-,∴当2n =时,结论成立.②假设当(2)n k k =≥时结论成立,即当121k λλλ+++=时,11221122()()()()k k k k f x x x f x f x f x λλλλλλ+++>+++. 当1n k =+时,设正数121,,,k λλλ+满足1211k λλλ++++=,令12km λλλ=+++,1212,,,k k m m mλλλμμμ===, 则11k n m λ++=,且121k μμμ+++=.∴当1n k =+时,结论也成立.综上由①②,对任意2n ≥,n N ∈,结论恒成立.例12 解:⑴当2-=a 时,x x x f ln 2)(2-=,当),1(+∞∈x ,0)1(2)(2>-='xx x f , 故函数)(x f 在),1(+∞上是增函数.⑵)0(2)(2>+='x xax x f ,当],1[e x ∈,]2,2[222e a a a x ++∈+. 若2-≥a ,)(x f '在],1[e 上非负仅当2-=a ,x=1时,0)(='x f ,故函数)(x f 在],1[e 上是增函数,此时=min )]([x f 1)1(=f . 若222-<<-a e ,当2a x -=时,0)(='x f ;当21ax -<≤时,0)(<'x f ,此时)(x f 是减函数;当e x a≤<-2时,0)(>'x f ,此时)(x f 是增函数. 故=min )]([x f )2(af -2)2ln(2a a a --=. 若22e a -≤,)(x f '在],1[e 上非正仅当2e 2-=a ,x=e 时,0)(='x f ,故函数)(x f 在],1[e 上是减函数,此时==)()]([min e f x f 2e a +.⑶不等式x a x f )2()(+≤,可化为x x x x a 2)ln (2-≥-.∵],1[e x ∈, ∴x x ≤≤1ln 且等号不能同时取,所以x x <ln ,即0ln >-x x ,因而xx x x a ln 22--≥],1[e x ∈令xx x x x g ln 2)(2--=],1[e x ∈,又2)ln ()ln 22)(1()(x x x x x x g --+-=',当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,从而0)(≥'x g 仅当x=1时取等号,所以)(x g 在],1[e 上为增函数,故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-. 例13 解:1定义域),0()0,1(+∞⋃-2,0)]1ln(11[1)(2时当>+++-='x x x x x f 0)(<'x f 单调递减; 当)0,1(-∈x ,令)1(11)1(1)()1ln(11)(22<+=+++-='+++=x xx x x g x x x g ,0)1(11)1(1)()1ln(11)(22<+=+++-='+++=x x x x x g x x x g 故)(x g 在-1,0上是减函数,即01)0()(>=>g x g ,故此时)]1ln(11[1)(2+++-='x x x x f 在-1,0和0,+∞上都是减函数 3当x >0时,1)(+>x kx f 恒成立,令]2ln 1[21+<=k x 有又k 为正整数,∴k 的最大值不大于3下面证明当k=3时,)0( 1)(>+>x x kx f 恒成立 当x >0时 021)1ln()1(>-+++x x x 恒成立令x x x x g 21)1ln()1()(-+++=,则时当1 ,1)1ln()(->-+='e x x x g时当1 ,1)1ln()(->-+='e x x x g ,0)(>'x g ,当0)( ,10<'-<<x g e x 时 ∴当)( ,1x g e x 时-=取得最小值03)1(>-=-e e g当x >0时, 021)1ln()1(>-+++x x x 恒成立,因此正整数k 的最大值为3 例14解:ⅠFx = e x +sinx -ax,'()cos x F x e x a =+-. 因为x =0是Fx 的极值点,所以'(0)110,2F a a =+-==.又当a =2时,若x <0, '()cos 0x F x e x a =+-<;若 x >0, '()cos 0x F x e x a =+->. ∴x =0是Fx 的极小值点, ∴a=2符合题意.Ⅱ ∵a =1, 且PQ 121sin x x e x =+12111sin x x x e x x -=+-令()sin ,'()cos 10x x h x e x x h x e x =+-=+->当x >0时恒成立. ∴x ∈0,+∞)时,hx 的最小值为h 0=1.∴|PQ|mi n =1. Ⅲ令()()()2sin 2.x x x F x F x e e x ax ϕ-=--=-+-则'()2cos 2.x x x e e x a ϕ-=++-()''()2sin x x S x x e e x ϕ-==--. 因为'()2cos 0x x S x e e x -=+-≥当x ≥0时恒成立, 所以函数Sx 在[0,)+∞上单调递增, ∴Sx ≥S 0=0当x ∈0,+∞)时恒成立;因此函数'()x ϕ在[0,)+∞上单调递增, '()'(0)42x a ϕϕ≥=-当x ∈0,+∞)时恒成立. 当a ≤2时,'()0x ϕ≥,()x ϕ在0,+∞)单调递增,即()(0)0x ϕϕ≥=. 故a ≤2时Fx ≥F-x 恒成立.