导数压轴题的几种处理方法
必须掌握的7种构造函数方法——合理构造函数,巧解导数难题2

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。
其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。
导数压轴题的几种处理方法

2、直接求导后对参数展开讨论,然后求出含参最值,从而 确定参数范围
例题: 设
,其中
.
(1)若
有极值,求 的取值范围;
(2)若当
,
恒成立,求 的取值范围.
解:( 1)由题意可知:
则
有两个不同的实数根,故
解得:
,即
(2)由于
,
恒成立,则
由于
,且
有极值,
,
( 4 分)
,即
(6 分)
,则①Βιβλιοθήκη 当时,在则当
时,
有零点需满足
二、适当处理后能够简化运算:
上都单调递减,于是函数 上单调递减,所以当
,即
.
3、(2014 年一测 )已知函数 f (x)=xlnx , g(x)=k(x-1) ( 1)若 f (x)>=g(x),求 k 的范围
.⑴解 : 注意到函数 f (x) 的定义域为 (0, ) ,
所以 f (x) g(x) 恒成立
f (x)
x
设 h(x) ln x k (x 1) (x 0) ,
h (x) x x2
x x2
1
k
xk
则
,
g(x)
恒成立 ,
x
------------2
分
当 k 0 时 , h (x) 0 对 x 0 恒成立 , 所以 h(x) 是 (0, ) 上的增函数 ,
注意到 h(1) 0 , 所以 0 x 1 时 , h(x) 0 不合题意 .-------4 分
处取得极大值、在
处取得极小值,
,解得:
;
(8 分)
②
当
时,
,即
在
上单调递增,且
高考压轴题:导数题型及解题方法总结很全.

注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
破解导数问题常用到的4种方法

第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x)g(x)”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一构造y=f(x)±g(x)型可导函数[例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有()A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0)C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0)[解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.类型二构造f(x)·g(x)型可导函数[例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)[解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.类型三构造f(x)g(x)型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( ) A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab ) B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab ) C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab ) D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题. [方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x. (5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x-1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是( ) A .f (x )在R 上单调递减 B .f (x )在R 上单调递增 C .f (x )在R 上有最大值 D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e-x=3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x <f (x )x ,即F ⎝⎛⎭⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 答案:(0,1)分类讨论法解决含参函数单调性问题函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整. [例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝⎛⎭⎫-23,-13内是减函数,求a 的取值范围. [解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增; ②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x )1212(2)因为f (x )在⎝⎛⎭⎫-23,-13内是减函数,所以⎝⎛⎭⎫-23,-13⊆(x 1,x 2). 所以f ′(x )=3x 2+2ax +1≤0在⎝⎛⎭⎫-23,-13上恒成立. 所以2a ≥-3x -1x 在⎝⎛⎭⎫-23,-13上恒成立,所以a ≥2. [题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”. [例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a (x 2+1)2·(x -a )⎝⎛⎭⎫x +1a . (1)a >0时f (x )的极小值为f (-(2)当a <0时,f (x )的极小值为f (-综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a-1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1. [题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”. [例3] 已知函数f (x )=ln(x +1)-axx +a (a >1),讨论f (x )的单调性.[解] f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增. [题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆]导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增.转移法解决求解最值中计算困难问题[典例] 函数f (x )=e x -e -x -2x ,设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x -e-2x-4x -4b e x +4b e -x +8bx ,所以g ′(x )=2(e x +e -x -2)(e x +e -x -2b +2). 