例15 解:Ⅰ12()(1)1g x a x b a =-++- 当0>a 时,[]()2,3g x 在上为增函数故(3)296251(2)544220g a a b a g a a b b =-++==⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩当[]0()2,3a g x <时,在上为减函数故(3)296221(2)244253g a a b a g a a b b =-++==-⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩011==∴<b a b 即2()21g x x x =-+. ()12f x x x=+-.Ⅱ方程(2)20x x f k -⋅≥化为12222xxxk +-≥⋅ 2111()222x x k +-≥,令t x =21,221k t t ≤-+ ∵]1,1[-∈x ∴]2,21[∈t 记12)(2+-=t t t ϕ∴min ()0t ϕ= ∴0k ≤Ⅲ方程0)3|12|2(|)12(|=--+-xxk f 化为0)32(|12|21|12|=+--++-k k x x 0)21(|12|)32(|12|2=++-+--k k x x ,0|12|x ≠-令t x =-|12|, 则方程化为0)21()32(2=+++-k t k t 0t ≠∵方程0)32(|12|21|12|=+--++-k k xx有三个不同的实数解, ∴由|12|-=x t 的图像知,0)21()32(2=+++-k t k t 有两个根1t 、2t , 且21t 1t 0<<< 或 101<<t ,1t 2= 记)21()32()(2k t k t t +++-=ϕ则⎩⎨⎧<-=>+=0k )1(0k 21)0(ϕϕ 或 ⎪⎪⎩⎪⎪⎨⎧<+<=-=>+=12k3200k )1(0k 21)0(ϕϕ∴0k >例16 解: Ⅰ0a =时,()()2xf x x x b e =+,()()()()()22232x x x f x x x b e x x b e e x x b x b '''⎡⎤⎡⎤∴=+++=+++⎣⎦⎣⎦, 令()()232g x x b x b =+++,()()2238180b b b ∆=+-=-+>,∴设12x x <是()0g x =的两个根,1当10x =或20x =时,则0x =不是极值点,不合题意;2当10x ≠且20x ≠时,由于0x =是()f x 的极大值点,故120x x .<< ()00g ∴<,即20b <,0b .∴<Ⅱ解:()()xf x e x a '=-2(3)2x a b x b ab a ⎡⎤+-++--⎣⎦,令2()(3)2g x x a b x b ab a =+-++--,22=(3)4(2)(1)80a b b ab a a b ∆-+---=+-+>则,于是,假设12x x ,是()0g x =的两个实根,且12x x .<由Ⅰ可知,必有12x a x <<,且12x a x 、、是()f x 的三个极值点, 则1x =2x =假设存在b 及4x 满足题意,1当12x a x ,,等差时,即21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--,即3b a .=--此时4223x x a a b=-=--+a a -=+ 或4123x x a ab =-=--a a =-2当21x a a x -≠-时,则212()x a a x -=-或12()2()a x x a -=- ①若()122x a a x -=-,则224x a x +=, 于是()()2813323221+-+---=+=b a b a x x a ,即()().33812++-=+-+b a b a 两边平方得()()2191170a b a b +-++-+=,30a b ++<,于是1a b +-=,此时2b a =--此时224x a x +==()().231343332++=--=++---+a b b a b a a②若12()2()a x x a -=-,则214x a x +=,于是2132a x x =+=,()33a b .=++两边平方得()()2191170a b a b +-++-+=,30a b ++>,于是1a b +-=,此时b a =--此时142(3)3(3)324a x a a b a b x b a ++---++===--=+综上所述,存在b 满足题意, 当b=-a-3时,4x a =±b a =-,4x a=+, b a =--时,4x a =+. 例17解:1依题意:.ln )(2bx x x x h -+=()h x 在0,+∞上是增函数,1()20h x x b x'∴=+-≥对x∈0,+∞恒成立,2设].2,1[,,2∈+==t bt t y e t x 则函数化为 当t=1时,y m i n =b+1; 当t=2时,y mi n =4+2b当)(,4x b ϕ时-≤的最小值为.24b +3设点P 、Q 的坐标是.0),,(),,(212211x x y x y x <<且则点M 、N 的横坐标为.221x x x +=C 1在点M 处的切线斜率为.2|1212121x x x k x x x +==+= C 2在点N 处的切线斜率为.2)(|212221b x x a b ax k x x x ++=+=+= 假设C 1在点M 处的切线与C 2在点N 处的切线平行,则.21k k =2221121121x 2(1)x 2(x x )x ln .x x x x 1x --∴==++ 设,1,1)1(2ln ,112>+-=>=u u u u x x u 则 ① 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行 例18 1假设存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上,则函数()y f x =图像的对称中心为(,)M a b .由()(2)2f x f a x b +-=,得21ln1ln 2222x a x b x a x-+++=--+, 即22222ln 0244x axb x ax a -+-+=-++-对(0,2)x ∀∈恒成立,所以220,440,b a -=⎧⎨-=⎩解得1,1.a b =⎧⎨=⎩ 所以存在点(1,1)M ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上. 2由1得()(2)2(02)f x f x x +-=<<.令i x n=,则()(2)2i i f f nn+-=(1,2,,21)i n =⋅⋅⋅-.因为1221()()(2)(2)n S f f f f n n nn=++⋅⋅⋅+-+-①,所以1221(2)(2)()()n S f f f f n n n n=-+-+⋅⋅⋅++②,由①+②得22(21)n S n =-,所以*21()n S n n =-∈N .所以20132201314025S =⨯-=.3由2得*21()n S n n =-∈N ,所以*1()2n n S a n n +==∈N . 因为当*n ∈N 且2n ≥时,2()121ln ln 2n a m n m n n ma n n ⋅>⇔⋅>⇔>-. 所以当*n ∈N 且2n ≥时,不等式ln ln 2n m n >-恒成立minln ln 2n m n ⎛⎫⇔>- ⎪⎝⎭. 设()(0)ln xg x x x=>,则2ln 1()(ln )x g x x -'=. 当0x e <<时,()0g x '<,()g x 在(0,)e 上单调递减; 当x e >时,()0g x '>,()g x 在(,)e +∞上单调递增.因为23ln 9ln8(2)(3)0ln 2ln 3ln 2ln 3g g --=-=>⋅,所以(2)(3)g g >,所以当*n ∈N 且2n ≥时,[]min 3()(3)ln 3g n g ==. 由[]min ()ln 2m g n >-,得3ln 3ln 2m >-,解得3ln 2ln 3m >-. 所以实数m 的取值范围是3ln 2(,)ln 3-+∞.例19 解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的 切线方程是25(2)y x +=--,整理得580x y +-=.Ⅱ解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.1若0a >,当x ()f x '因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =. 2若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.Ⅲ证明:由3a >,得13a>,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤. 由Ⅱ知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤,即22cos cos ()x x k k x --∈R ≤①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. 例20 I /(6)()4(2)(4)x x f x x x -=-- ./(2)注意到204x x ->-,得(,2)(4,)x ∈-∞⋃+∞,解(6)0x x -=得6x =或0x =.当x 变化时,/(),()f x f x 的变化情况如下表:所以(0)ln 2f =是()f x 的一个极大值,(6)ln 22f =+ 是()f x 的一个极大值../(4) II 点()0,(0),(6,(6))f f 的中点是3(3,)4,所以()f x 的图象的对称中心只可能是3(3,)4./(6) 设(,())P x f x 为()f x 的图象上一点,P 关于3(3,)4的对称点是3(6,())2Q x f x --.463(6)ln ()242x x f x f x x ---=+=--.Q ∴也在()f x 的图象上, 因而()f x 的图象是中心对称图形. /(8)III 假设存在实数a 、b .[],a b D ⊆,2b ∴<或4a >.若02b ≤<, 当[],x a b ∈时, 1()(0)ln 02f x f ≤=<,而04b ≥()4b f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(10) 若46a <≤,当[],x a b ∈时, 33()(6)ln 222f x f ≥=+>,而342a ≤()4a f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦./(12) 若06a b a b <<<<或,由()g x 的单调递增区间是()(),0,6,-∞+∞,知,a b 是()4x f x =的两个解.而2()ln 044x x f x x --==-无解. 故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(14) 综上所述,假设错误,满足条件的实数a 、b 不存在.。