因为e x +e -x ≥2e x ·e -x =2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x +e -x -2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0. 所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆]最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax >1,所以f (x )>1. 因为f ′(x )=a e -ax (1-x )2⎝⎛⎭⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎫-1-2a , 1-2a 上递减.所以当x ∈⎣⎡⎭⎫0,1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.二次求导法解决判断f ′(x )符号困难问题[例1] 若函数f (x )=sin xx,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小. [解题观摩] 由f (x )=sin xx ,得f ′(x )=x cos x -sin x x 2,设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数. (1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立, 即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -e x +x ln xx 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝⎛⎭⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2e xx -ln x ,则G ′(x )=e x-2(x e x -e x )x 2-1x =e x (x -1)2+e x -xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].[题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x +x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e x x -ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x ,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x 求导,得f ″(x )=1x -1x 2=x -1x 2.令f ″(x )=x -1x 2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x 在区间(1,+∞)上为增函数.因此f ′(x )min =f ′(1)=1>0,所以函数f (x )在(0,+∞)上单调递增.[课时跟踪检测]1.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是( ) A .f ⎝⎛⎭⎫1k <1k B .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-k k -1>-1,移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.2.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:选A 因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数,所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.3.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于( ) A .-501 B .-502 C .-503D .-504解析:选C 由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0,故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0,故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0.由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x ,故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C. 4.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则( ) A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2A C .f (cos A )·sin 2B >f (sin B )·cos 2A D .f (cos A )·sin 2B <f (sin B )·cos 2A解析:选C 根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x 2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B ,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.5.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( ) A .e x 1f (x 2)>e x 2f (x 1) B .e x 1f (x 2)<e x 2f (x 1) C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:选A 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2,所以e x 1f (x 2)>e x 2f (x 1). 6.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________.解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0,可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减.又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1,故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}. 答案:{x |-1<x <1}7.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0,故不等式f (x )<3e x +2的解集为(-∞,0).答案:(-∞,0)8.已知函数f (x )=x -2x +1-a ln x ,a >0,讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2. 由f ′(x )<0,得x 1<x <x 2.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.9.设a ≥0,求证:当x >1时,恒有x >ln 2x -2a ln x +1. 证明:令g (x )=x -ln 2x +2a ln x -1(x >1), 所以g ′(x )=x -2ln x +2ax. 令u (x )=x -2ln x +2a ,所以u ′(x )=1-2x =x -2x .所以u (x )≥u (2)=2(1-ln 2+a 因为x >1,所以g (x )>g (1)=0,所以原不等式成立. 10.已知函数f (x )=ln(ax +1)+1-x1+x,x ≥0,其中a >0.若f (x )的最小值为1,求a 的取值范围. 解:因为f ′(x )=ax 2+a -2(ax +1)(x +1)2.①当a ≥2时,f ′(x )≥0,所以f (x )在[0,+∞)递增, 所以f (x )min =f (0)=1,满足题设条件. ②当0<a <2时,f (x )在⎣⎢⎡⎭⎪⎫0,2-a a 上递减,在( 2-aa ,+∞ )递增.所以f(x)min=f( 2-a a )<f(0)=1,不满足题设条件.综上,a≥2.。