压轴题10 导数的简单应用(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题10 导数的简单应用(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题10导数的简单应用题型/考向一:导数的计算及几何意义题型/考向二:利用导数研究函数的单调性题型/考向三:利用导数研究函数的极值、最值○热○点○题○型一导数的计算及几何意义1.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.2.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.3.导数中的公切线问题,重点是导数的几何意义,通过双变量的处理,从而转化为零点问题,主要考查消元、转化、构造函数、数形结合能力以及数学运算素养.一、单选题1.函数()()ln 322f x x x =--的图象在点()()1,1f 处的切线方程是()A .10x y ++=B .230x y ++=C .230x y --=D .30x y --=2.若函数的图象在点处的切线方程为,则=a ()A .1B .0C .-1D .e.已知直线l为曲线A B.10C.5D与函数()的图象都相切,则a b+=()A.1-B.0C.1D.35.曲线22e24xy x-=⋅+在1x=处的切线与坐标轴围成的面积为()A.32B.3C.4916D.4986.已知函数()()21220232023ln 22f x x xf x '=-++-,则()2023f '=()A .2022B .2021C .2020D .20197.若对m ∀∈R ,,a b ∃∈R ,使得()f m a b=-成立,则称函数()f x 满足性质Ω,下列函数不满足...性质Ω的是()A .()23f x x x=+B .()()211f x x =+C .()1ex f x -+=D .()()cos 12f x x =-对于C ,1x -+∈R ,()1e xf x -+∴=的值域为()0,∞+;()1e x f x -+'=- ,()f x '∴的值域为(),0∞-;则()f x 的值域不是()f x '值域的子集,C 不满足性质Ω;对于D ,12x -∈R ,()()cos 12f x x ∴=-的值域为[]1,1-;()()2sin 12f x x '=- ,()f x '∴的值域为[]22-,,则[][]1,12,2-⊆-,D 满足性质Ω.故选:C.8.已知函数()f x 的定义域是()(),00,∞-+∞U ,()f x '为()f x 的导函数,若()()()121f f x f x x'=+-,则()f x 在()0,∞+上的最小值为()A 1-B .15-C 1D .15-二、多选题9.已知函数()332f x x ax =+-的极值点分别为()1212,x x x x <,则下列选项正确的是()A .0a >B .()()122f x f x +=C .若()20f x <,则1a >D .过()0,2仅能做曲线()=y f x 的一条切线10.若函数()()ln 12f x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是()A .-1B .3C .1D .2因为函数()f x 的图象上,不存在互相垂直的切线,所以()min 0f x '≥,即10a -≥,解得1a ≤,故选:AC11.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数,记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数,以下四个函数在π0,2⎛⎫ ⎪⎝⎭上是凸函数的是()A .()sin cos f x x x=-B .()ln 3f x x x=-C .()331f x x x =-+-D .()exf x x -=12.设函数在区间,a b 上的导函数为f x ,f x 在区间,a b 上的导函数为f x ,若区间(),a b 上()0f x ''<,则称函数()f x 在区间(),a b 上为“凸函数”.已知()5421122012f x x mx x =--在()1,2上为“凸函数”则实数m 的取值范围的一个必要不充分条件为()A .1m >-B .m 1≥C .1m >D .0m >○热○点○题○型二利用导数研究函数的单调性利用导数研究函数单调性的关键(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.(2)单调区间的划分要注意对导数等于零的点的确认.(3)已知函数单调性求参数范围,要注意导数等于零的情况.一、单选题1.函数()2e =-xf x x 的单调递增区间为()A .(),0∞-B .()ln2,+∞C .(],ln2∞-D .[)0,∞+【答案】C【详解】()2e xf x x =- ,()2e x f x ∴-'=,令()0f x ¢>,得ln 2x <,所以函数()2e =-xf x x 的单调递增区间为(],ln2∞-.故选:C2.已知函数()2,0,ln ,,x a xf x x x a x⎧<<⎪⎪=⎨⎪≥⎪⎩若()f x 在()0,∞+上单调递减,则实数a 的取值范围是()A .21,e ⎡⎤⎣⎦B .[]e,2eC .2,e e ⎡⎤⎣⎦D .[)e,+∞=A .c b a <<B .c a b<<C .b a c<<D .b c a<<【答案】A【详解】设()e 1xf x x =--,因为()e 1x f x '=-,所以当0x <时,()0f x '<,()f x 在(),0∞-上单调递减,4.若函数满足xf x f x >-在R 上恒成立,且a b >,则()A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <【答案】B【详解】由()()xf x f x '>-,设()()g x xf x =,则()()()0g x xf x f x ''=+>,所以()g x 在R 上是增函数,又a b >,所以()()g a g b >,即()()af a bf b >,故选:B.5.已知()f x 是定义在R 上的偶函数,当0x ≥时,()e sin xf x x =+,则不等式()π21e f x -<的解集是()A .1π,2+⎛⎫+∞⎪⎝⎭B .1π0,2+⎛⎫⎪⎝⎭C .π1e 0,2⎛⎫+ ⎪⎝⎭D .1π1π,22-+⎛⎫⎪⎝⎭6.已知函数()f x 与()g x 定义域都为R ,满足()()()1e xx g x f x +=,且有()()()0g x xg x xg x ''+-<,()12e g =,则不等式()4f x <的解集为()A .()1,4B .()0,2C .(),2-∞D .()1,+∞7.已知函数(),若存在0使得00恒成立,则0的取值范围()A .10,1e ⎡⎤+⎢⎥⎣⎦B .211,e 2e⎡⎤+-⎢⎥⎣⎦C .11,1e ⎡⎤+⎢⎥⎣⎦D .21,e 2⎡⎤-⎣⎦【答案】D 【详解】由00()()f t x f x t =+-,可得00()()f t t x f x +=+,设函数()()e x h x f x x x =+=+,则()e 10xh x '=+>在R 上恒成立,所以()e xh x x =+单调递增,所以0t x =,则0()b f x t =-()e tf t t t =-=-,[]1,2t ∈-,令()e t g t t =-,[]1,2t ∈-,则()e 1tg t '=-,当0=t 时,()0g t '=,令()0g t '>得:(]0,2t ∈,令()0g t '<得:[)1,0t ∈-,所以()()0min 0=e 01g t g =-=,又()11e 1g --=+,()22e 2g =-,其中21e 2e 1-->+,所以实数b 的取值范围是21,e 2⎡⎤-⎣⎦.故选:D.8.已知函数()312x f x x +=+,()()42e xg x x =-,若[)12,0,x x ∀∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值范围是()A .21,e e ⎡⎤⎢⎥⎣⎦B .22,e ⎤-⎦C .)2⎡++∞⎣D .()2e,⎡+∞⎣二、多选题9.已知函数()(1)e x f x x =+的导函数为()f x ',则()A .函数()f x 的极小值点为21e -B .(2)0f '-=C .函数()f x 的单调递减区间为(,2)-∞-D .若函数()()g x f x a =-有两个不同的零点,则21(,0)e a ∈-【答案】BCD【详解】由()(1)e x f x x =+,得()(2)e x f x x '=+,当2x =-时,(2)0f '-=,B 正确;当<2x -时,()0f x '<,函数()f x 单调递减,当2x >-时,()0f x ¢>,函数()f x 单调递增,观察图象知,当210e a -<<时,直线所以函数()()g x f x a =-有两个不同的零点时,故选:BCD10.对于三次函数()3ax bx f x =+,给出定义:设f x 是函数的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭三、解答题11.已知函数()321132f x x ax =-,a ∈R .(1)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)讨论()f x 的单调性.当0a =时,()20f x x '=≥,()f x \在R 上单调递增;当a<0时,若()(),0,x a ∈-∞⋃+∞,则()0f x ¢>;若(),0x a ∈,则()0f x '<;()f x \在()(),,0,a ∞∞-+上单调递增,在(),0a 上单调递减;当0a >时,若()(),0,x a ∈-∞⋃+∞,则()0f x ¢>;若()0,x a ∈,则()0f x '<;()f x \在()(),0,,a -∞+∞上单调递增,在()0,a 上单调递减;综上所述:当0a =时,()f x 在R 上单调递增;当a<0时,()f x 在()(),,0,a ∞∞-+上单调递增,在(),0a 上单调递减;当0a >时,()f x 在()(),0,,a -∞+∞上单调递增,在()0,a 上单调递减.12.