函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
六招破解高考导数压轴题

破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引方法一:等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x )=e ax -1-ax ,其中常数e =2.71828.(1)求f (x )的最小值;(2)当a ≥1时,求证:对任意x >0,都有xf (x )≥2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x )≥2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x +-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x )≥2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
高考数学:导数压轴题的归纳总结方法

高考数学:导数压轴题的归纳总结方法今天我们来聊聊高考数学导数压轴题的归纳总结方法。
在对导数专题归纳总结的时候,可以细分为两个层面。
第一,对题型进行归纳总结。
举例说明,下图的题目中的第二小问,如果去做归纳总结的话,很多题目都跟这道题目相类似,这种题目可以概括为一般形式:如果用归纳总结的思路去做的话,可以细分到之前说的双变量这一类问题的大类,大类下面有一个小类,叫做极值点偏移问题。
希望大家在学习导数专题的过程中,不要简单地光做题,而要在做题中能发现这样一类题型。
导数的问题做多了之后就会发现,很多时候都有相似之处,将这些相似之处提取出来,我们就可以将它一般化为这样一种题型,把它抽象出来。
本质上说,我们就是找这样的一般问题,再从一般的角度去解决方法,看这一类的问题有什么具体的解决套路,这样就可以在学习过程中达到事半功倍的效果了。
第二,对解题方法和解题方向进行归纳总结。
什么叫做解题方法?就是对于之前已经分好类的xx问题,我们可以第一步xxxxx,第二步xxxxxx……第x步xxxxxx,问题解决。
大家可以看出,这样一类问题,方法和套路性比较强。
结合具体例子来谈,还是这个题目,刚刚说可以划归为双变量分类下的极值点偏移这种具体的问题。
对于这一类极值点偏移具体的问题,刚才已经提出一般化的解题题型,那么这一类一般化的解题题型,应该怎样去解决呢?极值点偏移问题三步走:(1)画图观察极值点偏移方向(2)利用f(x)的单调性转移不等式(3)构造f(x)=f(x)-f(2a-x)完成证明在做题的时候,对于这种一般化的问题进行归纳总结,归纳总结出一步一步的套路。
当你完成这种从题型到解决方法的归纳总结之后,就会对导数这一类具体问题拍着胸脯说:“考试,考到这样一类问题,把题目做完,应该是一件十拿九稳的事情。
”因为你把一般的问题都做完,考试题目只要是已经归纳总结过的题型,你只需要把已经总结出的方法往上套,结合具体的题目,将一些条件拿过来进行运算,最后就可以将这一类题目做出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一问略:
(1)若f(x)>=g(x),求k的范围
.⑴解:注意到函数f(x)的定义域为(0,),
所以f(x)g(x)恒成立
f(x)
g(x)
恒成立,
x
x
k(x1)
设h(x)lnx
(x0),
h(x)x
x2
x
x2
则
1
k
xk
,
------------2 分
当k0时,h(x)0对x0恒成立,所以h(x)是(0,)上的增函数,
由ex1x(x0)可得ex1x(x0).从而当a12时,
f'(x)ex12a(ex1)ex(ex1)(ex2a),
故当x(0, ln 2a)时,f'(x)0,而f(0)0,于是当x(0, ln 2a)时,f(x)0.
综合得a的取值范围为(,
1
].
2
值 值
f(x)xex(1)值
f(x)值
值 值 值
5、(2014年二测)(2)0x1值f(x)f(
k
),值
k值 值
值
x
f(x)(1x)e
(xR)
f(x
x
,当
时,
,当
时,
x1,----3分
所以函数f(x)的增区间为(,1),减区间为(1,),
其极大值为f(1)
1
,无极小值.-----------5 分
e
(Ⅱ)由题知0x1, 当k0时,因为kx0x1,由⑴知函数在(,1)单调递增,
x(e,)
f(x)0,f(x)
2
单减;当
1
时,
单增。
(
1
1
f(x)在
t,
上单减,在
,t2
上单增,所以
e
e
②当t
1
时,f(x)在t,t2上单增,所以
e
f(x)min
f(t)tlnt。
(6 分)
(2)要证原命题成立,需证:f(x)
x
2
(x0)成立。
ex
e
设
x
2
, 则
1x
, 令
得
, 当
x(0,1)
时 ,
g(x)ex
等号两边无法求导的导数恒成立求参数范围几种处理方法常见导数恒成立求参数范围问题有以下常见处理方法:
1、求导之后,将参数分离出来,构造新函数,计算
1lnx
例:已知函数f(x).
(Ⅰ)若函数在区间(a,a12)(其中a0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x1时,不等式f(x)
k
恒成立,求实数k的取值范围;
解得:
,即
(4分)
(2)由于
,
恒成立,则
,即
(6分)
由于
,则
①当 时, 在 处取得极大值、在 处取得极小值,
则当 时,,解得:;(8分)
②当 时, ,即 在 上单调递增,且 ,
则 恒成立;(10分)
③当 时, 在 处取得极大值、在 处取得极小值,
则当 时,
综上所述,的取值范围是:
,解得:
但是对于导数部分的难题,上述方法不能用时,我们得另辟蹊径:
2
a1
1
所以
1
,
解得
a1.
… 4 分
a
1
2
2
(Ⅱ)不等式f(x)
k
,即为
(x1)(1lnx)
k,
记g(x)
(x1)(1lnx)
,
x1
x
x
所以
xlnx
… 6 分
[(x1)(1lnx)]x(x1)(1lnx)
g(x)
x2
x2
,
令h(x)xlnx,则h(x)11x,x1,h(x)0.
h(x)在[1,)上单调递增,[h(x)]minh(1)10,从而g(x)0
故g(x)在[1,)上也单调递增,[g(x)]ming(1)2,所以k2…8 分
2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围
例题:设 ,其中 .