已知函数()222ln 12x x f x x -+=.求函数()f x 的单调区间;○热○点○题○型三利用导数研究函数的极值、最值1.由导函数的图象判断函数y =f (x )的极值,要抓住两点(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点.(2)由y =f ′(x )的图象可以看出y =f ′(x )的函数值的正负,从而可得到函数y =f (x )的单调性,可得极值点.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值.(2)求函数在区间端点处的函数值f (a ),f (b ).(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.一、单选题1.函数()32142f x x x x =+-的极小值为()A .43-B .1C .52-D .10427.函数的定义域为R ,导函数f x 的图象如图所示,则函数f x ()A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点【答案】C【详解】解:设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x ,当1x x <或23x x x <<或4x x >时,()0f x ¢>,当12x x x <<或34x x x <<时,()0f x '<,所以函数()f x 在()1,x -∞,()23,x x 和()4,x +∞上递增,在()12,x x 和()34,x x 上递减,所以函数()f x 的极小值点为24,x x ,极大值点为13,x x ,所以函数()f x 有两个极大值点、两个极小值点.故选:C .3.已知函数()π2sin 3f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在()0,π上有3个极值点,则ω的取值范围为()A .13,6⎛⎫+∞ ⎪⎝⎭B .1319,66⎡⎤⎢⎥⎣⎦C .1319,66⎛⎤ ⎥⎝⎦D .713,66⎛⎤ ⎥⎝⎦4.已知函数()e ln 2xx f x x =+-的极值点为1x ,函数()2h x x =的最大值为2x ,则()A .12x x >B .21x x >C .12x x ≥D .21x x ≥.若函数在1x =处有极大值,则实数的值为()A .1B .1-或3-C .1-D .3-6.已知函数()()2ln 11f x x x =+++,则()A .0x =是()f x 的极小值点B .1x =是()f x 的极大值点C .()f x 的最小值为1ln 2+D .()f x 的最大值为37.若函数()3ln f x a x x x ⎛⎫=-+ ⎪⎝⎭只有一个极值点,则a 的取值范围是()A .2e ,4⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .(]3e ,09⎧⎫-∞⎨⎬⎩⎭ D .32e e ,49 纟禳镲çú-¥睚çú镲棼铪8.已知定义域为()0,∞+的函数()f x 满足()()1f x xf x x'+=+,()10f '=,()1122g x a ax x=+--,若01a <<,则()()f x g x -的极值情况是()A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极小值,也无极大值二、多选题9.已知函数()2211e e x x f x -+=+,则()A .()f x 为奇函数B .()f x 在区间()0,2上单调递减C .()f x 的极小值为22e D .()f x 的最大值为411e +10.设函数()ln x f x ax x =-,若函数()f x 有两个极值点,则实数a 的值可以是()A .12B .18C .2D .14-观察图象知,当a<0或10a 4<<时,直线y a =与函数于是当a<0或10a 4<<时,2ln 1(ln )x a x -=在(0,1)(1,⋃+∞所以实数a 的取值范围是a<0或10a 4<<,即a 的值可以是三、解答题11.已知函数()()322113f x x ax a x b =-+-+(a ,b ∈R ),其图象在点()()1,1f 处的切线方程为30x y +-=.(1)求a ,b 的值;(2)求函数()f x 的单调区间和极值;(3)求函数()f x 在区间[]2,5-上的最大值.12.已知函数()ln f x x a=+,其中a 为常数,e 为自然对数的底数.(1)当1a =-时,求()f x 的单调区间;(2)若()f x 在区间(]0,e 上的最大值为2,求a 的值.∴max ,∴,∴3e a =-③若e a -≥,即e a -≤时,在(0,e)上()0f x ¢>,∴()f x 在(0,e)上是增函数,故()f x 在(0,e]上的最大值为()()max e e 12f x f a ==+=,∴e a =不符合题意,舍去,综合以上可得e a =.。

妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)

妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)

妙用“柯西中值定理”秒杀高考导数压轴题柯西中值定理:若函数()(),f x g x 满足如下条件:(i )()(),f x g x 在闭区间[,]a b 上连续;(ii )()f x 在开区间(,)a b 内可导;(iii )在(),a b 内的每一点处()0g x '≠则在(),a b 内至少存在一点ξ,使得()()()()()()f f b f ag g b g a ξξ'-='-。

1、 (2012年天津高考理科数学压轴题) 已知函数()()ln f x x x a =-+的最小值为0,其中0a >(Ⅰ)求a 的值(Ⅱ)若对()0,x ∀∈+∞,都有()2f x kx <成立,求实数k 的最小值;(Ⅲ)证明:()12ln 21221nk n k =-+<-∑(n N *∈)。

2、(2013广西理科数学压轴题)已知函数()()()1ln 11x x f x x xλ+=+-+ (Ⅰ)当0x ≥时,()0,f x ≤求λ的最小值 (Ⅱ)设1111,23n a n =++++证明:21ln 24n n a a n -+>3、(2015年山东高考数学理科第21题)设函数2()ln(1)()f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由;(Ⅱ)若0,()0x f x ∀>≥成立,求a 的取值范围.4、(2017年德阳市二诊数学压轴题)已知函数()ln x a f x x x-=-在1x =处取得极值. (Ⅰ)求证:()0f x ≥。

(Ⅱ)若[)1,x ∀∈+∞,不等式()()21f x m x ≤-恒成立,求实数m 的取值范围。

5、已知函数()()21x f x x e ax =-+。

(Ⅰ)当12a =-时,求函数()f x 的极值;(Ⅱ)若当0x ≥时,()0f x ≥恒成立,求实数a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学导数压轴题解题技巧包括:
函数法:将参数k当成整个函数中的一部分,分情况讨论k的不同取值对函数的影响。

放缩法:有的参数给的一个范围,通过单调性分析,可以简化为一个端点值讨论即可。

比如给k≤2,你可以转化为
k=2,这样题中就没有参数了,大大降低难度。

此外,还有分离参数等方法。

在解决导数压轴题时,需要注意:
遇到有关单调性或最值的题目,考虑使用导数法。

对于存在性问题,如求参数的取值范围,可以运用分离参数法。

对于与零点存在性有关的问题,最好借助零点存在性定理严格说明,即需在给定单调区间【以单调增区间为例】上找到,进而严格说明使得。

在应用这些技巧时,要结合题目的具体条件和已知信息,灵活运用所学知识解决问题。

相关文档
最新文档