(1)若 有极值,求 的取值范围;
(2)若当 , 恒成立,求 的取值范围.
解:(1)由题意可知: ,且 有极值,
则 有两个不同的实数根,故 ,
当x(, 0)时,f'(x)0;当x(0,)时,f'(x)0.故f(x)在(, 0)单调
减少,在(0,)单调增加
(II)f'(x)ex12ax
由(I)知ex1x,当且仅当x0时等号成立.故
f'(x)x2ax(12a)x,
从而当12a0,即a12时,f'(x)0 (x0),而f(0)0,于是当x0时,f(x)0.
2、设函数 ,记 ,若函数 至少存在
一个零点,则实数 的取值范围是.
设
,令 ,,发现
函数 在 上都单调递增,在 上都单调递减,于是函数
在 上单调递增,在 上单调递减,所以当
时,所以函数 有零点需满足 ,即.
二、适当处理后能够简化运算:
3、(2014年一测)已知函数f(x)=xlnx,
g(x)=k(x-1)
e
ex
x1
g(x)
g(x)0
g(x)0,g(x)
x(1,)
g(x)0,g(x)
x1
单 增 ; 当
时 ,
单 减 , 所 以 当
时 ,
g(x)max
1
。
(9分)
e
1
1
1
1
又由(1)得f(x)在(0,
)上单减,在(
,)上单增,所以当x
时,f(x)min
,
e
e
e
e
又 f(1)01eg(1),f(x)g(x),(11分)所以对一切x(0,),都有lnxe1xex2成立。(12分)
x
1
解:(Ⅰ)因为
f(x)
1lnx
,
x
0
,则
lnx
,
… 1 分
x
f(x)
x
当
0x
1
时,
0
;当
x
1
时,
.
所以
f(x)
在(0,1)上单调递
f(x)
f(x)0
增 ; 在(1,)上 单 调 递 减 ,
所 以 函 数f(x)在x1处 取 得 极 大 值.
… 2 分
因为函数f(x)在区间(a,a
1
)(其中a0)上存在极值,
一、分开求左右最值:
1、已知函数f(x)xlnx。 (1)求函数f(x)在t,t2(t0)上的最小值;(2)求证:对一切x0,,都有lnxe1xex2
解(1)f(x)lnx1,令f(x)0,得x1e,
当x(0,1e)时,f(x)0,f(x)
分)
t0①当0t1e时,
f(x)minf(1e)1e;(4分)
注意到h(1)0,所以0x1时,h(x)0不合题意.-------4分
当k0时,若0xk,h(x)0;若xk,h(x)0.
所以h(x)是(0,k)上的减函数,是(k,)上的增函数,
故只需h(x)minh(k)lnkk10.--------
6 分
令u(x)lnxx1(x0),
u(x)1x11xx,
当0x1时,u(x)0;当x1时,u(x)0.
所以u(x)是(0,1)上的增函数,是(1,)上的减函数.
故u(x)u(1)0当且仅当x1时等号成立.
所以当且仅当k1时,h(x)0成立,即k1为所求.
三、放缩后,求参数范围
4、设函数f(x)ex1xax2。
(1)若a0,求f(x)的单调区间;
(2)若当x0时f(x)0,求a的取值范围
(1)a0时,f(x)ex1x,f'(x)ex1.
所以f(x)f(kx),符合题意;-------7分
当0k1时,取xk,可得f(k)f(1),这与函数在(,1)单调递增
不符;9 分
当k1时,因为kx1x1,由⑴知函数f(x)在(1,)单调递减,所以f(kx)f(1x),即只需证f(x)f(1x),即证xex1xe1x,
即lnxxlnx1x,2 lnxx1x0,令h(x)2 lnxx1x(0x1),
则h(x)x22x1(x1)20对0x1恒成立,
x2x2
所以h(x)为(0,1)上的减函数,所以h(x)h(1)0,
所以f(x)f(
k
),符合题意.-------
11 分
x
综上:k(, 0] [1,)为所求.------------
12 分
6、(2013年辽宁)已知函数
fx1xe2x,gxaxx312xcosx.当x0,1时2